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Abstract: Mathematical programming and optimization problems related to fluid dynamics are heavily
influenced by stochastic processes associated with integral and variational inequalities. Furthermore,
symmetry and convexity are intrinsically related. Over the last few years, both have become increas-
ingly interconnected so that we can learn from one and apply it to the other. The objective of this note
is to convert ordinary stochastic processes into interval stochastic processes due to the wide range
of applications in various disciplines. We have developed Hermite–Hadamard (H.H), Ostrowski-,
and Jensen-type inequalities using interval h-convex stochastic processes. Our main results can be
applied to a variety of new and well-known outcomes as specific situations. The results of this study
are expected to stimulate future research on inequalities using fractional and fuzzy integral operators.
Furthermore, we validate our main findings by providing some non-trivial examples. To demonstrate
their general properties, we illustrate the connections between the examined results and those that
have already been published. The results discussed in this article can be seen as improvements and
refinements to results that have already been published. This is a fascinating subject that can be
investigated in the future to identify equivalent inequalities for various convexity types.

Keywords: Hermite–Hadamard inequality; Ostrowski inequality; Jensen inequality; stochastic pro-
cess; interval-valued functions; stochastic systems

MSC: 05A30; 26D10; 26D15

1. Introduction

Stochastic processes are mathematical representations of systems that vary randomly.
Probability theory and related fields describe stochastic processes as random groups of vari-
ables. The stochastic process can be defined broadly and has piqued the interest of many
academics due to its numerous applications in fields such as physics, mathematics, finance,
and engineering. Convexity and symmetry are important characteristics of stochastic pro-
cesses in a variety of nonlinear disciplines, including control problems, optimization, and
nonlinear dynamics; see Refs. [1,2]. Various stochastic models have been proposed in the past
in reliability theory to describe replacement policies of system components. It is most suitable
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to study such situations using stochastic models, which are both robust in their specification
and flexible in their manipulation. The relevation transform is a well-known model in this
field, and it describes the overall lifetime of a component that is replaced at its random failure
time by another component of the same age, whose lifetime distribution may differ. Further-
more, since generalised nonlinear regression models of uneven/even-aged stands were first
developed, modelling growth and yield in a forest stand have advanced quickly, moving on
to stochastic differential equations models and artificial neural network models. Optimization,
particularly optimal design, relies heavily on the convexity of stochastic processes, and it can
also be used for numerical approximation when a probabilistic quantity in the literature is
usually considered a time focus. Transforming stochastic processes into numerical models of
systems can change over time, such as the problem related to Newton’s law of cooling, the
finance model, or the theory of electrical circuits. Stochastic optimization is presented under
constraints in a general framework that covers models for finance, reinsurance, and portfolios
with large investors; see Ref. [3]. An algorithm using constrained stochastic successive convex
approximation is used for finding fixed points for nonconvex stochastic optimization problems
that involve expectations over random states; see Ref. [4]. Here is more information about the
applications of convex stochastic processes; see Refs. [5–7].

The study of intervals in the context of mathematical analysis and topology is the
focus of interval analysis, a subset of set-valued analysis. It was created to address interval
uncertainty, which is present in many mathematical or computer models of deterministic
real-world systems. Archimedes’ method for calculating the circumference of a circle is
a historical example of an interval enclosure. A series of lower bounds for the area of
a disc derived from the circumscribing and inscribed polygons of a circle with radius 1
were increased, while the upper bounds of the corresponding disc were decreased. The
results are frequently skewed when specific numbers are used to describe uncertainty
problems. First, the interval arithmetic explains how intervals are defined arithmetically
and how to solve problems algebraically, integrally, and differentially. A recent increase
in interest for this topic has been attributed to the application of specific tools, such as
Julia and C++, and also to the implementation of computational systems like Maple and
Mathematica; see Refs. [8–14]. A great deal of research is being conducted on the calculus
for set-valued mappings these days, especially in connection with the calculus for fuzzy
version of convex mappings, which has applications in almost all disciplines of mathematics,
physics, and engineering. Among the papers that contribute to this area are ones on gH-
differentiability and some on interval and fuzzy optimization, as well as multidimensional
convex optimization; see Refs. [15–18].

