symmetry

Article

Algebraic Schouten Solitons of Three-Dimensional Lorentzian

Lie Groups

Siyao Liu

check for
updates

Citation: Liu, S. Algebraic Schouten
Solitons of Three-Dimensional
Lorentzian Lie Groups. Symmetry
2023, 15, 866. https://doi.org/
10.3390/sym15040866

Academic Editors: Luca Grilli,
Siileyman Senyurt and Marian Ioan

Munteanu

Received: 7 March 2023
Revised: 28 March 2023
Accepted: 31 March 2023
Published: 5 April 2023

Copyright: © 2023 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China;
liusy719@nenu.edu.cn; Tel.: +86-1316-695-3901

Abstract: In 2016, Wears defined and studied algebraic T-solitons. In this paper, we define algebraic
Schouten solitons as a special T-soliton and classify the algebraic Schouten solitons associated
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1. Introduction

Lauret introduced the Ricci soliton, which is a natural generalization of the Einstein
metric on nilpotent Lie groups. In [1], he introduced the algebraic Ricci soliton in the
Riemannian case. Moreover, Lauret proved that algebraic Ricci solitons on homogeneous
Riemannian manifolds are Ricci solitons. Onda extended the definition of algebraic Ricci
solitons to the pseudo-Riemannian case and studied them in [2]. He obtained a steady
algebraic Ricci soliton in the Lorentzian setting. Note that in [3], Batat and Onda studied
algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, and they determined
all three-dimensional Lorentzian Lie groups, which are algebraic Ricci solitons. Etayo and
Santamaria studied some affine connections on product structures, mainly the canonical
connection and the Kobayashi-Nomizu connection. See [4] for details. Wang defined
algebraic Ricci solitons associated with canonical connections and Kobayashi—-Nomizu
connections in [5]. Moreover, he classified algebraic Ricci solitons associated with canonical
connections and Kobayashi-Nomizu connections on three-dimensional Lorentzian Lie
groups with the product structure. For other results related to Ricci solitons, see [6-9].

Following Lauret’s research, Wears defined algebraic T-solitons and established the
relationship between algebraic T-solitons and T-solitons. In [10], the author showed that
Lauret’s ideas for algebraic solitons applied equally well to an arbitrary geometric evolution
equation (subjection to the appropriate conditions) for a left-invariant Riemannian metric
on a simply connected Lie group. In Equation (1) [7], a generalized Ricci soliton was
defined, which could be considered as the Schouten soliton.

According to the generalization of the definition of the Schouten tensor in [11], moti-
vated by [7,10], we provide a definition of algebraic Schouten solitons as Schouten solitons,
which were defined in [7]. In this paper, we investigate algebraic Schouten solitons as-
sociated with Levi-Civita connections, canonical connections, and Kobayashi-Nomizu
connections, and classify algebraic Schouten solitons associated with Levi-Civita connec-
tions, canonical connections, and Kobayashi-Nomizu connections on three-dimensional
Lorentzian Lie groups.

This paper is organized as follows. In Section 2, we recall the classification of three-
dimensional Lorentzian Lie groups. In Section 3.1, we classify algebraic Schouten solitons
associated with Levi-Civita connections on three-dimensional Lorentzian Lie groups with
the product structure. In Section 3.2, we classify algebraic Schouten solitons associated
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with canonical connections and Kobayashi-Nomizu connections on three-dimensional
Lorentzian Lie groups with the product structure.

2. Three-Dimensional Unimodular Lorentzian Lie Groups

See [12]; Milnor provided a complete classification of three-dimensional unimodular
Lie groups equipped with a left-invariant Riemannian metric. In [13], Rahmani classified
three-dimensional unimodular Lie groups equipped with a left-invariant Lorentzian metric.
Cordero and Parker wrote down the possible forms of a non-unimodular Lie algebra in [14],
which was proven by Calvaruso in [15]. The following theorems classify three-dimensional
Lorentzian Lie groups.

Theorem 1. Let (G, g) be a three-dimensional connected unimodular Lie group, equipped with a
left-invariant Lorentzian metric. Then there exists a pseudo-orthonormal basis {e1, e, e3} with e3
time-like, such that the Lie algebra of G is one of the following:

(g1) :

le1,e2] = ey — Pes, [e1, e3] = —we; — Pey, [ea, €3] = Peq + ey + wes, a0 # 0.
(g2)

le1, 2] = vea — Bes, [e1,e3] = —Pex — ves, [e2, €3] = ey, v # 0.
(g3)

le1,e2] = —7es, [e1,e3] = —Pea, [er, e3] = wey.
(94)

[e1,e2] = —ea+ (27 — B)es, n = lor — 1, [eg, e3] = —Pea + e3, ez, €3] = wey.

Theorem 2. Let (G, g) be a three-dimensionally connected non-unimodular Lie group, equipped
with a left-invariant Lorentzian metric. Then there exists a pseudo-orthonormal basis {e1, ez, e3}
with e3 time-like, such that the Lie algebra of G is one of the following:

(95) :

[e1,€2] =0, [e1,e3] = wer + Bea, [e2, €3] = ye1 + dep, a0 + 6 # 0,0y + 6 = 0.
(96) :

[e1,e2] = wey + Bes, [e1,e3] = yea + des, [ep,e3] = 0,0+ 6 # 0,0y — B5 = 0.
(97) :

le1,e2] = —weq — Pex — Pes, [e1,e3] = wey + Bea + Pes, ez, €3] = yeq + dep + des,

a+6#0,ay=0.

