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Abstract: Let D = (V(D), A(D)) be a finite, simple digraph and k a positive integer. A function
f : V(D) → {0, 1, 2, . . . , k + 1} is called a [k]-Roman dominating function (for short, [k]-RDF) if
f (AN−[v]) ≥ |AN−(v)|+ k for any vertex v ∈ V(D), where AN−(v) = {u ∈ N−(v) : f (u) ≥ 1}
and AN−[v] = AN−(v) ∪ {v}. The weight of a [k]-RDF f is ω( f ) = ∑

v∈V(D)
f (v). The minimum

weight of any [k]-RDF on D is the [k]-Roman domination number, denoted by γ[kR](D). For k = 2 and
k = 3, we call them the double Roman domination number and the triple Roman domination number,
respectively. In this paper, we presented some general bounds and the Nordhaus–Gaddum bound on
the [k]-Roman domination number and we also determined the bounds on the [k]-Roman domination
number related to other domination parameters, such as domination number and signed domination
number. Additionally, we give the exact values of γ[kR](Pn) and γ[kR](Cn) for the directed path Pn

and directed cycle Cn.

Keywords: [k]-Roman dominating function; [k]-Roman domination number; domination number;
signed domination number; Nordhaus–Gaddum bound

1. Introduction and Terminology

Let D = (V(D), A(D)) be a finite and simple digraph. The order of D is denoted by
n(D) = |V(D)|. For a vertex w in V(D), its out-neighbourhood (resp. in-neighbourhood)
is N+

D (w) = {u ∈ V(D) : (w, u) ∈ A(D)} (resp. N−D (w) = {u ∈ V(D) : (u, w) ∈
A(D)}). The closed out-neighbourhood (resp. closed in-neighbourhood) of w is the
set N+

D [w] = N+
D (w) ∪ {w} (resp. N−D [w] = N−D (w) ∪ {w}). For a vertex subset Y of

V(D), its out-neighbourhood (resp. in-neighbourhood) is N+
D (Y ) =

⋃
w∈Y

N+
D (w) (resp.

N−D (Y ) =
⋃

w∈Y
N−D (w)). Its closed out-neighbourhood (resp. closed in-neighbourhood) is

N+
D [Y ] =

⋃
w∈Y

N+
D [w] (resp. N−D [Y ] =

⋃
w∈Y

N−D [w]). For a vertex w in V(D), its out-degree

(resp. in-degree) is d+D (w) = |N+
D (w)| (resp. d−D (w) = |N−D (w)|). We usually omit the

subscript D when the digraph is known from the context. The symbols ∆+(D), ∆−(D),
δ+(D) and δ−(D) denote the maximum out-degree, maximum in-degree, minimum out-
degree and minimum in-degree of the digraph D , respectively [1].

For a set X ⊆ V(D), the subdigraph of D induced by X is denoted by D [X ].
Additionally, for two disjoint vertex subsets X and Y of D , we define A[X , Y ] as the arc
set satisfying that every arc (u, v) ∈ A[X , Y ] with u ∈ X , v ∈ Y . The distance from u to
v, denoted by d(u, v), is the length of the shortest u-v path.

A digraph D is empty if the number of arcs in D is 0. We write the path of order n as
Pn and the cycle of order n as Cn.

A connected digraph is a rooted tree if there is one vertex r with d−(r) = 0, called
the root, and for any other vertex v distinct from r, d−(v) = 1. Let T be a rooted tree; its
height is the maximum distance from the root to any vertex in D . If every vertex of D has
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exactly one in-neighbor, we say D is contrafunctional. The complement D of a digraph
D is a digraph with vertex set V(D) in which (u, v) ∈ A(D) if and only if (u, v) /∈ A(D).
Please refer to reference [1] for notations and terminology that are not defined here.

A vertex set S of a digraph D is called a dominating set if N+[S ] = V(D). The dom-
ination number is γ(D) = min{|S | : S is a dominating set of D}. A γ(D)-set is a
dominating set of D with the cardinality γ(D). The concept of γ(D) has been widely
studied; see [1–3].

Let G be a bipartite graph and (L,R) the bipartition of G . If there is a neighbour y ∈ S

and S ⊆ R for every x ∈ L, then we say S is a left dominating set. γL(G ) = min{|S | : S

is a left dominating set of G } is the left domination number of G . A γL(G )-set is a left
dominating set of G with the cardinality γL(G ). For a vertex v in L, δL(G ) stands for its
minimum degree. For more results about the left dominating set, see [4].

A signed dominating function (for short, SDF) in a digraph D is a function ϕ : V(D)→
{−1, 1} such that ϕ(N−[v]) = ∑

x∈N− [v]
ϕ(x) ≥ 1 for every vertex v ∈ V(D). The signed

domination number is γS (D) = min{ω(ϕ) : ϕ is an SDF of D}, where ω(ϕ) = ∑
v∈V(D)

ϕ(v)

is the weight of ϕ. If the weight of ϕ is exactly γS (D), then ϕ is a γS (D)-function. This
was further studied in [5].

In 2004, Cockayne and others proposed Roman domination based on Stewart’s strategy
of defending the Roman Empire. Initially, the study of Roman domination was inspired by
the strategies used to defend the Roman Empire during the reign of Emperor Constantine
the Great, from 274 to 337 A.D. He decreed that no more than two legions could be stationed
in all cities of the Roman Empire. Moreover, if a place was not attacked by legions, then it
must be near at least one city where two legions were stationed, so that one of them could
be sent to defend the attacked city. The mathematical concept of Roman domination was
first defined and discussed by Stewart in 1999 and ReVelle and Rosing in 2000, and was
derived from this history of the Roman Empire.

The domination strategy also has many practical applications; for example, it is used in
computer science, coding theory, optimal design of connecting networks, etc. Four different
types of interconnected components (sink, standby station, power supply substation and
power supply station) make up some electrical networks. The sinks need to be connected
with the components of a powerful supply station or two less powerful substations. Reserve
stations must be connected to the supply element, and because it must be used as electricity
storage, at least one reserve station must not be connected to any sink.

Let D be a finite, simple digraph and k a positive integer. A function ϕ : V(D) →
{0, 1, 2, . . . , k + 1} is called a [k]-Roman dominating function (for short, [k]-RDF) if
ϕ(AN−[w]) ≥ |AN−(w)|+ k for any vertex w ∈ V(D), where AN−(w) = {u ∈ N−(w) :
ϕ(u) ≥ 1} and AN−[w] = AN−(w) ∪ {w}. Its weight ω(ϕ) is the sum of ϕ(w) for every
vertex w ∈ V(D). The [k]-Roman domination number is the minimum weight of ϕ (for
short, [k]-RD-number), denoted by γ[kR](D). A [k]-RDF of D with the weight γ[kR](D) is
called a γ[kR](D)-function. In particular, when k = 1, the [k]-RDF is exactly the Roman
dominating function, which has been studied extensively; see [6–9]. When k = 2 and k = 3,
we call them the double Roman dominating function and the triple Roman dominating
function; these denotations were introduced in [10–13].