The presence of inequalities has a significant impact on many areas of science, in-
cluding mathematics, physics, engineering, and economics. Understanding a variety of
problems in various branches of mathematics depends heavily on mathematical inequal-
ities. One of the most well-known is the Hermite–Hadamard inequality, which had a
significant influence on not only mathematics, but also other fields that were connected to
it. Convex functions are well known for their significance and excellent applications in a
number of fields, especially in integral inequalities, variational inequalities, and optimiza-
tion. It is fascinating to look into the integral problem and the concept of convexity. Many
inequalities have thus been presented as convex function applications. There have been
many inequalities established for convex functions, and one of the most famous is H.H
and Jensen’s inequality, because of its geometrical significance; see Refs. [19,20]. Nikodem
defined convex stochastic processes in 1980 and also defined some classical properties of
convex functions; see Ref. [21]. Later, Skowronski extended the findings and created a
number of new convex stochastic process properties; see Ref. [22]. As a result of these
notions, Kotrys presented a method for calculating the lower and upper bounds of the
theses inequality for convex stochastic processes using integral operators; see Refs. [23,24].
The H.H inequality for h-convex stochastic processes was extended by Li and Hao; see
Ref. [25]. Budak et al. [26] further extended their findings by presenting inequalities
in a more comprehensive manner using the idea of h-convexity. Furthermore, various
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authors used various notions of convex classes to develop these inequalities for different
integral operators and order relations; see Refs. [27–32]. For the h-convex function, Tunc
devised the Ostrowski-type inequality; see Ref. [33]. Later, Gonzales et al. [34] extended the
Ostrowski inequality results and converted them to a stochastic process for various forms.
Based on the development and use of interval analysis in diverse fields, the following
authors developed proposed inequalities based on the results of inequalities related to
intervals; see Ref. [35]. Mohan et al. [36] developed some interesting properties for the
preinvex class of convexity. Chalco–Cano et al. [37] developed Ostrowski-type inequalities
for interval-valued functions using a generalized Hukuhara derivative. Budak et al. [38]
developed a fractional version of Ostrowski-type inequalities. Khan et al. [39–41] used
fuzzy calculus to create some new variants of these inequalities using different classes
of convexity. Using this concept, Afzal et al. [42] connected the stochastic process with
interval analysis and provided some properties of Jensen and H.H inequalities for using
the h-Godunova–Levin class of convex mappings. For some recent advancements in these
inequalities for interval-valued functions (IVFS), see Refs. [43–57].

As a result of the numerous connections between stochastic processes and real-life
phenomena in recent years, interval analysis has been linked in a precise manner with
stochastic processes. The study also proves to be novel, since various inequalities play a very
important role in ensuring the regularity, stability, and uniqueness of numerous interval
stochastic mathematical models’ solutions, which is why we connected ordinary stochastic
processes with interval stochastic processes. Through this, we were able to explore a whole
new dimension of inequalities in relation to interval analysis. The following are some
recent developments in various disciplines related to interval stochastic processes; see
Refs. [58–61].

We were inspired by the strong collection of literature and specific articles [25,26,34,42],
as we introduced the concept of the h-convex stochastic process and developed H.H,
Ostrowski- and Jensen-type inclusions. In addition, to demonstrate the validity of the
main results, we provide some numerically non-trivial examples. The article is organised as
follows: after reviewing the necessary and pertinent information regarding interval-valued
analysis in Section 2, we provide some introduction related to the stochastic process under
Section 3. In Section 4, we discuss our main results. Section 5 examines a succinct conclusion.

2. Preliminaries and Background

Although these concepts are not defined here, they are employed in this paper; see
Ref. [27]. The interval P is closed and bounded, and therefore can be defined as follows:

P = [P,P] = {r ∈ R : P ≤ r ≤ P},

P,P ∈ R are the terminal points of P. When P = P, then the interval P is called to be
degenerated. When P > 0 or P < 0, we say that it is positive or negative, respectively.
Therefore, we are referring to the collection of all intervals in R by R= and positive intervals
by R=+. A commonly used Hausdorff separation is as follows for P and Z:

D(P,Z) = D
(
[P,P], [Z,Z]

)
= max

{
|P− Z|, |P− Z|

}
.

It is obvious that (R=,D) is a complete metric space.
The following are the definitions of the basic interval arithmetic operations for P and Z:

P− Z = [P− Z,P− Z],

P+ Z = [P+ Z,P+ Z],

P · Z = [minO, maxO] where O = {P Z,P Z, PZ,P Z},
P/Z = [minP, maxP] where P = {P/Z,P/Z,P/Z,P/Z} and 0 /∈ Z.

Scalar multiplication can be used for the interval P by
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L[P,P] =


[LP,LP], L > 0;
{0}, L = 0;
[LP,LP], L < 0

.

When the algebraic characteristics of its quasilinear nature are clarified, it will be possible
to explain its algebraic characteristics on R=. In general, they can be categorized as follows:

• (Associativie w.r.t addition) (P+ Z) + L = P+ (Z+ L) ∀ P,Z,L ∈ R=
• (Commutative w.r.t addition) P+ L = L+P ∀ P,L ∈ R=,
• (Additive element) P+ 0 = 0 +P ∀ P ∈ R=,
• (Law of Cancellation) L+P = L+ L⇒ P = L ∀ P,L ∈ R=,
• (Associative w.r.t multiplication) (P · L) · L = P · (L · L) ∀ P,L ∈ R=,
• (Commutative w.r.t multiplication) P · L = L ·P ∀ P,L ∈ R=,
• (Unity element) P · 1 = 1 ·P ∀ P ∈ R=,

A set’s inclusion ⊆ is another property that is given by

P ⊆ Z ⇐⇒ Z ≤ P and P ≤ Z.

We obtain the following relationship when we combine inclusion and arithmetic opera-
tions. Let � be used to represent the basic arithmetic operations. If P,Z,L and W are
intervals, then

P ⊆ Z and L ⊆W;

then, the following relation is valid

P� L ⊆ Z�W.

The preservation of inclusion in scalar multiplication is the subject of this proposition.

Proposition 1. Let P and Z be intervals and L ∈ R, then LP ⊆ LZ.

The concepts discussed below lay the groundwork for this section’s discussion of the
integral for IVFS:

A function F is known as IVF at Pa∈ [P1,P2], if it gives each a nonempty interval
Pa ∈ [P1,P2]

F(Pa) =
[
F(Pa),F(Pa)

]
.

