Electrochemistry of Rhodanine Derivatives as Model for New Colorimetric and Electrochemical Azulene Sensors for the Detection of Heavy Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electrochemical Characterization of the Ligands
3.1.1. Characterization of the Ligands by Cyclic Voltammetry
3.1.2. Characterization of Ligands by Differential Pulse Voltammetry
3.1.3. Characterization of Ligands by Rotating Disk Electrode Voltammetry
3.2. Preparation and Electrochemical Characterization of Modified Electrodes Based on the Aromatic Rhodanine
3.2.1. Formation of Modified Electrodes Based on the Aromatic Rhodanine by Scanning
3.2.2. Formation of Modified Electrodes Based on the Aromatic Rhodanine by Controlled Potential Electrolysis
3.3. Heavy Metal Recognition Experiments Using Modified Electrodes Based on the Aromatic Rhodanine
3.4. UV-Vis Study of Pb Complexation in Solution
4. Discussion
4.1. Comparison between Electrochemical Behavior of the Two Ligands
4.2. Comparison between the Formation of Chemically Modified Electrodes
4.3. Comparison between Heavy Metal Recognition Properties Using Modified Electrodes
4.4. Comparison between Heavy Metal Complexation of the Two Ligands in Solution by UV-Vis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anger, V.; Ofri, S. Chemismus der Farbreaktion des Hydrochinons mit Phloroglucin. Neue Tüpfelreaktionen auf Polyhydroxybenzolderivate und Chinone. Microchim. Acta 1963, 51, 911–919. [Google Scholar] [CrossRef]
- Overholser, L.G.; Yoe, J.H. The Colorimetric Detection and Determination of Palladium with Compounds Containing the p-Nitrosophenylamino Group. J. Am. Chem Soc. 1941, 63, 3224–3229. [Google Scholar] [CrossRef]
- Stephen, W.; Townshend, A. Some derivatives of rhodanine as analytical reagents. Anal. Chem. Acta 1965, 33, 257–265. [Google Scholar] [CrossRef]
- Kaminsky, D.; Kryshchyshyn, A.; Lesyk, R. 5-Ene-4-thiazolidinones-An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017, 140, 542–594. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.J.; Daniel, A.K.; Fung, G.T.; Liang, C.T.; Avupati, V.R. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. Biomed. Pharmacother. 2022, 145, 112406. [Google Scholar] [CrossRef]
- Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature 2014, 513, 481–483. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, J.; Walters, M. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem. 2014, 6, 1265–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baell, J.B. Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod. 2016, 79, 616–628. [Google Scholar] [CrossRef]
- Honesty, N.R.; Kardaş, G.; Gewirth, A.A. Investigating Rhodanine film formation on roughened Cu surfaces with electrochemical impedance spectroscopy and surface-enhanced Raman scattering spectroscopy. Corros. Sci. 2014, 83, 59–66. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-Dimethylaminobenzylidene) rhodanine. Corros. Sci. 2014, 79, 169–176. [Google Scholar] [CrossRef]
- Solmaz, R.; Kardas, G.; Yazıcı, B.; Erbil, M. Inhibition effect of rhodanine for corrosion of mild steel in hydrochloric acid solution. Prot. Met. 2005, 41, 581–585. [Google Scholar] [CrossRef]
- Solmaz, R.; Kardas, G.; Yazici, B.; Erbil, M. The Rhodanine inhibition effect on the corrosion of mild steel in acid along the exposure time. Prot. Met. 2007, 5, 476–482. [Google Scholar] [CrossRef]
- Solmaz, R.; Sahin, E.A.; Döner, A.; Kardas, G. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution. Corros. Sci. 2011, 53, 3231–3240. [Google Scholar] [CrossRef]
- Salci, A.; Solmaz, R. Fabrication of rhodanine self-assembled monolayer thin films on copper: Solvent optimization and corrosion inhibition studies. Prog. Org. Coat. 2018, 125, 516–524. [Google Scholar] [CrossRef]