In 2019, G. Hao, X. Chen and L. Volkmann presented the Nordhaus–Gaddum bound
on the double Roman domination number in [13]. In 2021, in [11], H.A. Ahangar et al.
determined the bounds of the triple Roman domination number related to other domination
parameters, such as domination number and signed domination number. As we know,
the symmetry of a digraph is significant in theoretical and practical problems. A few
digraphs with symmetrical structure, for example the Roman domination of the Kautz
digraph and de Bruijn digraph, have been thoroughly studied by authors in [14,15]. Due to
their many excellent properties such as small diameter and symmetry, the Kautz digraph
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and de Bruijn digraph are widely used in computer drum design, VLSI structure design
and other fields. At the same time, the de Bruijn digraph and hypercube are considered
to be the interconnection network of the real large-scale next-generation multi-computer
system. In this paper, the above results are extended to [k]-Roman domination numbers of
all integers with k ≥ 3. The contributions of this paper are summarized as follows.

(a) In Section 2, we investigate the k-RD-number of the connected digraph with
δ−(D) ≥ 1.

(b) In Section 3, we provide some general bounds for the k-RD-number.
(c) In Section 4, we present the Nordhaus–Gaddum bound for γ[kR](D) + γ[kR](D).
(d) In Section 5, we give the bounds of the [k]-RD-number related to the domination

number and the signed domination number.
(e) In Section 6, we obtain the exact values of γ[kR](Pn) and γ[kR](Cn) for the directed

path Pn and the directed cycle Cn.

2. The [k]-RD-Number of a Connected Digraph with δ−(D) ≥ 1

In this section, we give the [k]-RD-number of a connected digraph with δ−(D) ≥ 1.
To show the main results, we need a key observation, Proposition 1.

For a [k]-RDF, let Vi = {v ∈ V(D) : ϕ(v) = i} for i ∈ {0, 1, . . . , k + 1}. It is noted
that there is a bijective correspondence between ϕ : V(D) → {0, 1, 2, . . . , k + 1} and
(V0, V1, V2, . . . , Vk+1) of D . Therefore, we use (V0, V1, V2, . . . , Vk+1) to represent ϕ through-
out this paper.

Proposition 1. If D is a directed graph, then there is a γ[kR](D)-function ϕ = (V0, V1, . . . , Vk+1)

such that V1 = φ can be found.

Proof. Let ϕ = (V0, V1, . . . , Vk+1) be a γ[kR](D)-function such that the number of vertices
assigned 1 by ϕ is minimum. Suppose that V1 6= φ, that is, there is a vertex v such
that ϕ(v) = 1. Then, we define a [k]-RDF τ follows: τ(v) = 0, τ(u) = ϕ(u) + 1 for a
vertex u ∈ AN−(v), and τ(x) = ϕ(x) for any vertex x ∈ V(D)\{v, u}. This leads to a
γ[kR](D)-function with fewer vertices assigned to 1, which contradicts the choice of ϕ.

According to Proposition 1, there is a [k]-RDF ϕ = (V0, V1, . . . , Vk+1) with no vertex
assigned 1. Without loss of generality, we assume that no vertex is assigned to 1 under
consideration when determining the γ[kR](D)-function for any digraph D . In this case,
arbitrarily [k]-RDF ϕ on D can be written as ϕ = (V0, V2, V3, . . . , Vk+1).

Proposition 2. Let T be a rooted tree with h(T ) = 1. Then, γ[kR](T ) = k + 1.

Proof. Let r be the root of T . Define a function τ : V(D) → {0, 2, 3, . . . , k + 1} so that
τ(r) = k + 1 and τ(x) = 0 otherwise. Then, τ is a [k]-RDF on D , and so γ[kR](D) = ω(τ) =

k + 1.

Theorem 1. Let T � P3 be a rooted tree of order n ≥ 2. Then, γ[kR](T ) ≤ (2k+1)n−(k−1)
3 .

Proof. We prove the theorem by induction on n. If n = 2, we have γ[kR](T ) = k + 1 =
(2k+1)n−(k−1)

3 in accordance with Proposition 2. For the tree T ′ of order m, the theorem
is assumed to be true, where 3 ≤ m ≤ n − 1 and n ≥ 3. If the height of T is 1, then
γ[kR](T ) = k + 1 < (2k+1)n−(k−1)

3 in accordance with Proposition 2. Hence, assume that
h(T ) ≥ 2. Let r be the root of T , and v a vertex for d(r, v) = h(T )− 1 and d+(v) ≥ 1.
Let T1 be the connected component of T − v containing the root r and T2 = T − T1.
Because the distance from r to v is h(T) − 1, h(T2) = 1. From Proposition 2, we find
that γ[kR](T2) = k + 1 ≤ (2k+1)|V(T2)|−(k−1)

3 . If |V(T1)| = 1, then |V(T2)| ≥ 3 by T �
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P3. Let τ : V(D) → {0, 2, 3, . . . , k + 1} be defined as follows: τ(v) = k + 1, τ(r) =

k and τ(x) = 0 otherwise. Then, τ is a [k]-RDF on T , and so γ[kR](T ) ≤ ω(τ) =

2k + 1 < (2k+1)n−(k−1)
3 . Now we assume that |V(T1)| ≥ 2. If T1 � P3, then we have

γ[kR](T1) ≤ (2k+1)|V(T1)|−(k−1)
3 given the induction hypotheses. Furthermore, γ[kR](T ) ≤

γ[kR](T1) + γ[kR](T2) <
(2k+1)|V(T1)|−(k−1)

3 + (2k+1)|V(T2)|−(k−1)
3 < (2k+1)n−(k−1)

3 . If T1
∼=

P3, then γ[kR](T1) = 2k + 1 = (2k+1)|V(T1)|
3 . Hence, γ[kR](T ) ≤ γ[kR](T1) + γ[kR](T2) ≤

(2k+1)|V(T1)|
3 + (2k+1)|V(T2)|−(k−1)

3 = (2k+1)n−(k−1)
3 . The proof is completed.

Theorem 2 ([16]). Let D be a contrafunctional digraph that is connected. Then, D has a unique
directed cycle.

For a directed graph D that is connected and contrafunctional, given Theorem 2 and
the definition of the rooted tree TD , it is clear that γ[kR](D) ≤ γ[kR](TD ). Combined with
Theorem 1, these facts will lead to the following conclusion.

Corollary 1. Let D be a directed graph that is connected and contrafunctional. Then, γ[kR](D) =

2k + 1 if D ∼= C3, and γ[kR](D) ≤ (2k+1)n−(k−1)
3 otherwise, where |V(D)| = n.

Theorem 3. If D � C3 is a connected digraph of order n ≥ 3 with minimum in-degree δ−(D) ≥ 1,
then γ[kR](D) ≤ (2k+1)n−(k−1)

3 .