A partition of any arbitrary subset P of [P1,P2] can be represented as:

P : P1 = Pa < Pb < · · · < Pm = P2.

The mesh of P is represented by

Mesh(P) = max{Pi −Pi−1 : i = 1, 2, . . . , m}.

All partitions of [P1,P2] can be represented by P([P1,P2]). Let P(Λ, [P1,P2]) be the pack
of all P ∈ P([P1,P2]) satisfying this mesh(P) < Λ for any arbitrary point in intervals; then,
the sum is denoted by:

S(F,P, Λ) =
n

∑
i=1

F(Pii)[Pi −Pi−1],

where F : [P1,P2] → R=. We say that S(F,P, Λ) is a sum of F with reference to P ∈
P(Λ, [P1,P2]).

Definition 1 (see [27]). A function F : [P1,P2]→ R= is known as Riemann-integrable for IVF,
or it can be represented by (IR) on [P1,P2], if ∃ τ ∈ R= such that, for every P2 > 0 ∃ Λ > 0,

d
(
S(F,P, Λ), τ

)
< P2
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for each Riemann sum S of F with reference to P ∈ P(Λ, [P1,P2]) and unrelated to the choice of
Pii ∈ [Pi−1,P=], ∀ 1 ≤ i ≤ m. In this scenario, τ is known as the (IR)-integral of F on [P1,P2]
and is represented by

τ = (IR)
∫ P2

P1

F(Pa) dPa.

The pack of all (IR)-integral functions of F on [P1,P2] can be represented by IR([P1,P2])
.

Theorem 1 (see [27]). Let F : [P1,P2] → R= be an IVF defined as F(Pa) = [F(Pa),F(Pa)].
F ∈ IR([P1,P2])

iff F(Pa),F(Pa) ∈ R([P1,P2])
and

(IR)
∫ P2

P1

F(Pa) dPa =

[
(R)

∫ P2

P1

F(Pa) dPa, (R)
∫ P2

P1

F(Pa) dPa

]
,

where R([P1,P2])
represent the bunch of all R-integrable functions. If F(Pa) ⊆ G(Pa) for all

Pa ∈ [P1,P2], then this holds

(IR)
∫ P2

P1

F(Pa) dPa ⊆ (IR)
∫ P2

P1

G(Pa) dPa.

3. Stochastic Process

Definition 2. A mapping F : Λ → R on probability space (Λ,A,P) is known as a random
variable if they obey the properties of the A-measurable. A function F : =×Λ→ R where = ⊆ R
is called a stochastic process if ∀ P ∈ =, the function F(P, ·), is a random variable.

Properties of the Stochastic Process

A stochastic process F : =×Λ→ R is

• continuous over interval = if ∀ Po ∈ =, one has

p− lim
P→Po

P(P, .) = P(Po, .)

where the probability space limit is represented by p− lim.
• For the continuity in mean square sense over interval =, if ∀ Po ∈ =, one has

lim
P→Po

E
[
(F(P, .)− F(Po, .))2

]
= 0,

where E [F(P, ·)] represent the random variable’s expected value.

• For the differentiability in mean square sense at any arbitrary point P, if there is a
random variable F′ : =×Λ→ R, then this is true.

F′(P, ·) = p− lim
P→Po

F(P, ·)− F(Po, ·)
P−Po

.

• For the mean-square integral over =, if ∀ P ∈ =, and E [F(P1, ·)] < ∞. Let [P1,P2] ⊆
=,P1 = uo < u1 < u2 . . . < us = P2 is a partition of [P1,P2]. LetFp ∈ [up−1, up], ∀ p =
1, . . . , s. A random variable S : Λ → R is mean-square integrable over [P1,P2], and if
this holds true,

lim
s→∞
E

( s

∑
p=1

F(Fp, .)(up − up−1)−W(.)

)2
 = 0.

In that case, it would be written as
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W(·) =
∫ P2

P1

F(f, ·)df (a.e).

By using the mean-square integral as a definition, we can easily deduce the following for
each f ∈ [P1,P2]; where the inequality F(f, ·) ≤W(f, ·) (a.e) holds, then∫ P2

P1

F(f, ·)df ≤
∫ P2

P1

W(f, ·)df (a.e.).

Afzal et al. [27] developed the following results using interval calculus for the stochas-
tic process.

Theorem 2 (See [27]). Let h : [0, 1] → R+ and h 6= 0. A function F : = × Λ → R+
= is h-

Godunova–Levin (G.L) stochastic process for mean square integrable IVFS. For each P1,P2 ∈ =,
if F ∈ SGPX(h,=,R+

=) and F ∈ R+
= . Almost everywhere, the following inclusion is satisfied:

h
(

1
2

)
2

F

(
P1 +P2

2
, ·
)
⊇ 1

P2 −P1

∫ P2

P1

F(r, ·)dr ⊇ [F(P1, ·) + F(P2, ·)]
∫ 1

0

dr
h(r)

. (1)

Theorem 3 (See [27]). Let gp ∈ R+. If h is non-negative and F : =×Λ→ R is a non-negative
h–Godunova–Levin stochastic process for IVFS almost everywhere, the following inclusion is valid:

F

(
1

Gk

k

∑
p=1

gprp, ·
)
⊇

k

∑
p=1

F(rp, ·)

h
(

gp
Gk

)
. (2)

Definition 3 (See [27]). Let h : [0, 1] → R+. Then, F : =×Λ → R+ is known as a h-convex
stochastic process, or that F ∈ SPX(h,=,R+), if ∀ P1,P2 ∈ = and r ∈ [0, 1], we have

F(rP1 + (1− r)P2, ·) ≤ h(r)F(P1, ·) + h(1− r)F(P2, ·). (3)

In (3), if “≤” is reverse, then we call it a h-concave stochastic process or F ∈ SPV(h,=,R+).

