Sensitivity of Quantum-Enhanced Interferometers
Abstract
:1. Introduction
2. Symmetry of the Interferometer
3. Quantum Cramèr–Rao Bound for Phase Measurements
3.1. General Case
3.2. Differential and Common Modes
4. Single-Arm Interferometers
4.1. QCRB
4.2. Homodyne Detection
4.3. SU(1,1) Measurement
5. Two-Arm Interferometers
5.1. QCRB
5.1.1. Single Squeezer
5.1.2. Two Squeezers
5.1.3. SU(1,1)-Type Preparation
5.2. Measurement of Individual Phase Shifts in the Arms
5.3. Double Homodyne Detection
5.4. Double Direct Detection
5.5. SU(1,1) Measurement
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SNL | Shot noise limit |
HL | Heisenberg limit |
QCRB | Quantum Cramèr–Rao bound |
OPA | Optical parametric amplifier |
DOPA | Degenerate optical parametric amplifier |
NOPA | Non-degenerate optical parametric amplifier |
Appendix A. Fisher Information Matrix
Appendix B. Single-Arm Interferometer with SU(1,1) Measurement
Appendix C. Variances of the Photon Numbers in the Arms of the SU(2) Interferometer
Appendix D. Measurement Error in the Double Direct Detection Case
References
- Michelson, A.; Morley, E. On the Relative Motion of the Earth and the Luminiferous Ether. Am. J. Sci. Ser. 1887, 34, 333–345. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [Green Version]
- Laser Interferometer Gravitational-Wave Observatory (LIGO). Available online: https://www.ligo.caltech.edu (accessed on 10 January 2023).
- Virgo Collaboration. Available online: http://www.virgo-gw.eu (accessed on 10 January 2023).
- Tse, M.E.; Yu, H.; Kijbunchoo, N.; Fernandez-Galiana, A.; Dupej, P.; Barsotti, L.; Blair, C.D.; Brown, D.D.; Dwyer, S.E.; Effler, A.; et al. Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Phys. Rev. Lett. 2019, 123, 231107. [Google Scholar] [CrossRef] [Green Version]
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar]
- Richardson, J.W.; Pandey, S.; Bytyqi, E.; Edo, T.; Adhikari, R.X. Optimizing Gravitational-Wave Detector Design for Squeezed Light. Phys. Rev. D 2022, 105, 10200. [Google Scholar] [CrossRef]
- Taylor, M.A.; Bowen, W.P. Quantum metrology and its application in biology. Phys. Rep. 2016, 615, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Yuen, H.P. Two-photon coherent states of the radiation field. Phys. Rev. A 1976, 13, 2226–2243. [Google Scholar] [CrossRef] [Green Version]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1708. [Google Scholar] [CrossRef]
- Holland, M.J.; Burnett, K. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 1993, 71, 1355–1358. [Google Scholar] [CrossRef]
- Lane, A.S.; Braunstein, S.L.; Caves, C.M. Maximum-likelihood statistics of multiple quantum phase measurements. Phys. Rev. A 1993, 47, 1667–1696. [Google Scholar] [CrossRef]
- Sanders, B.C.; Milburn, G.J.; Zhang, Z. Optimal quantum measurements for phase-shift estimation in optical interferometry. J. Mod. Opt. 1997, 44, 1309–1320. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzański, R.; Kołodyński, J.; Guţă, M. The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 2012, 3, 1063. [Google Scholar] [CrossRef] [Green Version]
- Pezzè, L.; Hyllus, P.; Smerzi, A. Phase-sensitivity bounds for two-mode interferometers. Phys. Rev. A 2015, 91, 032103. [Google Scholar] [CrossRef] [Green Version]
- Manceau, M.; Khalili, F.; Chekhova, M. Improving the phase super-sensitivity of squeezing-assisted interferometers by squeeze factor unbalancing. New J. Phys. 2017, 19, 013014. [Google Scholar] [CrossRef]
- Gessner, M.; Pezzè, L.; Smerzi, A. Sensitivity Bounds for Multiparameter Quantum Metrology. Phys. Rev. Lett. 2018, 121, 130503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzé, L.; Smerzi, A. Ultrasensitive Two-Mode Interferometry with Single-Mode Number Squeezing. Phys. Rev. Lett. 2013, 110, 163604. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.A.; Gerry, C.C.; Benmoussa, A. Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements. Phys. Rev. A 2003, 68, 023810. [Google Scholar] [CrossRef]
- Kumar, C.; Rishabh; Sharma, M.; Arora, S. Parity-detection-based Mach–Zehnder interferometry with coherent and non-Gaussian squeezed vacuum states as inputs. arXiv 2022, arXiv:2212.12421. [Google Scholar]