- Nho, S.; Kim, D.H.; Park, S.; Tran, H.N.; Lim, B.; Cho, S. Carbazole and rhodanine based donor molecule with improved processability for high performance organic photovoltaics. Dyes Pigm. 2018, 151, 272–278. [Google Scholar] [CrossRef]
- Fan, M.; Duan, L.; Zhou, Y.; Wen, S.; Li, F.; Liu, D.; Sun, M.; Yang, R. Rhodanine side-chained thiophene and indacenodithiophene copolymer for solar cell applications. Mater. Today Energy 2017, 5, 287–292. [Google Scholar] [CrossRef]
- Li, G.; Yang, T.; Cheng, H.; Zhang, Y.; Wang, J.; Liu, Y. An investigation of annealing methods for benzodithiophene terthiophene rhodanine based all small molecule organic solar cells. Org. Electron. 2020, 87, 105904. [Google Scholar] [CrossRef]
- Kardaş¸, G.; Solmaz, R. Electrochemical synthesis and characterization of a new conducting polymer: Polyrhodanine. Appl. Surf. Sci. 2007, 253, 3402–3407. [Google Scholar] [CrossRef]
- Wang, L.H.; Jhang, K.B. Electrochemical Preparation of an Au Oxide Electrode and Its Application to Electro-Oxidation of Heterocycles Thiazole. Electrochemistry 2012, 80, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Matica, O.-T.; Brotea, A.G.; Ungureanu, E.-M.; Mandoc, L.R.; Birzan, L. Electrochemical and spectral studies of rhodaninein view of heavy metals determination. Electrochem. Sci. Adv. 2022, 1–11. [Google Scholar] [CrossRef]
- Liu, R.S.H.; Muthyala, R.S.; Wang, X.S.; Asato, A.E.; Wang, P.; Ye, C. Correlation of substituent effects and energy levels of the two lowest excited states of the azulenic chromophore. Org. Lett. 2000, 2, 269–271. [Google Scholar] [CrossRef]
- Murfin, L.C.; Lewis, S.E. Azulene—A bright core for sensing and imaging. Molecules 2021, 26, 353. [Google Scholar] [CrossRef]
- Shevyakov, S.V.; Li, H.; Muthyala, R.; Asato, A.E.; Croney, J.C.; Jameson, D.M.; Liu, R.S.H. Orbital control of the color and excited state properties of formylated and fluorinated derivatives of azulene. J. Phys. Chem. A 2003, 107, 3295–3299. [Google Scholar] [CrossRef]
- Razus, A.C. Azulene moiety as electron reservoir positively charged systems; A short survey. Symmetry 2021, 13, 526. [Google Scholar] [CrossRef]
- Kawski, A.; Kukliński, B.; Bojarski, P. Excited state dipole moments of N, N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra. Chem. Phys. 2006, 320, 188–192. [Google Scholar] [CrossRef]
- Arnold, G.-L.; Lazar, I.G.; Buica, G.-O.; Ungureanu, E.-M.; Birzan, L. New Azulene Modified Electrodes for Heavy Metal Ions Recongnition. Bulg. Chem. Commun. 2017, 49, 205–210. [Google Scholar]
- Kshirsagar, V.; Gandhem, S.; Gautam, M.D. Electrochemical studies on p-dimethylaminobenzylidine rhodanine and its application as amperometric reagent. Rasayan J. Chem. 2010, 3, 772–776. [Google Scholar]
- Thamaraiselvi, P.; Duraipandy, N.; Kiran, M.S.; Easwaramoorthi, S. Triarylamine Rhodanine Derivatives as Red Emissive Sensor for Discriminative Detection of Ag+ and Hg2+ ions in Buffer-Free Aqueous Solutions. ACS Sustain. Chem. Eng. 2019, 7, 9865–9874. [Google Scholar] [CrossRef]
- Yavuz, E.; Tokalioglu, S.; Sahan, S. FAAS determination of Ag(I) in water, anodes slime, rock and cream samples by solid phase extraction method based on sepabeds SP207/5-(p-dimethylaminobenzilidene) rhodanine combination. J. Braz. Chem. Soc. 2013, 24, 736–742. [Google Scholar] [CrossRef]
- Diacu, E.; Buica, G.-O.; Chilibon, I.; Birzan, L.; Arnold, G.-L.; Ungureanu, E.-M. Chemically Modified Electrodes Based on 5-(Azulen-1-yl)methylene)-2-thioxothiazolidin-4-one. J. Solut. Chem. 2016, 45, 1588–1597. [Google Scholar] [CrossRef]
- Birzan, L.; Cristea, M.; Draghici, C.C.; Tecuceanu, V.; Maganu, M.; Hanganu, A.; Razus, A.C.; Buica, G.O.; Ungureanu, E.M. Vinylazulenes chromophores: Synthesis and characterization. Dye. Pigment. 2016, 131, 246–255. [Google Scholar] [CrossRef]