Definition 4 (See [27]). Let h : (0, 1) → R+. The stochastic process F = [F,F] : = ×
Λ → R+

= , where [P1,P2] ⊆ = is known as a (G.L) stochastic process for IVFS or that
F ∈ SGPX(h, [P1,P2],R+

=), if ∀ P1,P2 ∈ = and r ∈ (0, 1), one has

F(rP1 + (1− r)P2, ·) ⊇ F(P1, ·)
h(r)

+
F(P2, ·)
h(1− r)

. (4)

In (4), if “⊇” is reverse, then we call it a (G.L) concave stochastic process for IVFS or F ∈
SGPV(h, [P, J2],R+

=).

4. Main Results

In light of the literature and previously noted definitions, we are now able to describe
a new class of stochastic processes that are convex.

Definition 5. Let h : [0, 1] → R+. Then the stochastic process F = [F,F] : = × Λ →
R+
= , where [P1,P2] ⊆ = is known as a h-convex stochastic process for IVFS, or that F ∈

SPX(h, [P1,P2],R+
=), if ∀ P1,P2 ∈ = and a ∈ [0, 1], we have

F(rP1 + (1− r)P2, ·) ⊇ h(r)F(P1, ·) + h(1− r)F(P2, ·). (5)

In (4), if “⊇” is reverse with “⊆”, then we call it a h-concave stochastic process for IVFS or
F ∈ SPV(h, [P1,P2],R+

=).
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Remark 1.

(i) If h = 1, Definition 5 incorporates the output in the sense of a stochastic process for the
P-function.

(ii) If h(r) = 1
h(r) , Definition 5 incorporates the output in the sense of a stochastic process for the

(G.L) function.
(iii) If h(r) = a, Definition 5 incorporates the output in the sense of a stochastic process for the

usual convex function.
(iv) If h = as, Definition 5 incorporates the output in the sense of a stochastic process for the

s-convex function.

4.1. Stochastically Hermite–Hadamard Inclusions

Theorem 4. Let h : (0, 1) → R+ and h 6= 0. A function H : = × Ω → R+
= is a h-convex

stochastic process as well as mean square integrable for IVFS. For every P1,P2 ∈ [P1,P2] ⊆ =, if
H ∈ SPX(h, [P1,P2],R+

=) and H ∈ R+
= . Almost everywhere, the following inequality is satisfied:

1
2[h( 1

2 )]
H
(
P1+P2

2 , ·
)
⊇ 1

P2−P1

∫P2

P1
H(f, ·)df ⊇ [H(P1, ·) +H(P2, ·)]

∫ 1
0 h(r)dr. (6)

Proof. Since H ∈ SPX(h, [P1,P2],R+
=), and consequently, integrates over (0, 1), we have

1[
h
(

1
2

)]H(P1 +P2

2
, ·
)
⊇ H(rP1 + (1− r)P2, ·) +H((1− r)P1 + rP2, ·)

1[
h
(

1
2

)]H(P1 +P2

2
, ·
)
⊇
[∫ 1

0
H(rP1 + (1− r)P2, ·)df+

∫ 1

0
H((1− r)P1 + rP2, ·)df

]

=

[∫ 1

0
H(rP1 + (1− r)P2, ·)df+

∫ 1

0
H((1− r)P1 + rP2, ·)df,∫ 1

0
H(rP1 + (1− r)P2, ·)df+

∫ 1

0
H((1− r)P1 + rP2, ·)df

]
=

[
2

P2 −P1

∫ P2

P1

H(f, ·)df, 2
P2 −P1

∫ P2

P1

H(f, ·)df
]

=
2

P2 −P1

∫ P2

P1

H(f, ·)df. (7)

By Definition 5, we have

H(rP1 + (1− r)P2, ·) ⊇ h(r)H(P1, ·) + h(1− r)H(P2, ·).

Integrating this, we have∫ 1

0
H(rP1 + (1− r)P2, ·)dr ⊇ H(P1, ·)

∫ 1

0
h(r)dr+H(P2, ·)

∫ 1

0
h(1− r)dr.

Accordingly,

1
P2 −P1

∫ P2

P1

H(f, ·)df ⊇
[
H(P1, ·) +H(P2, ·)]

∫ 1

0
h(r)dr. (8)

Now, utilizing (7) and (8), we have

1

2
[

h
(

1
2

)]H(P1 +P2

2
, ·
)
⊇ 1

P2 −P1

∫ P2

P1

H(f, ·)df ⊇ [H(P1, ·) +H(P2, ·)]
∫ 1

0
h(r)dr.
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Example 1. Consider [P1,P2] = [0, 2], h(r) = r, ∀ r ∈ [0, 1]. If H : [P1,P2] → R=+ is
defined as

H(f, ·) = [f2, 10− ef], f ∈ [0, 2].