- Zhao, Z.; Zhang, H.; Huang, Y.; Hu, L. Phase estimation of Mach–Zehnder interferometer via Laguerre excitation squeezed state. arXiv 2022, arXiv:2209.00338. [Google Scholar]
- Lee, H.; Kok, P.; Dowling, J.P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 2002, 49, 2325–2338. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.W.; Higgins, B.L.; Bartlett, S.D.; Mitchell, M.W.; Pryde, G.J.; Wiseman, H.M. How to perform the most accurate possible phase measurements. Phys. Rev. A 2009, 80, 052114. [Google Scholar] [CrossRef] [Green Version]
- Perarnau-Llobet, M.; González-Tudela, A.; Cirac, J.I. Multimode Fock states with large photon number: Effective descriptions and applications in quantum metrology. Quantum Sci. Technol. 2020, 5, 025003. [Google Scholar] [CrossRef]
- Akhtar, N.; Sanders, B.C.; Xianlong, G. Sub-Planck phase-space structure and sensitivity for SU(1,1) compass states. Phys. Rev. A 2022, 106, 043704. [Google Scholar] [CrossRef]
- Demkowicz-Dobrzanski, R.; Jarzyna, M.; Kolodynski, J. Chapter Four–Quantum Limits in Optical Interferometry. Prog. Opt. 2015, 60, 345–435. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, M. Optical Quantum Metrology. PRX Quantum 2022, 3, 010202. [Google Scholar] [CrossRef]
- Daryanoosh, S.; Slussarenko, S.; Berry, D.W.; Wiseman, H.M.; Pryde, G.J. Experimental optical phase measurement approaching the exact Heisenberg limit. Nat. Commun. 2018, 9, 4606. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.D.; Caves, C.M. Optimal Quantum-Enhanced Interferometry Using a Laser Power Source. Phys. Rev. Lett. 2013, 111, 173601. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.D.; Caves, C.M. Optimal quantum-enhanced interferometry. Phys. Rev. A 2014, 90, 025802. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Wu, L.A.; Kimble, H.J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 1987, 59, 278–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grangier, P.; Slusher, R.E.; Yurke, B.; LaPorta, A. Squeezed-light–enhanced polarization interferometer. Phys. Rev. Lett. 1987, 59, 2153–2156. [Google Scholar] [CrossRef]
- Eberle, T.; Steinlechner, S.; Bauchrowitz, J.; Händchen, V.; Vahlbruch, H.; Mehmet, M.; Müller-Ebhardt, H.; Schnabel, R. Quantum Enhancement of the Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection. Phys. Rev. Lett. 2010, 104, 251102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahlbruch, H.; Mehmet, M.; Danzmann, K.; Schnabel, R. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. Phys. Rev. Lett. 2016, 117, 110801. [Google Scholar] [CrossRef] [Green Version]
- Frascella, G.; Agne, S.; Khalili, F.Y.; Chekhova, M.V. Overcoming detection loss and noise in squeezing-based optical sensing. NPJ Quantum Inf. 2021, 7, 72. [Google Scholar] [CrossRef]
- Zander, J. Squeezed and Entangled Light: From Foundations of Quantum Mechanics to Quantum Sensing. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany, 2021. [Google Scholar]
- Mehmet, M.; Vahlbruch, H. High-efficiency squeezed light generation for gravitational wave detectors. Class. Quantum Gravity 2018, 36, 015014. [Google Scholar] [CrossRef] [Green Version]
- Pradyumna, S.T.; Losero, E.; Ruo-Berchera, I.; Traina, P.; Zucco, M.; Jacobsen, C.S.; Andersen, U.L.; Degiovanni, I.P.; Genovese, M.; Gehring, T. Twin beam quantum-enhanced correlated interferometry for testing fundamental physics. Commun. Phys. 2020, 3, 104. [Google Scholar] [CrossRef]
- Zuo, X.; Yan, Z.; Feng, Y.; Ma, J.; Jia, X.; Xie, C.; Peng, K. Quantum Interferometer Combining Squeezing and Parametric Amplification. Phys. Rev. Lett. 2020, 124, 173602. [Google Scholar] [CrossRef]
- Darsow-Fromm, C.; Gurs, J.; Schnabel, R.; Steinlechner, S. Squeezed light at 2128 nm for future gravitational-wave observatories. Opt. Lett. 2021, 46, 5850–5853. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Danzmann, K.; Willke, B.; Vahlbruch, H. 10 dB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection. Phys. Rev. Lett. 2022, 129, 031101. [Google Scholar] [CrossRef]
- Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G.S.; et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 2011, 7, 962–965. [Google Scholar] [CrossRef] [Green Version]