Proof. We prove the theorem by induction on n. If n = 3, because D � C3 and δ−(D) ≥ 1,
it is easy to see that γ[kR](D) = k + 1 < (2k+1)n−(k−1)

3 . Suppose n ≥ 4. For every vertex
of D , there is an incoming arc that can be chosen by δ−(D) ≥ 1. All such arcs induce a
spanning subdigraph H of D , and H consists of some connected components, which
are denoted as H1, H2, . . . , Hl . In addition, because the in-degree of each vertex in Hi
is 1 for i ∈ {1, 2, . . . , l}, this implies that Hi is a subdigraph of D that is connected and
contrafunctional.

Now, we consider that not all Hi are isomorphic to C3. In general, we may assume that
there exist m connected components not isomorphic to C3 and l−m connected components
isomorphic to C3, which are denoted by Hi for i ∈ {1, 2, . . . , m} and Hj for j ∈ {m + 1, m +

2, . . . , l}, respectively. According to Corollary 1, we have γ[kR](Hi) ≤ (2k+1)|V(Hi)|−(k−1)
3

for any Hi � C3 and γ[kR](Hj) =
(2k+1)|V(Hj)|

3 for any Hj
∼= C3. Hence,

γ[kR](D) ≤ γ[kR](H ) =
l

∑
i=1

γ[kR](Hi)

≤
m

∑
i=1

(2k + 1)|V(Hi)| − (k− 1)
3

+
l

∑
i=m+1

(2k + 1)|V(Hi)|
3

≤ (2k + 1)n− (k− 1)
3

.

Next, we consider that all Hi are isomorphic to C3 for i ∈ {1, 2, . . . , l}. l ≥ 2 because of
n ≥ 4. Notice that D is connected and H is not connected; this implies that there is at least
one arc that is in D but H . If we take the arc in A(D)\A(H ) and add it to H , then, as
shown in Figure 1, it is easy to verify that D has a [k]-RD-number which is strictly smaller

than H by k. Therefore, we find that γ[kR](D) ≤ γ[kR](H ) − k =
l

∑
i=1

γ[kR](Hi) − k =

l
∑

i=1

(2k+1)|V(Hi)|
3 − k < (2k+1)n−(k−1)

3 given Corollary 1.
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Figure 1. Black circles denote the vertices in Vk+1, grey circles denote the vertices in Vk, and white
circles denote the vertices in V0.

3. Some Bounds of the [k]-RD-Number

In this section, some general bounds for γ[kR](D) are presented. We first provide the
upper bounds of γ[kR](D).

Proposition 3. If D is a directed graph with |V(D)| = n, then γ[kR](D) ≤ kn. Furthermore,
γ[kR](D) = kn if and only if there is no arc in D .

Proof. Define a function τ : V(D)→ {0, 2, 3, . . . , k + 1} such that τ(v) = k for each vertex
of D . Then, τ is a [k]-RDF on D and hence γ[kR](D) ≤ ω(τ) = kn. The sufficiency is
obvious, so here we only show the necessity. Suppose, to the contrary, that there are two
vertices u, v such that (u, v) ∈ A(D). Define a function g : V(D) → {0, 2, 3, . . . , k + 1}
such that g(v) = 0, g(u) = k + 1 and g(x) = k for other vertices. Then, g is a [k]-RDF
with ω(g) = kn − k + 1 < kn. Thus, γ[kR](D) ≤ ω(g) = kn − k + 1 < kn = γ[kR](D),
a contradiction.

Theorem 4. Let D be a directed graph with |V(D)| = n and A(D) 6= 0. Then, γ[kR](D) ≤
kn − k + 1. Furthermore, γ[kR](D) = kn − k + 1 iff there is exactly one nontrivial connected
component H in D , where 2 ≤ |V(H )| ≤ 3, and when H has three vertices, H is P3-path or
C3-cycle.

Proof. Because D is a non-empty digraph, we have γ[kR](D) ≤ kn − 1 according to
Proposition 3. Suppose, to the contrary, that kn − k + 2 ≤ γ[kR](D) ≤ kn − 1. Because
|A(D)| ≥ 1, there are two vertices u, v such that (u, v) ∈ A(D). Define a function
g : V(D) → {0, 2, 3, . . . , k + 1} such that g(v) = 0, g(u) = k + 1 and g(x) = k for other
vertices x. Then, g is a [k]-RDF with ω(g) = kn − k + 1. Hence, γ[kR](D) ≤ ω(g) =

kn− k + 1 < kn− k + 2, a contradiction. Thus, γ[kR](D) ≤ kn− k + 1.
(⇒) To prove the necessity, assume that γ[kR](D) = kn − k + 1. First, suppose to

the contrary that D contains at least two nontrivial connected components. Then, we can
choose two arcs, say (u, z) and (s, t), from two distinct connected components. Define a
function τ1 : V(D)→ {0, 2, 3, . . . , k + 1} such that τ1(u) = τ1(s) = k + 1, τ1(z) = τ1(t) = 0
and τ1(x) = k for other vertices x. Then, τ1 is a [k]-RDF on D , and so γ[kR](D) ≤ ω(τ1) =

kn − 2(k − 1) < kn − k + 1 = γ[kR](D), a contradiction. Therefore, D has exactly one
nontrivial connected component, say H .

Now we show that the unique nontrivial component is H with no more than three
vertices. If there are more than three vertices in H , we can obtain the contradiction by
distinguishing three cases as follows:

Case 1: There are four distinct vertices u, z, s, t such that {(u, z), (s, t)} ⊆ A(D).
With the same method as above, there is a contradiction.
Case 2: There are three different vertices u, z, t such that {(u, z), (u, t)} ⊆ A(D).
Define a function τ2 : V(D) → {0, 2, 3, . . . , k + 1} such that τ2(u) = k + 1, τ2(z) =

τ2(t) = 0 and τ2(x) = k for other vertices x. Then, τ2 is a [k]-RDF on D , and so γ[kR](D) ≤
ω(τ2) = kn− 2k + 1 < kn− k + 1 = γ[kR](D), a contradiction.

Case 3: There are three different vertices u, v, s such that {(u, z), (s, z)} ⊆ A(D).
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Define a function τ3 : V(D) → {0, 2, 3, . . . , k + 1} such that τ3(z) = 0 and τ3(x) = k
otherwise. Thus, τ3 is a [k]-RDF on D , and so γ[kR](D) ≤ ω(τ3) = kn− k < kn− k + 1 =

γ[kR](D), a contradiction.
Consequently, 2 ≤ |V(H )| ≤ 3. Furthermore, following the arguments of Case 2 and

Case 3, we find that H is P3-path or C3-cycle when |V(H )| = 3.
(⇐) Assume that D contains exactly one nontrivial connected component H with

2 ≤ |V(H )| ≤ 3, and H is P3-path or C3-cycle when there are three vertices in H .
If there are two vertices in H , γ[kR](D) = γ[kR](D [V(D)\V(H )]) + γ[kR](H ) = k(n−
2) + (k + 1) = kn− k + 1. If there are three vertices in H and H is P3-path or C3-cycle,
γ[kR](D) = γ[kR](D [V(D)\V(H )]) + γ[kR](H ) = k(n− 3) + (k + 1+ k) = kn− k + 1.