Then,

1

2
[

h
(

1
2

)]H(P1 +P2

2
, ·
)
= [1, 10− e],

1
P2 −P1

∫ P2

P1

H(f, ·)df =
[

4
3

,
−e2 + 21

2

]
,

[H(P1, ·) +H(P2, ·)]
∫ 1

0
h(r)dr =

[
2,

19− e2

2

]
.

As a result,

[1, 10− e] ⊇
[

4
3

,
−e2 + 21

2

]
⊇
[

2,
19− e2

2

]
.

The theorem is proved.

Theorem 5. Let h : (0, 1) → R+ and h 6= 0. A function H : = × Ω → R+
= is a h-convex

stochastic process as well as mean square integrable for IVFS. For every P1,P2 ∈ [P1,P2] ⊆ =, if
H ∈ SPX(h, [P1,P2],R+

=) and H ∈ R+
= . Almost everywhere, the following inequality is satisfied:

1

4
[

h
(

1
2

)]2H

(
P1 +P2

2
, ·
)
⊇ 41 ⊇

1
P2 −P1

∫ P2

P1

H(f, ·)df ⊇ 42

⊇
{
[H(P1, ·) +H(P2, ·)]

[
1
2
+ h
(

1
2

)]} ∫ 1

0
h(r)dr,

where

41 =
1

4h
(

1
2

)[H(3P1 +P2

4
, ·
)
+H

(
3P2 +P1

4
, ·
)]

,

42 =

[
H

(
P1 +P2

2
, ·
)
+

H(P1, ·) +H(P2, ·)
2

] ∫ 1

0
h(r)dr.

Proof. Take
[
P1, P1+P2

2

]
, we have

H
(

3P1+P2
4 , ·

)
⊇ h

(
1
2

)
H
(
rP1 + (1− r)P1+P2

2 , ·
)
+ h
(

1
2

)
H
(
(1− r)P1 +=P1+P2

2 , ·
)

With integration over (0,1), we have

H

(
3P1 +P2

2
, ·
)
⊇ h

(
1
2

)[∫ 1

0
H

(
rP1 + (1− r)

P1 +P2

2
, ·
)

dr

+
∫ 1

0
H

(
=P1 +P2

2
+ (1− r)P2, ·

)
df
]

= h
(

1
2

)[
2

P2 −P1

∫ P1+P2
2

P1

H(f, ·)df+ 2
P2 −P1

∫ P1+P2
2

P1

H(f, ·)df
]

= h
(

1
2

)[
4

P2 −P1

∫ P1+P2
2

P1

H(f, ·)df
]

. (9)

Accordingly,
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1

4h
(

1
2

)H(3P1 +P2

2
, ·
)
⊇ 1

P2 −P1

∫ P1+P2
2

P1

H(f, ·)df. (10)

Similarly for interval
[
P1+P2

2 ,P2

]
, we have

1

4h
(

1
2

)H(3P2 +P1

2
, ·
)
⊇ 1

P2 −P1

∫ P2

P1+P2
2

H(f, ·)df. (11)

Adding inclusions (10) and (11), we get

41 =
1

4h
(

1
2

)[H(3P1 +P2

4
, ·
)
+H

(
3P2 +P1

4
, ·
)]
⊇
[

1
P2 −P1

∫ P2

P1

H(f, ·)df
]

.

Now

1

4
[

h
(

1
2

)]2 H

(
P1 +P2

2
, ·
)

=
1

4
[

h
(

1
2

)]2 H

(
1
2

(
3P1 +P2

4
, ·
)
+

1
2

(
3P2 +P1

4
, ·
))

⊇ 1

4
[

h
(

1
2

)]2

[
h
(

1
2

)
H

(
3P1 +P2

4
, ·
)
+ h
(

1
2

)
H

(
3P2 +P1

4
, ·
)]

=
1

4h
(

1
2

)[H(3P1 +P2

4
, ·
)
+H

(
3P2 +P1

4
, ·
)]

= 41

⊇ 1

4h
(

1
2

){h
(

1
2

)[
H(P1, ·) +H

(
P1 +P2

2
, ·
)]

+ h
(

1
2

)[
H(P2, ·) +H

(
P1 +P2

2
, ·
)]}

=
1
2

[
H(P1, ·) +H(P2, ·)

2
+H

(
P1 +P2

2
, ·
)]

⊇
[
H(P1, ·) +H(P2, ·)

2
+H

(
P1 +P2

2
, ·
)] ∫ 1

0
h(r)dr

= 42

⊇
[
H(P1, ·) +H(P2, ·)

2
+ h
(

1
2

)
H(P1, ·) + h

(
1
2

)
H(P2, ·)

] ∫ 1

0
h(r)dr

⊇
[
H(P1, ·) +H(P2, ·)

2
+ h
(

1
2

)
[H(P1, ·) +H(P2, ·)]

] ∫ 1

0
h(r)dr

⊇
{
[H(P1, ·) +H(P2, ·)]

[
1
2
+ h
(

1
2

)]} ∫ 1

0
h(r)dr.