- Acernese, F.; Agathos, M.; Aiello, L.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; Ascenzi, S.; et al. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Phys. Rev. Lett. 2019, 123, 231108. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 2017, 684, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Reitze, D.; Adhikari, R.X.; Ballmer, S.; Barish, B.; Barsotti, L.; Billingsley, G.; Brown, D.A.; Chen, Y.; Coyne, D.; Eisenstein, R.; et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. arXiv 2019, arXiv:1907.04833. [Google Scholar]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef] [Green Version]
- Demkowicz-Dobrzański, R.; Banaszek, K.; Schnabel, R. Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600. Phys. Rev. A 2013, 88, 041802. [Google Scholar] [CrossRef] [Green Version]
- Yurke, B.; McCall, S.L.; Klauder, J.R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 1986, 33, 4033–4054. [Google Scholar] [CrossRef] [PubMed]
- Ataman, S.; Preda, A.; Ionicioiu, R. Phase sensitivity of a Mach–Zehnder interferometer with single-intensity and difference-intensity detection. Phys. Rev. A 2018, 98, 043856. [Google Scholar] [CrossRef] [Green Version]
- Ataman, S. Optimal Mach–Zehnder phase sensitivity with Gaussian states. Phys. Rev. A 2019, 100, 063821. [Google Scholar] [CrossRef] [Green Version]
- Ataman, S. Single- versus two-parameter Fisher information in quantum interferometry. Phys. Rev. A 2020, 102, 013704. [Google Scholar] [CrossRef]
- Mishra, K.K.; Ataman, S. Optimal phase sensitivity of an unbalanced Mach–Zehnder interferometer. Phys. Rev. A 2022, 106, 023716. [Google Scholar] [CrossRef]
- Andersen, U.L.; Glöckl, O.; Gehring, T.; Leuchs, G. Quantum Interferometry with Gaussian States. In Quantum Information; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 35; pp. 777–798. [Google Scholar] [CrossRef]
- Du, W.; Jia, J.; Chen, J.F.; Ou, Z.Y.; Zhang, W. Absolute sensitivity of phase measurement in an SU(1,1) type interferometer. Opt. Lett. 2018, 43, 1051–1054. [Google Scholar] [CrossRef] [Green Version]
- Frascella, G.; Mikhailov, E.E.; Takanashi, N.; Zakharov, R.V.; Tikhonova, O.V.; Chekhova, M.V. Wide-field SU(1,1) interferometer. Optica 2019, 6, 1233–1236. [Google Scholar] [CrossRef] [Green Version]
- Plick, W.N.; Dowling, J.P.; Agarwal, G.S. Coherent-light-boosted, sub-shot noise, quantum interferometry. New J. Phys. 2010, 12, 083014. [Google Scholar] [CrossRef]
- Ferreri, A.; Santandrea, M.; Stefszky, M.; Luo, K.H.; Herrmann, H.; Silberhorn, C.; Sharapova, P.R. Spectrally multimode integrated SU(1,1) interferometer. Quantum 2021, 5, 461. [Google Scholar] [CrossRef]
- Ye, W.; Chang, S.K.; Gao, S.Y.; Zhang, H.; Xia, Y.; Rao, X. Quantum-improved phase estimation with a displacement-assisted SU(1,1) interferometer. arXiv 2022, arXiv:2210.02645. [Google Scholar]
- Flórez, J.; Pearce, E.; Gemmell, N.R.; Ma, Y.; Bressanini, G.; Phillips, C.C.; Oulton, R.F.; Clark, A.S. Enhanced nonlinear interferometry via seeding. arXiv 2022, arXiv:2209.06749. [Google Scholar]
- Thekkadath, G.S.; Mycroft, M.E.; Bell, B.A.; Wade, C.G.; Eckstein, A.; Phillips, D.S.; Patel, R.B.; Buraczewski, A.; Lita, A.E.; Gerrits, T.; et al. Quantum-enhanced interferometry with large heralded photon-number states. NPJ Quantum Inf. 2020, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.E.; Gupta, P.; Schmittberger, B.L.; Horrom, T.; Hermann-Avigliano, C.; Jones, K.M.; Lett, P.D. Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer. Optica 2017, 4, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Seyfarth, U.; Klimov, A.B.; Guise, H.d.; Leuchs, G.; Sanchez-Soto, L.L. Wigner function for SU(1,1). Quantum 2020, 4, 317. [Google Scholar] [CrossRef]
- Schleich, W. Quantum Optics in Phase Space; WILEY-VCH: Berlin, Germany, 2001; p. 695. [Google Scholar]
- Luo, K.H.; Santandrea, M.; Stefszky, M.; Sperling, J.; Massaro, M.; Ferreri, A.; Sharapova, P.R.; Herrmann, H.; Silberhorn, C. Quantum optical coherence: From linear to nonlinear interferometers. Phys. Rev. A 2021, 104, 043707. [Google Scholar] [CrossRef]
- Chekhova, M.V.; Ou, Z.Y. Nonlinear interferometers in quantum optics. Adv. Opt. Photon. 2016, 8, 104–155. [Google Scholar] [CrossRef]