Lemma 1. Let D be a digraph with |V(D)| = n and maximum out-degree ∆+(D). Then,
γ[kR](D) ≤ k(n− ∆+(D)) + 1.

Proof. Let w be a vertex with the maximum out-degree ∆+(D). Define a function τ :
V(D) → {0, 2, 3, . . . , k + 1} such that τ(w) = k + 1, τ(z) = 0 for any vertex z ∈ N+(w)

and τ(u) = k for other vertices u. Then, τ is a [k]-RDF on D . Hence, γ[kR](D) ≤ ω(τ) =

(k + 1) + k(n− 1− ∆+(D)) = k(n− ∆+(D)) + 1.

Theorem 5. Let D be a digraph of order n. Then

γ[kR](D) ≤
⌊ (k + 1)n

δ−(D) + 1
(

ln
k(δ−(D) + 1)

k + 1
+ 1
)⌋

.

Proof. Let U be a vertex set of D satisfying the possibility that the vertices in any U are
independently selected is p, where 0 ≤ p ≤ 1. Thus, the expected size of U , denoted by
E[|U |], is np. Let W = V(D)\N+[U ]. Then

P[v ∈ W ] = P[v /∈ U and u /∈ U for u ∈ N−(v)]

= (1− p)(1− p)d−(v)

= (1− p)d−(v)+1

≤ (1− p)δ−(D)+1.

Hence, E[|W |] = n(1− p)d−(v)+1 ≤ n(1− p)δ−(D)+1. Let τ : V(D)→ {0, 2, 3, . . . , k +
1} be defined as follows: τ(w) = k + 1 for any vertex w ∈ U , τ(z) = k for any vertex
z ∈ W , and τ(x) = 0 for any vertex x ∈ N+(U ). Then, the expected size of τ is

E[ω(τ)] = E[(k + 1)|U |+ k|W |] ≤ (k + 1)np + kn(1− p)δ−(D)+1.

Because 1− p ≤ e−p when 0 ≤ p ≤ 1, we have E[ω(τ)] ≤ (k + 1)np + kne−p(δ−(D)+1).
We can further know that the upper bound of E[ω(τ)] is at its minimum when p =

1
δ−(D)+1 ln k(δ−(D)+1)

k+1 , therefore E[ω(τ)] ≤ (k+1)n
δ−(D)+1

(
ln k(δ−(D)+1)

k+1 + 1
)

. This implies that

γ[kR](D) ≤
⌊

(k+1)n
δ−(D)+1

(
ln k(δ−(D)+1)

k+1 + 1
)⌋

.

We now establish the lower bound of γ[kR](D).

Theorem 6. Let D be a connected digraph with |V(D)| = n. Then, γ[kR](D) ≥
⌈

2n(2+k)
2+k+2∆+(D)

⌉
.

Proof. Let τ = (V0, V2, V3, . . . , Vk+1) be a γ[kR](D)-function and |V0| = n0. We consider
two cases:

Case 1: Vk+1 = φ.
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If n0 = 0, then γ[kR](D) =
k
∑

i=2
i|Vi| = 2

k
∑

i=2
|Vi|+

k
∑

i=3
(i− 2)|Vi| ≥ 2n ≥

⌈
2n(2+k)

2+k+2∆+(D)

⌉
.

If n0 6= 0, then γ[kR](D) =
k
∑

i=2
i|Vi| = 2

k
∑

i=2
|Vi|+

k
∑

i=3
(i− 2)|Vi| ≥ 2(n− n0). Because τ =

(V0, V2, V3, . . . , Vk+1) is a γ[kR](D)-function, we have ∑
u∈N−(v)

τ(u) ≥ |AN−(v)|+ k ≥ 2 + k

for each vertex v ∈ V0. Then, γ[kR](D) = ω(τ) ≥ (2+k)n0
∆+(D)

, implying that

2 + k
2

γ[kR](D) ≥ (2 + k)n− (2 + k)n0 ≥ (2 + k)n− ∆+(D)γ[kR](D).

Hence, γ[kR](D) ≥
⌈

2n(2+k)
2+k+2∆+(D)

⌉
.

Case 2: Vk+1 6= φ.

If n0 = 0, then γ[kR](D) =
k+1
∑

i=2
i|Vi| = 2

k+1
∑

i=2
|Vi|+

k+1
∑

i=3
(i− 2)|Vi| ≥ 2n+ (k− 1)|Vk+1| ≥

2n + k − 1 >
⌈

2n(2+k)
2+k+2∆+(D)

⌉
. If n0 6= 0, then γ[kR](D) =

k+1
∑

i=2
i|Vi| = 2

k+1
∑

i=2
|Vi| +

k+1
∑

i=3
(i −

2)|Vi| ≥ 2(n− n0)+ (k− 1)|Vk+1| ≥ 2(n− n0)+ (k− 1). Because τ = (V0, V2, V3, . . . , Vk+1)

is a γ[kR](D)-function, we have ∑
u∈N−(v)

τ(u) ≥ |AN−(v)|+ k ≥ 1+ k for each vertex v ∈ V0.

Then, γ[kR](D) = ω(τ) ≥ (1+k)n0
∆+(D)

, implying that

1 + k
2

γ[kR](D) ≥ (1 + k)n− (1 + k)n0 +
1 + k

2
(k− 1) ≥ (1 + k)n

− ∆+(D)γ[kR](D) +
1 + k

2
(k− 1).

Hence, γ[kR](D) ≥
⌈
(1+k)(2n+k−1)
1+k+2∆+(D)

⌉
>
⌈

2n(2+k)
2+k+2∆+(D)

⌉
.

4. Nordhaus–Gaddum Bounds on the [k]-RD-Number

In this part, we establish Nordhaus–Gaddum bounds for γ[kR](D) + γ[kR](D).

Theorem 7. Let D be a digraph of order n ≥ k + 1 for k ≥ 3. Then, γ[kR](D) + γ[kR](D) ≤
kn + k + 1.

Proof. Because d+D (v) + d+
D
(v) = n− 1 for each v ∈ V(D), we see that ∆+(D) = n− 1−

δ+(D). According to Lemma 1, we have

γ[kR](D) + γ[kR](D) ≤ (k(n− ∆+(D)) + 1) + (k(n− ∆+(D)) + 1)

= kn− k∆+(D) + kδ+(D) + k + 2

≤ kn + k + 2.

Now assume that γ[kR](D) + γ[kR](D) = kn + k + 2, then ∆+(D) = δ+(D), given the
above inequality chain. Let ∆+(D) = δ+(D) = m, then ∆+(D) = δ+(D) = n− 1− m.
Furthermore, we have that γ[kR](D) = k(n − m) + 1 and γ[kR](D) = k(m + 1) + 1 by
γ[kR](D) + γ[kR](D) = kn + k + 2. Let v ∈ V(D) be arbitrary.

Claim 1: For every vertex u ∈ V(D)\N+
D [v], it must be that N+

D (u) ⊆ N+
D [v].