Example 2. Recall the Example 1, where we have

1

4
[

h( 1
2 )
]2H

(
P1 +P2

2
, ·
)
= [1, 10− e],

41 =

[
5
4

, 10−
√

e(1 + e)
2

]
,

42 =

[
3
2

,
39
4
− e

2
− e2

4

]
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and {
[H(P1, ·) +H(P2, ·)]

[
1
2
+ h
(

1
2

)]} ∫ 1

0
h(r)dr =

[
2,

19
2
− e2

2

]
.

Thus, we obtain

[1, 10− e] ⊇
[

5
4

, 10−
√

e(1 + e)
2

]
⊇
[

4
3

,
21
2
− e2

2

]
⊇
[

3
2

,
39
4
− e

2
− e2

4

]
⊇
[

2,
19
2
− e2

2

]
.

This verifies Theorem 5.

Theorem 6. Let h1, h2 : (0, 1) → R+ and h1, h2 6= 0. Two functions H,C : = × Ω → R+
=

are mean square integrable h-convex stochastic processes for IVFS. For every P1,P2 ∈ =, if
H ∈ SPX(h1, [P1,P2],R+

=), C ∈ SPX(h2, [P1,P2],R+
=) and H,C ∈ IR=. Almost everywhere,

the following inequality is satisfied

1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df ⊇ C(P1,P2)
∫ 1

0
h1(r)h2(r)d + D(P1,P2)

∫ 1

0
h1(r)h2(1− r)d,

where
C(P1,P2) = H(P1, ·)C(P1, ·) +H(P2, ·)C(P2, ·),

D(P1,P2) = H(P1, ·)C(P2, ·) +H(P2, ·)C(P1, ·).

Proof. Consider H ∈ SPX(h1, [P1,P2],R+
=), C ∈ SPX(h2, [P1,P2],R+

=) then, we have

H(P1r+ (1− r)P2, ·) ⊇ h1(r)H(P1, ·) + h1(1− r)H(P2, ·),

C(P1r+ (1− r)P2, ·) ⊇ h2(r)C(P1, ·) + h2(1− r)C(P2, ·).

Then,

H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·)
⊇ (h(1− r)H(P1, ·) + h(r)H(P2, ·))(h(1− r)C(P1, ·) + h(r)C(P2, ·)).

With integration over (0,1), we have∫ 1

0
H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·)d=

=

[∫ 1

0
H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·)df,∫ 1

0
H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·)df

]
=

[
1

P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df, 1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df
]

=
1

P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df

⊇ C(P1,P2)
∫ 1

0
h1(r)h2(r)d + D(P1,P2)

∫ 1

0
h1(r)h2(1− r)dr.

It follows that

1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df ⊇ C(P1,P2)
∫ 1

0
h1(r)h2(r)d + D(P1,P2)

∫ 1

0
h1(r)h2(1− r)dr.

The theorem is proved.
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Example 3. Let [P1,P2] = [0, 1], h1(r) = r, h2(r) = 1 ∀ r ∈ (0, 1). If H,C : [P1,P2] ⊆ = →
R=+ are defined as

H(f, ·) = [f2, 8− ef] and C(f, ·) = [f, 7− f2].

Then, we have

1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df =
[

1
4

,−6e +
175

3

]
,

C(P1,P2)
∫ 1

0
h1(r)h2(r)dr =

[
1
2

,
17− 2e

2

]
and

D(P1,P2)
∫ 1

0
h1(r)h2(1− r)dr =

[
0,

18− 3e
4

]
.

Since [
1
4

,−6e +
175

3

]
⊇
[

1
2

,
32− 7e

4

]
,

consequently, Theorem 6 is verified.

Theorem 7. Let h1, h2 : (0, 1) → R+ and h1, h2 6= 0. Two functions H,C : =×Ω → R+
= are

mean square integrable h-convex stochastic processes for IVFS. For each P1,P2 ∈ =, if H ∈
SPX(h1, [P1,P2],R+

=), C ∈ SPX(h2, [P1,P2],R+
=) and H,C ∈ IR= with h1

(
1
2

)
h2

(
1
2

)
= λ.

Almost everywhere, the following inequality is satisfied:

1

2h1

(
1
2

)
h2

(
1
2

)H(P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

⊇ 1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df

+ C(P1,P2)
∫ 1

0
h1(r)h2(1− r)dr+ D(P1,P2)

∫ 1

0
h1(r)h2(r)dr.

Proof. Since H ∈ SPX(h1, [P1,P2],R+
=), C ∈ SPX(h2, [P1,P2],R+

=), we have

H

(
P1 +P2

2
, ·
)
⊇ h1

(
1
2

)
H(P1r+ (1− r)P2, ·) + h1

(
1
2

)
H(P1(1− r) + rP2, ·),

C

(
P1 +P2

2
, ·
)
⊇ h2

(
1
2

)
C(P1r+ (1− r)P2, ·) + h2

(
1
2

)
C(P1(1− r) + rP2, ·). (12)