- Ou, Z.Y.; Li, X. Quantum SU(1,1) interferometers: Basic principles and applications. APL Photonics 2020, 5, 080902. [Google Scholar] [CrossRef]
- Liang, X.; Yu, Z.; Yuan, C.H.; Zhang, W.; Chen, L. Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers. Symmetry 2022, 14, 2684. [Google Scholar] [CrossRef]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976; p. 309. [Google Scholar]
- Heitler, W. The Quantum Theory of Radiation, 3rd ed.; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Susskind, L.; Glogower, J. Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1964, 1, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Carruthers, P.; Nieto, M.M. Phase and Angle Variables in Quantum Mechanics. Rev. Mod. Phys. 1968, 40, 411–440. [Google Scholar] [CrossRef] [Green Version]
- Carruthers, P.; Nieto, M.M. Coherent States and the Number-Phase Uncertainty Relation. Phys. Rev. Lett. 1965, 14, 387–389. [Google Scholar] [CrossRef]
- Pegg, D.T.; Barnett, S.M. Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 1989, 39, 1665–1675. [Google Scholar] [CrossRef]
- Fresneda, R.; Gazeau, J.P.; Noguera, D. Quantum localisation on the circle. J. Math. Phys. 2018, 59, 052105. [Google Scholar] [CrossRef] [Green Version]
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 2013, 7, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Jarzyna, M.; Demkowicz-Dobrzański, R. Quantum interferometry with and without an external phase reference. Phys. Rev. A 2012, 85, 011801. [Google Scholar] [CrossRef] [Green Version]
- Müller-Ebhardt, H.; Rehbein, H.; Schnabel, R.; Danzmann, K.; Chen, Y. Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry. Phys. Rev. Lett. 2008, 100, 013601. [Google Scholar] [CrossRef] [Green Version]
- Müller-Ebhardt, H.; Rehbein, H.; Li, C.; Mino, Y.; Somiya, K.; Schnabel, R.; Danzmann, K.; Chen, Y. Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors. Phys. Rev. A 2009, 80, 043802. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R. Einstein-Podolsky-Rosen–entangled motion of two massive objects. Phys. Rev. A 2015, 92, 012126. [Google Scholar] [CrossRef] [Green Version]
- Takeoka, M.; Seshadreesan, K.P.; You, C.; Izumi, S.; Dowling, J.P. Fundamental precision limit of a Mach–Zehnder interferometric sensor when one of the inputs is the vacuum. Phys. Rev. A 2017, 96, 052118. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, H.F. All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry. Phys. Rev. A 2009, 79, 033822. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, U.; Paul, H. Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 1993, 48, 4598–4604. [Google Scholar] [CrossRef]
- Pezzé, L.; Smerzi, A. Mach–Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light. Phys. Rev. Lett. 2008, 100, 073601. [Google Scholar] [CrossRef] [Green Version]
- Manceau, M.; Leuchs, G.; Khalili, F.; Chekhova, M. Detection Loss Tolerant Supersensitive Phase Measurement with an SU(1,1) Interferometer. Phys. Rev. Lett. 2017, 119, 223604. [Google Scholar] [CrossRef] [Green Version]
- Danilishin, S.L.; Khalili, F.Y. Quantum Measurement Theory in Gravitational-Wave Detectors. Living Rev. Relativ. 2012, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Danilishin, S.L.; Khalili, F.Y.; Miao, H. Advanced quantum techniques for future gravitational-wave detectors. Living Rev. Relativ. 2019, 22, 2. [Google Scholar] [CrossRef] [Green Version]
- Shukla, G.; Salykina, D.; Frascella, G.; Mishra, D.K.; Chekhova, M.V.; Khalili, F.Y. Broadening the high sensitivity range of squeezing-assisted interferometers by means of two-channel detection. Opt. Express 2021, 29, 95–104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salykina, D.; Khalili, F. Sensitivity of Quantum-Enhanced Interferometers. Symmetry 2023, 15, 774. https://doi.org/10.3390/sym15030774
Salykina D, Khalili F. Sensitivity of Quantum-Enhanced Interferometers. Symmetry. 2023; 15(3):774. https://doi.org/10.3390/sym15030774
Chicago/Turabian StyleSalykina, Dariya, and Farid Khalili. 2023. "Sensitivity of Quantum-Enhanced Interferometers" Symmetry 15, no. 3: 774. https://doi.org/10.3390/sym15030774
APA StyleSalykina, D., & Khalili, F. (2023). Sensitivity of Quantum-Enhanced Interferometers. Symmetry, 15(3), 774. https://doi.org/10.3390/sym15030774