Proof. Proving by contradiction, assume that there exists a vertex u ∈ V(D)\N+
D [v] such

that w ∈ N+
D [u]\N+

D [v] (see Figure 2a). Let g1 : V(D) → {0, 2, 3, . . . , k + 1} be defined as
follows: g1(v) = k + 1, g1(x) = 0 for any vertex x ∈ N+

D (v), g1(w) = 1, and g1(y) = k
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otherwise. Then g1 is a [k]-RDF on D . Thus, γ[kR](D) ≤ ω(g1) = k(n − m) − k + 2 <

k(n−m) + 1 = γ[kR](D), a contradiction.

r
r
r

rr

rr

?

6

-

-

-

r
r
r

rr

rr

?

6

-

-

-

r
r
r
-

- r
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qqq qqq
u

v

w

v1

v2

vm−1

vm

u

v

w

v1

v2

vm−1

vm

w

v

u

v

u

N+(v)

V(D)\(N+ [v] ∪ {u, w})

N+(v)

V(D)\(N+ [v] ∪ {u})

(a) (b)

(c) (d)

Figure 2. The counterexample of Claims 1–4 in Theorem 7.

Claim 2: For any vertex u ∈ V(D)\N+
D [v], it must be that (u, v) ∈ A(D).

Proof. Proving by contradiction, assume that there exists a vertex u ∈ V(D)\N+
D [v] such

that (u, v) /∈ A(D). Because ∆+(D) = δ+(D) = m, given Claim 1, N+
D (u) = N+

D (v)
(see Figure 2b). Let g2 : V(D) → {0, 2, 3, . . . , k + 1} be defined as follows: g2(x) = 0
for any vertex x ∈ N+

D (v) and g2(y) = k otherwise. Then, g2 is a [k]-RDF on D , and so
γ[kR](D) ≤ ω(g2) = k(n−m) < k(n−m) + 1 = γ[kR](D), a contradiction.

Claim 3: |V(D)\N+
D [v]| ≤ 1.

Proof. Proving by contradiction, assume that there are two vertices {u, w} ⊆ V(D)\
N+

D [v]. Given Claim 2, we have {(u, v), (w, v)} ⊆ A(D). Because ∆+(D) = δ+(D) = m,
by Claim 1, we find that either N+

D (u) = N+
D (w) or |N+

D (v)\(N+
D (u) ∩ N+

D (w))| = 2. Let
N+

D (v) = {v1, v2, . . . , vm}. If N+
D (u) = N+

D (w), then we may assume N+
D (u) = N+

D (w) =

{v, v1, v2, . . . , vm−1} (see Figure 2c). Define a function g3 : V(D)→ {0, 2, 3, . . . , k + 1} such
that g3(x) = 0 for any vertex x ∈ {v, v1, v2, . . . , vm−1} and g3(y) = k otherwise. Then,
g3 is a [k]-RDF on D and γ[kR](D) ≤ ω(g3) = k(n − m) < k(n − m) + 1 = γ[kR](D),
a contradiction. If |N+

D (v)\(N+
D (u) ∩ N+

D (w))| = 2, without loss of generality, let N+
D (u) =

{v, v1, v2, . . . , vm−1} and N+
D (w) = {v, v2, v3, . . . , vm} (see Figure 2d). Define a function

g4 : V(D)→ {0, 2, 3, . . . , k + 1} such that g4(x) = 0 for any vertex x ∈ {v, v2, v3, . . . , vm−1}
and g4(y) = 1 for any vertex y ∈ {v1, vm} and g4(z) = k otherwise. Then, g4 is a
[k]-RDF on D and γ[kR](D) ≤ ω(g4) = k(n − m) − k + 2 < k(n − m) + 1 = γ[kR](D),
a contradiction.
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From Claim 3, we have m = d+D (v) ≥ n− 2 for any vertex v ∈ V(D). Notice that
the discussion is symmetrical for D and D . Without loss of generality, we may assume
m ≤ n−1

2 . Thus, n− 2 ≤ m ≤ n−1
2 , which means that n ≤ 3, a contradiction. Consequently,

γ[kR](D) ≤ kn + k + 1.

5. Relations between the [k]-RD-Number and Other Domination Parameters

In this part, we give relations including γ[kR](D) with γ[(k−1)R](D), γ(D) and γS (D).
We begin with the relationship between γ[kR](D) and γ[(k−1)R](D).

Lemma 2. Let D be a digraph and f = (V0, V2, V3, . . . , Vk) a γ[(k−1)R](D)-function. Then,

γ[kR](D) ≤ (k + 1)|Vk|+ k
k−1
∑

i=2
|Vi|.

Proof. Define a function g : V(D) → {0, 2, 3, . . . , k + 1} by g(u) = k + 1 for u ∈ Vk,
g(v) = 0 for v ∈ V0, and g(x) = k otherwise. It is easy to verify that g is a [k]-RDF of weight

ω(g) = (k + 1)|Vk|+ k
k−1
∑

i=2
|Vi|. Hence, γ[kR](D) ≤ (k + 1)|Vk|+ k

k−1
∑

i=2
|Vi|.

Theorem 8. Let D be any digraph. Then, γ[(k−1)R](D) + 1 ≤ γ[kR](D) ≤ k
2 γ[(k−1)R](D).

Proof. Firstly, we prove the lower bound of the inequality. Let τ = (V0, V2, V3, . . . , Vk+1)

be a γ[kR](D)-function. Define a function g : V(D) → {0, 2, 3, . . . , k} by g(v) = k for any
vertex v ∈ Vk+1 and g(x) = τ(x) otherwise. Then, g is a [k− 1]-RDF, and so γ[(k−1)R](D) ≤
ω(g) = ω(τ) − |Vk+1| ≤ ω(τ) = γ[kR](D). If γ[(k−1)R](D) = γ[kR](D), then Vk+1 = φ.
Clearly, there is at least one non-empty set Vi ∈ {V2, V3, . . . , Vk}. Choose a vertex v ∈ V(D)

with 2 ≤ τ(v) ≤ k and let h : V(D) → {0, 2, 3, . . . , k} be a function defined by h(v) =

τ(v)− 1, h(u) = τ(u) otherwise. It is not difficult to see that h(AN−[x]) ≥ |AN−(x)|+
k− 1 for any vertex x ∈ V(D). Then, h is a [k− 1]-RDF and ω(g) = γ[(k−1)R](D) ≤ ω(h) =
ω(τ)− 1 = γ[kR](D)− 1 = ω(g)− 1, a contradiction. Thus, γ[(k−1)R](D) + 1 ≤ γ[kR](D).

Furthermore, we prove the upper bound of the inequality. Let l = (V l
0 , V l

2 , V l
3 , . . . , V l

k )

be a γ[(k−1)R](D)-function. From Lemma 2, we have

γ[kR](D) ≤ (k + 1)|V l
k |+ k

k−1

∑
i=2
|V l

i |

=
k
2
· 2|V l

2 |+
k
3
· 3|V l

3 |+ · · ·+
k

k− 1
· (k− 1)|V l

k−1|+
k + 1

k
· k|V l

k |

≤ k
2

(
k

∑
i=2

i|V l
i |
)

=
k
2

γ[(k−1)R](D).