H

(
P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

⊇ λ[H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·) +H(P1(1− r) + rP2, ·)C(P1(1− r) + rP2, ·)]
+ λ[H(P1r+ (1− r)P2, ·)C(P1(1− r) + rP2, ·) +H(P1(1− r) + rP2, ·)C(P1r+ (1− r)P2, ·)]
⊇ λ[H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·) +H(P1(1− r) + rP2, ·)C(P1(1− r) + rP2, ·)]
+ λ[(h1(r)H(P1, ·) + h1(1− r)H(P2, ·))(h2(1− r)C(P1, ·) + h2(r)C(P2, ·))]
+ [(h1(1− r)H(P1, ·) + h1(r)H(P2, ·))(h2(r)C(P1, ·) + h2(1− r)C(P2, ·))]
⊇ λ[H(P1r+ (1− r)P2, ·)C(P1r+ (1− r)P2, ·) +H( f (1− r) + rP2, ·)C( f (1− r) + rP2, ·)]
+ λ[(h1(r)h2(1− r) + h1(1− r)h2(r))C(P1,P2) + (h1(r)h2(r) + h1(1− r)h2(1− r))D(P1,P2)].
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Integration over (0, 1), we have∫ 1

0
H

(
P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

df =
[∫ 1

0
H

(
P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

df,∫ 1

0
H

(
P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

df
]

= H

(
P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

df ⊇ 2λ

[
1

P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df
]

+ 2λ

[
C(P1,P2)

∫ 1

0
h1(r)h2(1− r)d + D(P1,P2)

∫ 1

0
h1(r)h2(r)df

]
.

By dividing 1
2h1( 1

2 )h2( 1
2 )

, we obtain the desired result:

1

2h1

(
1
2

)
h2

(
1
2

)H(P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)

⊇ 1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df+ C(P1,P2)
∫ 1

0
h1(r)h2(1− r)dr

+ D(P1,P2)
∫ 1

0
h1(r)h2(r)dr.

Hence, it is proved.

Example 4. Let [P1,P2] = [0, 1], h1(r) = r, h2(r) = 2 ∀ r ∈ (0, 1). If H,C : [P1,P2] ⊆ = →
R=+ are defined as

H(f, ·) = [f2, 8− ef] and C(f, ·) = [f, 7− f2].

Then, we have

1

2h1

(
1
2

)
h2

(
1
2

)H(P1 +P2

2
, ·
)
C

(
P1 +P2

2
, ·
)
=

[
1
4

,
27
(
−
√

e + 8
)

2

]
,

1
P2 −P1

∫ P2

P1

H(f, ·)C(f, ·)df =
[

1
4

,−6e +
175

3

]
,

C(P1,P2)
∫ 1

0
h1(r)h2(1− r)dr =

[
1
4

,
17− 2e

4

]
and

D(P1,P2)
∫ 1

0
h1(r)h2(r)dr =

[
0,

18− 3e
8

]
.

It follows that [
1
4

,
27
(
−
√

e + 8
)

2

]
⊇
[

1
2

,
13
2
− 5(33e− 280)

24

]
.

This proves the above theorem.

4.2. Stochastically Ostrowski-Type Inclusions

We can accomplish our goal using the following lemma [33].



Symmetry 2023, 15, 831 13 of 17

Lemma 1. Let H : =×Ω ⊆ R→ R be a stochastic process that can be mean-square differentiated
on =o such that H

′ ∈ L[P1,P2]. Then the equality stated below is true:

H(Z, ·)− 1
P2 −P1

∫ P2

P1

H(T, ·)dT

=
(Z−P1)2

P2 −P1

∫ 1

0
rH′(Zr+ (1− r)P1, ·)dr−

(P2 − Z)2

P2 −P1

∫ 1

0
rH′(Zr+ (1− r)P2, ·)dr, ∀Z ∈ [P1,P2].

Theorem 8. Let h : (0, 1)→ R be a super-multiplicative, non-negative function, and consider a
differentiable map H : =×Ω ⊆ R→ R= on =o such that H

′ ∈ L[P1,P2] and r ≤ h(r). If |H′|
is a h-convex stochastic process on =, with |H′(Z, ·)| ≤ ∆ for each Z ∈ [P1,P2], then

H
([

H(Z, ·),H(Z, ·)
]
,
[

1
P2 −P1

∫ P2

P1

H(T, ·)dT,
1

P2 −P1

∫ P2

P1

H(T, ·)dT
])

= max
{∣∣∣∣H(Z, ·)− 1

P2 −P1

∫ P2

P1

H(T, ·)dT
∣∣∣∣, ∣∣∣∣H(Z, ·)− 1

P2 −P1

∫ P2

P1

H(T, ·)dT
∣∣∣∣}

⊇
∆
[
(Z−P1)2 + (P2 − Z)2]

P2 −P1

∫ 1

0

[
h(r2) + h(r− r2)

]
dr

∀ = ∈ [P1,P2].