- Ungureanu, E.-M.; Popescu (Apostoiu), M.; Tatu (Arnold), G.-L.; Birzan, L.; Isopescu, R.; Stanciu, G.; Buica, G.-O. Electrochemical Comparison on New (Z)-5-(Azulen-1-Ylmethylene)-2- Thioxo-Thiazolidin-4-Ones. Symmetry 2021, 13, 588. [Google Scholar] [CrossRef]
- Păun, A.-M.; Matica, O.-T.; Anăstăsoaie, V.; Enache, L.-B.; Diacu, E.; Ungureanu, E.-M. Recognition of Heavy Metal Ions by Using E-5-((5-Isopropyl-3,8-Dimethylazulen-1-yl) Dyazenyl)-1H-Tetrazole Modified Electrodes. Symmetry 2021, 13, 644. [Google Scholar] [CrossRef]
- Enache, L.-B.; Anăstăsoaie, V.; Birzan, L.; Ungureanu, E.-M.; Diao, P.; Enachescu, M. Polyazulene-Based Materials for Heavy Metal Ion Detection. 2. (E)-5-(azulen-1-yldiazenyl)-1H-Tetrazole-Modified Electrodes for Heavy Metal Sensing. Coatings 2020, 10, 869. [Google Scholar] [CrossRef]
- Pop, M.D.; Brincoveanu, O.; Cristea, M.; Buica, G.O.; Enachescu, M.; Ungureanu, E.-M. AFM and SEM characterization of chemically modified electrodes based on 5-[(azulen-1-yl) methylene]-2-thioxothiazolidin-4-one. Rev. Chim. 2017, 68, 2799–2803. [Google Scholar] [CrossRef]
- Nakka, N.; Kushavah, D.; Ghosh, S.; Pal, S.K. Photophysical, electrochemical and electron donating properties of rhodanine-3-acetic acid-linked structural isomers. Chem. Phys. 2023, 566, 111793. [Google Scholar] [CrossRef]
Ligand | Process | Equation | Adj. R-Square | Reference |
---|---|---|---|---|
R1 | a1 | 0.998 | [32] | |
R2 | a1 | 0.996 | this paper | |
c1 | 0.999 | this paper |
Process | Method | Process Assignment | ||
---|---|---|---|---|
CV | DPV | RDE (E1/2) | ||
a1 | 0.526 qr | 0.436 | sh | Radical cation formation from amino group |
a2 | 0.840 i | 0.753 | “peak” at 0.90 | Oligomer oxidation |
a3 | i | 1.191 | - | |
a4 | qr | 1.518 | - | |
a5 | 2.147 i | 1.800 | - | |
c1 | −1.759 qr | −1.711 | −1.70 | Reduction of C=C double bond |
c2 | i | −2.217 | −2.20 | - |
c3 | −3.151 qr | −3.011 | −3.10 ** | Reduction of C=S bond |
Maximum Wavelength, nm 1 | Equation | Adj. R-Square |
---|---|---|
λ1 = 457 | 0.998 | |
λ2 = 435 | 0.988 | |
λ4 = 289 | 0.969 | |
λ5 = 231 | 0.964 |
Maximum Wavelength, nm | Equation | Adj. R-Square |
---|---|---|
λ1 = 474 | 0.992 | |
λ2 = 321 | 0.994 | |
λ3 = 295 | 0.993 | |
λ4 = 251 | 0.993 |
Modified Electrode | Cd | Pb | Cu | Hg |
---|---|---|---|---|
R1-CME | −0.759 | −0.533 | −0.094 | 0.235 |
R2-CME | −0.757 | −0.533 | −0.089 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matica, O.-T.; Musina, C.; Brotea, A.G.; Ungureanu, E.-M.; Cristea, M.; Isopescu, R.; Buica, G.-O.; Razus, A.C. Electrochemistry of Rhodanine Derivatives as Model for New Colorimetric and Electrochemical Azulene Sensors for the Detection of Heavy Metal Ions. Symmetry 2023, 15, 752. https://doi.org/10.3390/sym15030752
Matica O-T, Musina C, Brotea AG, Ungureanu E-M, Cristea M, Isopescu R, Buica G-O, Razus AC. Electrochemistry of Rhodanine Derivatives as Model for New Colorimetric and Electrochemical Azulene Sensors for the Detection of Heavy Metal Ions. Symmetry. 2023; 15(3):752. https://doi.org/10.3390/sym15030752
Chicago/Turabian StyleMatica, Ovidiu-Teodor, Cornelia Musina (Borsaru), Alina Giorgiana Brotea, Eleonora-Mihaela Ungureanu, Mihaela Cristea, Raluca Isopescu, George-Octavian Buica, and Alexandru C. Razus. 2023. "Electrochemistry of Rhodanine Derivatives as Model for New Colorimetric and Electrochemical Azulene Sensors for the Detection of Heavy Metal Ions" Symmetry 15, no. 3: 752. https://doi.org/10.3390/sym15030752
APA StyleMatica, O. -T., Musina, C., Brotea, A. G., Ungureanu, E. -M., Cristea, M., Isopescu, R., Buica, G. -O., & Razus, A. C. (2023). Electrochemistry of Rhodanine Derivatives as Model for New Colorimetric and Electrochemical Azulene Sensors for the Detection of Heavy Metal Ions. Symmetry, 15(3), 752. https://doi.org/10.3390/sym15030752