Next we consider γ[kR](D) and γ(D).

Theorem 9. Let D be a digraph. Then, γ[kR](D) ≤ (k + 1)γ(D). Furthermore, γ[kR](D) =

(k + 1)γ(D) if and only if there is a γ[kR](D)-function f = (V0, V2, V3, . . . , Vk+1) such that
V2 = V3 = · · · = Vk = φ.
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Proof. Let S be a γ(D)-set. Define a function g : V(D) → {0, 2, 3, . . . , k + 1} such that
g(v) = k + 1 for any vertex v ∈ S and g(x) = 0 otherwise. Then, g is a [k]-RDF on D and
γ[kR](D) ≤ ω(g) = (k + 1)|S | = (k + 1)γ(D).

Below, we prove the necessity and sufficiency.
(⇒) Suppose that γ[kR](D) = (k + 1)γ(D). Let τ = (V0, V2, V3, . . . , Vk+1) be defined

as follows: τ(v) = k + 1 for any vertex v ∈ S and τ(x) = 0 otherwise. Then, τ is a
[k]-RDF on D with weight ω(τ) = (k + 1)|S | = (k + 1)γ(D) = γ[kR](D). Thus, τ is a
γ[kR](D)-function with V2 = V3 = · · · = Vk = φ.

(⇐) Let τ = (V0, V2, V3, . . . , Vk+1) be a γ[kR](D)-function with V2 = V3 = · · · =
Vk = φ. Then, Vk+1 is a dominating set of D . This implies that |Vk+1| ≥ γ(D), and so
γ[kR](D = (k+ 1)|Vk+1| ≥ (k+ 1)γ(D). On the other hand, γ[kR](D) ≤ (k+ 1)γ(D), hence
γ[kR](D) = (k + 1)γ(D).

Theorem 10. Let D be a digraph of order n with maximum out-degree ∆+(D) and domination
number γ(D). Then, γ[kR](D) ≥

⌈
2n+(∆+(D)−1)γ(D)

∆+(D)

⌉
.

Proof. Let τ = (V0, V2, V3, . . . , Vk+1) be a γ[kR](D)-function with V0 = V2
0 ∪V3

0 ∪ · · · ∪Vk+1
0 ,

where Vk+1
0 = V0 ∩ N+(Vk+1), Vi

0 = (V0 ∩ N+(Vi))−
k+1⋃

j=i+1
V j

0 for i ∈ {2, 3, . . . , k}. Because

the maximum out-degree of D is ∆+(D), v has at most ∆+(D) out-neighbours in V0 for any
vertex v ∈ Vk+1. This means that |Vk+1

0 | ≤ ∆+(D)|Vk+1|. For any positive integer 2 ≤ t ≤ k,

we know that m(t)|Vt
0 | ≤

∣∣∣∣A[ t⋃
i=2

Vi, Vt
0

]∣∣∣∣ = t
∑

i=2
|A[Vi, Vt

0 ]| given the definition of [k]-RDF,

where m(t) is the minimum value of |N−(v) ∩ (V2 ∪ V3 ∪ · · · ∪ Vt)| for v ∈ Vt
0 . Clearly,

m(t) ≥ 2. When t = k, there exist at least two in-neighbours in Vi ∪Vk for any vertex of Vk
0 ,

i ∈ {2, 3, . . . , k− 1}. Thus, 2|Vk
0 | ≤

∣∣∣∣A[ k⋃
i=2

Vi, Vk
0

]∣∣∣∣ ≤ k−1
∑

i=2
|A[Vi, Vk

0 ]|+ ∆+(D)|Vk|. Finally,

there exist at least k in-neighbours in V2 for any vertex v ∈ V2
0 , and thus k|V2

0 | ≤ |A[V2, V2
0 ]|.

Because V0 = V2
0 ∪V3

0 ∪ · · · ∪Vk+1
0 and m(t) ≥ 2, we have that

|V0| = |V2
0 |+ |V3

0 |+ · · ·+ |Vk+1
0 |

≤
|A[V2, V2

0 ]|
k

+

3
∑

i=2
|A[Vi, V3

0 ]|

m(3)
+ · · ·+

k−1
∑

i=2
|A[Vi, Vk−1

0 ]|

m(k− 1)
+

k−1
∑

i=2
|A[Vi, Vk

0 ]|

2

+
∆+(D)

2
|Vk|+ ∆+(D)|Vk+1|

≤

k
∑

j=2
|A[V2, V j

0 ]|+
k
∑

j=3
|A[V3, V j

0 ]|+ · · ·+
k
∑

j=k−1
|A[Vk−1, V j

0 ]|

2

+
∆+(D)

2
|Vk|+ ∆+(D)|Vk+1|.

(1)

Let s = |V2|+ |V3|+ · · ·+ |Vk−1|. There exist at least s in-neighbours of the whole

vertex of
k−1⋃
i=2

Vi included in
k+1⋃
i=2

Vi. Combined with the inequality (1), we can obtain the

results shown in Table 1.



Symmetry 2023, 15, 743 11 of 14

Table 1. The bound of |V0| when the s in-neighbours originate from different sets.

The Origin of the s In-Neighbours The Bound of V0

all in-neighbours from
k−1⋃
i=2

Vi |V0| ≤ ∆+(D)s−s
2 + ∆+(D)

2 |Vk|+ ∆+(D)|Vk+1|

all in-neighbours from Vk |V0| ≤ ∆+(D)
2 s + ∆+(D)|Vk |−s

2 + ∆+(D)|Vk+1|

all in-neighbours from Vk+1 |V0| ≤ ∆+(D)
2 s + ∆+(D)

2 |Vk|+ ∆+(D)|Vk+1| − s

p in-neighbours from
k−1⋃
i=2

Vi,

q in-neighbours from Vk and |V0| ≤
∆+(D)s−p

2 +
∆+(D)|Vk |−q

2 + ∆+(D)|Vk+1|
s− p− q in-neighbours from Vk+1
where 1 ≤ p ≤ s− 1, 1 ≤ q ≤ s− 1

From Table 1, it is not difficult to see that |V0| ≤ ∆+(D)−1
2 s + ∆+(D)

2 |Vk|+ ∆+(D)|Vk+1|
wherever the in-neighbours originate from.