Proof. From the above Lemma 1, one has |H′| a h-convex stochastic process for IVFS,
and then

max
{∣∣∣∣H(Z, ·)− 1

P2 −P1

∫ P2

P1

H(T, ·)dT
∣∣∣∣, ∣∣∣∣H(Z, ·)− 1

P2 −P1

∫ P2

P1

H(T, ·)dT
∣∣∣∣}

⊇ (Z−P1)2

P2 −P1

∫ 1

0
r
∣∣H′(Zr+ (1− r)P1, ·)

∣∣dr+ (P2 − Z)2

P2 −P1

∫ 1

0
r
∣∣H′(Zr+ (1− r)P2, ·)

∣∣dr
⊇ (Z−P1)2

P2 −P1

∫ 1

0
r
[
h(r)|H′(Z, ·)|+ h(1− r)|H′(P1, ·), ·|

]
dr

+
(P2 − Z)2

P2 −P1

∫ 1

0
r[h(r)|H′(Z, ·)|+ h(1− r)|H′(P2, ·), ·|]dr

⊇ ∆(Z−P1)2

P2 −P1

∫ 1

0

[
h2(r) + h(r)h(1− r)

]
dr+

(P2 − Z)2

P2 −P1

∫ 1

0

[
h2(r) + h(r)h(1− r)

]
dr

⊇
∆
[
(Z−P1)2 + (P2 − Z)2]

P2 −P1

∫ 1

0

[
h2(r) + h(r)h(1− r)

]
dr.

Hence, it is proved.

4.3. Stochastically Jensen-Type Inclusion

Theorem 9. Let ej ∈ R+. If h is a non-negative function, then H : =×Ω→ R= is a non-negative
h-convex stochastic process for IVFS with gj ∈ I. Almost everywhere, the following inclusion
is satisfied:

H

(
1

Ep

p

∑
j=1

ejgj, ·
)
⊇

p

∑
j=1

[
h
( ej

Ep

)
H(gj, ·)

]
, (13)

where

Ep =
p

∑
j=1

ej.
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Proof. By induction, if p = 2, then Equation (13) is true. Assume that inclusion (13) also
holds for p− 1; then,

H

(
1

Ep

p

∑
j=1

ejgj, ·
)

= H

(
ep

Ep
gp +

p−1

∑
j=1

ej

Ep
gj, ·
)

= H

(
ep

Ep
gp +

Ep−1

Ep

p−1

∑
j=1

ej

Ep−1
gj, ·
)

⊇ h
(

ep

Ep

)
H(gp, ·) + h

(
Ep−1

Ep

)
H

(
p−1

∑
j=1

ej

Ep−1
gj, ·
)

⊇ h
(

ep

Ep

)
H(gp, ·) + h

(
Ep−1

Ep

)p−1

∑
j=1

[
h

(
ej

Ep−1

)
H(gj, ·)

]

⊇ h
(

ep

Ep

)
H(gp, ·) +

p−1

∑
j=1

[
h
( ej

Ep

)
H(gj, ·)

]

⊇
p

∑
j=1

[
h
( ej

Ep

)
H(gj, ·)

]
.

Hence, it is proved.

5. Conclusions

As a result of its numerous potential benefits, convex analysis is currently a very
attractive and captivating field of research. Today’s mathematical investigations rely
heavily upon the concept of convexity, along with the perception of inequalities. The results
of the h-convex stochastic process were extended from partial-order stochastic process
to interval-order stochastic process using set inclusion. This allowed us to construct the
Hermite–Hadamard, Ostrowski, and Jensen inequalities. Furthermore, some examples
that are not trivial were provided to support our main findings. Our study’s findings can
be used in various contexts to produce a range of both novel and well-known results. In
this paper, additional improvements and refinements to previously published findings
were presented. Further exploration will focus on the fuzzy interval Katugampola integral
operator, Riemann–Liouville, as well as other fractional integral operators. In addition,
stochastic processes with variational and integral inequalities play an important role in
a wide range of disciplines, including symmetric stochastic Markov processes, stochastic
integrals, as well as finding a solution and assessing differential equation stability using
symmetry analysis methods, which are very powerful tools for finding exact solutions. It
will also be interesting to develop these inequalities using quantum calculus, a recently
emerging field in various disciplines. Furthermore, we hope that these inequalities will play
an important role in the development of various stochastic models. Eventually, we hope to
be able to use the concept of this study in many different modes, such as time-scale calculus,
coordinates, interval analysis, fuzzy fractional, fractional calculus, quantum calculus, and
so forth. The current developments and style of this paper should pique readers’ interest
and encourage more research in this field.
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22. Skowroński, A. On some properties of J-convex stochastic processes. Aequat. Math. 1992, 44, 249–258. [CrossRef]
23. Kotrys, D. Hermite–Hadmard inequality for convex stochastic processes. Aequat. Math. 2012, 83, 143–151. [CrossRef]
24. Kotrys, D. Remarks on strongly convex stochastic processes. Aequat. Math. 2013, 86, 91–98. [CrossRef]
25. Li, L.; Hao, Z. On Hermite–Hadmard inequlity for h-convex stochastic processes. Aequat. Math. 2017, 91, 909–920. [CrossRef]
26. Budak, H.; Sarikaya, M.Z. A new Hermite–Hadamard inequality for h-convex stochastic processes. RGMIA Res. Rep. Collect.

2016, 19, 30. [CrossRef]
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Inequalities for (h1, h2)-Godunova–Levin Functions by Means of Center-Radius Order Relation. Aims Math. 2023, 8, 3101–3119.
[CrossRef]

56. Ramaswamy, R.; Mani, G.; Gnanaprakasam, A.J.; Abdelnaby, O.A.A.; Stojiljković, V.; Radojevic, S.; Radenović, S. Fixed Points on
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