That is, |V0| ≤ ∆+(D)−1
2 (|V2|+ |V3|+ · · ·+ |Vk−1|) +

∆+(D)
2 |Vk|+ ∆+(D)|Vk+1|. This

means that

2
∆+(D)

|V0| ≤
∆+(D)− 1

∆+(D)

k−1

∑
i=2
|Vi|+ |Vk|+ 2|Vk+1|. (2)

It is obvious that, V2 ∪V3 ∪ · · · ∪Vk ∪Vk+1 is a dominating set of D . Therefore,

γ[kR](D) = 2|V2|+ 3|V3|+ · · ·+ (k + 1)|Vk+1|

=
k+1

∑
i=2
|Vi|+

∆+(D)− 1
∆+(D)

k−1

∑
i=2
|Vi|+ |Vk|+ 2|Vk+1|

+

(
1

∆+(D)

k−1

∑
i=2
|Vi|+

k

∑
i=3

(i− 2)|Vi|+ (k− 2)|Vk+1|
)

≥
k+1

∑
i=2
|Vi|+

2
∆+(D)

|V0|+
(

1
∆+(D)

k−1

∑
i=2
|Vi|+

k

∑
i=3

(i− 2)|Vi|
)

+ (k− 2)|Vk+1|

=
k+1

∑
i=2
|Vi|+

2n− 2
k+1
∑

i=2
|Vi|

∆+(D)
+

1
∆+(D)

k−1

∑
i=2
|Vi|+

k

∑
i=3

(i− 2)|Vi|

+ (k− 2)|Vk+1|

=

2n + (∆+(D)− 1)
k+1
∑

i=2
|Vi|

∆+(D)
+

k−1

∑
i=3

(i− 2)|Vi|+
(

k− 2− 1
∆+(D)

)
(|Vk|+ |Vk+1|)

≥ 2n + (∆+(D)− 1)γ(D)

∆+(D)
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We are now in a position to relate γ[kR](D) and γS (D), and here is a useful result
from [4].

Theorem 11 ([4]). Let G = (L,R) be a bipartite graph with |V(D)| = n. If δL(G ) ≥ 2, then
γL(G ) ≤ n

3 .

Theorem 12. Let D be a digraph of order n. Then, γ[kR](D) ≤ k
2 γS (D) + (3k+2)n

6 .

Proof. Let τ be a γS (D)-function, L andR represent the vertex sets assigned as −1 and
1 under f , respectively. Then, we have |L|+ |R| = n and γS (D) = ω( f ) = |R| − |L|,
which implies that 2|R| = n + γS (D).

If L = φ, then R = V(D). Define a function g : V(D) → {0, 2, 3, . . . , k + 1} by
g(v) = k for each vertex of D . Then, g is a [k]-RDF on D and hence γ[kR](D) ≤ ω(g) =

kn = k|R| = kγS (D) < k
2 γS (D) + (3k+2)n

6 .
If L 6= φ, let D1 = (L,R) be the bipartite spanning subdigraph of D satisfying that

A(D1) = {(u, v) ∈ A(D) : u ∈ R and v ∈ L}. Because τ is a γS (D)-function, we find
that every vertex in L has at least two in-neighbours inR by the definition of SDF. Thus,
δ−L (D1) ≥ 2, where δ−L (D1) = min{d−D1

(v) : v ∈ L}. Let H be the underlying graph of
D1. Then, δL(H ) = δ−L (D1) ≥ 2. Let R2 be a γL(H )-set. From Theorem 11, we have
|R2| = γL(H ) ≤ n

3 . According to the definition of the left dominating set, every vertex in
L has a neighbour inR2. Hence, every vertex in L has an in-neighbour inR2 for D1 and D .
Let R1 = R\R2, define a function g : V(D) → {0, 2, 3, . . . , k + 1} such that g(v) = k + 1
for any vertex v ∈ R2, g(u) = k for any vertex u ∈ R1 and g(x) = 0 for any vertex x ∈ L.
Then g is a [k]-RDF on D . Then, we have

γ[kR](D) ≤ ω(g) = k(|R1|+ |R2|) + |R2|
= k|R|+ |R2|

=
k
2
(n + γS (D)) + |R2|

≤ k
2
(n + γS (D)) +

n
3

=
k
2

γS (D) +
(3k + 2)n

6
.

The proof is completed.

6. The [k]-RD-Numbers of the Directed Path and the Directed Cycle

In this section, we determine the exact values for the [k]-RD-numbers of
−→
Pn and

−→
Cn.

Proposition 4. Let n ≥ 2 be a positive integer. Then

γ[kR](
−→
Pn)=

{
(k + 1)

⌊ n
2
⌋
,

(k + 1)
⌊ n

2
⌋
+ k,

if n ≡ 0 mod 2;
if n ≡ 1 mod 2.

Proof. Let
−→
Pn be a directed path with V(

−→
Pn) = {v0, v1, . . . , vn−1}. When n ≡ 0 mod 2, let

τ : V(
−→
Pn)→ {0, 2, 3, . . . , k + 1} be defined as follows: τ(v2i) = k + 1 and τ(v2i+1) = 0 for

0 ≤ i ≤ n−2
2 . Then, τ is a [k]-RDF on

−→
Pn , and so γ[kR](

−→
Pn) ≤ ω(τ) = (k + 1)

⌊ n
2
⌋
. When

n ≡ 1 mod 2, let τ : V(
−→
Pn) → {0, 2, 3, . . . , k + 1} be defined as follows: τ(vn−1) = k,

τ(v2i) = k + 1 and τ(v2i+1) = 0 for 0 ≤ i ≤ n−3
2 . Then, τ is a [k]-RDF on

−→
Pn , and so

γ[kR](
−→
Pn) ≤ ω(τ) = (k + 1)

⌊ n
2
⌋
+ k.
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On the other hand, let h : V(
−→
Pn) → {0, 2, 3, . . . , k + 1} be a γ[kR](

−→
Pn)-function. We

prove the inverse inequality by induction on n. If n = 2, then γ[kR](
−→
P2 ) = k + 1 =

(k + 1)
⌊ n

2
⌋
. If n = 3, then γ[kR](

−→
P3 ) = (k + 1) + k = (k + 1)

⌊ n
2
⌋
+ k. Suppose that

the inverse inequality is true for each
−→
Pm of order m with 4 ≤ m ≤ n − 1. When n ≡

0 mod 2, then γ[kR](
−→
Pn) = h

(
V(
−→
Pn)
)
≥ h

(
V(
−−→
Pn−2)

)
+ (k + 1) ≥ (k + 1)

⌊ n−2
2
⌋
+ (k +

1) = (k + 1)
⌊ n

2
⌋
. When n ≡ 1 mod 2, notice that h(vn−2) + h(vn−1) = k + 1. Hence,

γ[kR](
−→
Pn) = h

(
V(
−→
Pn)
)

= h
(

V(
−−→
Pn−2)

)
+ h(vn−2) + h(vn−1) ≥ (k + 1)

⌊ n−2
2
⌋
+ k + (k +

1) = (k + 1)
⌊ n

2
⌋
+ k.

Consequently,

γ[kR](
−→
Pn)=

{
(k + 1)

⌊ n
2
⌋
,

(k + 1)
⌊ n

2
⌋
+ k,

if n ≡ 0 mod 2;
if n ≡ 1 mod 2.

Proposition 5. Let n ≥ 3 be a positive integer. Then

γ[kR](
−→
Cn)=

{
(k + 1)

⌊ n
2
⌋
,

(k + 1)
⌊ n

2
⌋
+
⌈

k+1
2

⌉
,

if n ≡ 0 mod 2;
if n ≡ 1 mod 2,

where all subscripts are taking module n.

Proof. Let
−→
Cn be a directed cycle with V(

−→
Cn) = {v0, v1, . . . , vn−1}. When n ≡ 0 mod 2, let

τ : V(
−→
Cn)→ {0, 2, 3, . . . , k + 1} be defined as follows: τ(v2i) = k + 1 and τ(v2i+1) = 0 for

0 ≤ i ≤ n−2
2 . Then, τ is a [k]-RDF on

−→
Cn, and so γ[kR](

−→
Cn) ≤ ω(τ) = (k + 1)

⌊ n
2
⌋
. When

n ≡ 1 mod 2, let τ : V(
−→
Cn) → {0, 2, 3, . . . , k + 1} be defined as follows: τ(v2i) =

⌈
k+1

2

⌉
and τ(v2i−1) =

⌊
k+1

2

⌋
for 0 ≤ i ≤ n−1

2 . Then, τ is a [k]-RDF on
−→
Cn, and so γ[kR](

−→
Cn) ≤

ω(τ) = (k + 1)
⌊ n

2
⌋
+
⌈

k+1
2

⌉
.

On the other hand, let h : V(
−→
Cn)→ {0, 2, 3, . . . , k + 1} be a γ[kR](

−→
Cn)-function. When

n ≡ 0 mod 2, notice that h(v2i) + h(v2i+1) = k + 1 for 0 ≤ i ≤ n−2
2 . Hence, γ[kR](

−→
Cn) =

ω(h) = (k + 1)
⌊ n

2
⌋
. When n ≡ 1 mod 2, it is easy to see that there is one vertex vl such

that h(vi) + h(vi+1) = k + 1 for i /∈ {l, l + 1}, h(vl) + h(vl+1) ≥ k + 1 and h(vl) = h(vl+1).
Without loss of generality, we assume that h(vi) + h(vi+1) = k + 1 for 1 ≤ i ≤ n − 2,
h(vn−1) + h(v0) ≥ k + 1 and h(vn−1) = h(v0). This means that h(vn−1) ≥

⌈
k+1

2

⌉
. Hence,

γ[kR](
−→
Cn) = ω(h) = h(vn−1) +

n−2
∑

i=0
h(vi) ≥

⌈
k+1

2

⌉
+ (k + 1)

⌊ n
2
⌋
.

Consequently,

γ[kR](
−→
Cn)=

{
(k + 1)

⌊ n
2
⌋
,

(k + 1)
⌊ n

2
⌋
+
⌈

k+1
2

⌉
,

if n ≡ 0 mod 2;
if n ≡ 1 mod 2.

Author Contributions: Conceptualization, X.Z. and X.S.; methodology, X.S.; validation, X.Z., X.S.
and R.L.; investigation, X.S.; resources, X.Z.; writing—original draft preparation, X.Z., X.S. and R.L.;
writing—review and editing, X.Z. and X.S.; funding acquisition, X.Z. and R.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Program of Shanxi Province (grant
number 20210302123202). This research was funded by the Youth Foundation of Shanxi Province
(grant number 201901D211197).



Symmetry 2023, 15, 743 14 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Numerical data is available on demand from Xinhong Zhang.

Acknowledgments: We would like to thank the anonymous referee for a thorough and helpful
reading of the paper and Murat Cancan for his help in this paper too.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Dekker, Inc.: New York, NY, USA, 1998.
2. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Domination in Graphs: Advanced Topics; Marcel Dekker, Inc.: New York, NY, USA, 1998.
3. Caro, Y.; Henning, M.A. Directed domination in oriented graphs. Discret. Appl. Math. 2012, 160, 1053–1063. [CrossRef]
4. Ahangar, H.A.; Henning, M.A.; Lowenstein, C.; Zhao, Y.; Samodivkin, V. Signed Roman domination in graphs. J. Comb. Optim.

2014, 27, 241–255. [CrossRef]
5. Karami, H.; Sheikholeslami, S.M.; Khodkar, A. A lower bounds on the signed domination numbers of directed graphs. Discret.

Math. 2009, 309, 2567–2570. [CrossRef]
6. Chambers, E.W.; Kinnersley, B.; Prince, N.; West, D.B. Extremal problems for Roman domination. SIAM J. Discret. Math. 2009, 23,

1575–1586. [CrossRef]
7. Favaron, O.; Karami, H.; Khoeilar, R.; Sheikholeslami, S.M. On the Roman domination number of a graph. Discret. Math. 2009,

309, 3447–3451. [CrossRef]
8. Bermudo, S.; Fernau, H.; Sigarreta, J.M. The differential and the roman domination number of a graph. Appl. Anal. Discret. Math.

2014, 8, 155–171. [CrossRef]
9. Cockayne, E.J.; Dreyer, P.A., Jr.; Hedetniemi, S.M.; Hedetniemi, S.T. Roman domination in graphs. Discret. Math. 2003, 266,

239–251. [CrossRef]
10. Poureidi, A.; Rad, N.J. On algorithmic complexity of double Roman domination. Discret. Appl. Math. 2020, 285, 539–551.

[CrossRef]
11. Ahangar, H.A.; Álvarez, M.P.; Chellali, M.; Sheikholeslami, S.M.; Valenzuela-Tripodoro J.C. Triple Roman domination in graphs.

Appl. Math. Comput. 2021, 391, 125444.
12. Pour, F.N.; Ahangar, H.A.; Chellali, M.; Sheikholeslami, S.M. Global triple Roman dominating function. Discret. Appl. Math. 2022,

314, 228–237. [CrossRef]
13. Hao, G.; Chen, X.; Volkmann, L. Double Roman Domination in Digraphs. Bull. Malays. Math. Sci. Soc. 2019, 42, 1907–1920.

[CrossRef]
14. Zhang, X.; Guo, Y.; Li, R. The Roman domination of Kautz digraphs and generalized Kautz digraphs. Pure Appl. Func. Anal. 2023,

in press.
15. Zhang, X.; Guo, Y. The Roman domination numbers of the directed de Bruijn and generalized directed de Bruijn graphs. Open

Math. 2023, in press.
16. Harary, F.; Norman, R.Z.; Cartwright, D. Structural Models; Wiley: New York, NY, USA, 1965.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.dam.2011.12.027
http://dx.doi.org/10.1007/s10878-012-9500-0
http://dx.doi.org/10.1016/j.disc.2008.04.001
http://dx.doi.org/10.1137/070699688
http://dx.doi.org/10.1016/j.disc.2008.09.043
http://dx.doi.org/10.2298/AADM140210003B
http://dx.doi.org/10.1016/j.disc.2003.06.004
http://dx.doi.org/10.1016/j.dam.2020.06.023
http://dx.doi.org/10.1016/j.dam.2022.02.015
http://dx.doi.org/10.1007/s40840-017-0582-9

	Introduction and Terminology
	The [k]-RD-Number of a Connected Digraph with -(D)1
	Some Bounds of the [k]-RD-Number
	Nordhaus–Gaddum Bounds on the [k]-RD-Number
	Relations between the [k]-RD-Number and Other Domination Parameters
	The [k]-RD-Numbers of the Directed Path and the Directed Cycle
	References