3. Results

This section presents the results, with (G;, ) representing the algebraic Schouten
solitons associated with Levi-Civita connections, canonical connections, and Kobayashi—
Nomizu connections on three-dimensional Lorentzian Lie groups.

3.1. Algebraic Schouten Solitons Associated with Levi-Civita Connections on Three-Dimensional
Lorentzian Lie Groups

Throughout this paper, by {G;},—1 ... 7 we shall denote the connected, simply con-
nected three-dimensional Lie group equipped with a left-invariant Lorentzian metric g,
and having Lie algebra {g};_1 ... 7. Let V be the Levi-Civita connection of G; and let R be
its curvature tensor, taken with the convention

R(X,Y)Z = VxVyZ—VyVxZ—VixyZ. 1)
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The Ricci tensor of (G, g) is defined by
p(X,Y) = —g(R(X,e1)Y, e1) — g(R(X, e2)Y, e2) + 8(R(X, e3)Y, e3), @)

where {e1,¢e,e3} is a pseudo-orthonormal basis, with e3 being time-like and the Ricci
operator (Ric) is given by
p(X,Y) = g(Ric(X),Y). 3)

The Schouten tensor is defined by
S(ei ej) = p(ei ej) — Zg(eirej)/ 4)
where s denotes the scalar curvature. We generalize the definition of the Schouten tensor to
S(ei,ej) = p(ei e;) —shog(ei ef), (5)
where A is a real number. Refer to [16], we have
s=p(er,e1) +p(ex, e2) —ples, e3). (6)
Definition 1. (G;, §) is called the algebraic Schouten soliton associated with the connection V if

it satisfies
Ric = (sAg+¢c)Id + D, (7)

where c is a real number, and D is a derivation of g, i.e.,
D[X,Y] = [DX,Y] + [X,DY]forX,Y € g. (8)

Theorem 3. If B = 0and c = 0, then this case corresponds to (G, §) being the algebraic Schouten
soliton associated with the connection V.

Proof of Theorem 1. From [3], we have

€1 3B ap ap 1
Ric| o | =| ap 242+ 32 202 er |- )
e3 —af  —2a% 22+ 1p? es

Therefore, s = %ﬁz We can write D as

Dey = 04,361 + (2062 + %,32 - %.32/\0 - C)(Zz + 2“263’ (10)

{ Dey = (382 — 3B%A0 — c)er + afer + afes,
De3 = —aBe; — 2a%ey + (—2a% + 1% — 382A — C)es.

Hence, by (8), there exists an algebraic Schouten soliton associated with the connection
V if and only if the following system of equations is satisfied

SapPro+a(3p%+c) =0,

—3BAo+B(38* —¢) =0,

af =0, (11)
—%ﬁ% + BB +6a2—c) =0,

—3B%A0 + B(3B% —6a% —¢) = 0.

Since « # 0, wehave B =0andc=0. O

Theorem 4. Ifa = B = 0and ¢ = 27%(1 — Ag) are satisfied, (G, g) is the algebraic Schouten
soliton associated with the connection V.
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Proof of Theorem 2. According to [3], we have

e1 %lx2 +2972 0 0 e1
Ric| e | = 0 —%az +af  —ay+2By e
e3 0 wy — 2By —%txz +ap es3

Consequently, the scalar curvature is given by s = — %txz +2aB + 272 We have

Dey = (—2a? 4+ af — (—3a? +2aB +292)Ag — c)er + (—ay +2B7)es,
Des = (ay —2B7)ex + (—3a% + ap — (—3a® + 2ap +29%)Ag — ¢)es.

{ Dey = (30 4292 — (—3a% + 2aB + 29%)Ag — c)ey,

Equation (8) is satisfied if and only if

B(—30% + 20 +29%) Ao + 292 (x — 2) — B(30% + 297 —¢) =0,

—(—%a? +2aB+29%)Ag + 1a2 + 292 —c =0,
{ a(—502 +2aB+292)Ag + a(3a2 +29% — 2aB +¢) = 0.
The first and second equations of system (14) imply that
(2 —2B) (B> + %) =o.
Since ¥ # 0, we have & = 2p. In this case, system (14) reduces to

— (32 + 292N+ 202 + 292 —c =0,
a(302 +29%)Ag + a(Fa® +29% +¢) =0.

(12)

(13)

(14)

(15)

(16)

If « = 0, then we have B = 0, c = 292(1 — Ag). If « # 0, we have %txz +292 = 0.

According to [3], this is a contradiction. O

Theorem 5. If one of the following conditions is satisfied, (G, g) is the algebraic Schouten soliton

associated with the connection V :

(i) a=B=7v=0,forallc,

(i) a#0,=7v=0,c= —%oc2+ %ucz)\o,

(i) o= =0,B#0,c=—3p%+1B%A,,

(iv) a#0,=av=0,c=0,

(v) a#0,p=—-av7=0rc= —202 + 202\,
(i) a=p=0,7#0,c=—37+37A,

(i) « #0,=0,y=a,c=0,

(wiii) « 20, =0,y =a,c = —20% + 2027,
(ix) a=0,#0,y=8,c=0,

(x) a=0,B#0,v7=—B,c=—-2B2+28\,
(xi) «a#0,#0,v=a.c=38"—(2af— 35)Ao,
(xii) « #0,8#0, v =B —w, c=2ay—2ayA.

Proof of Theorem 3. By [3], we put

The Ricci operator is given by

€1 Zl 0 0 €1
Ric| ey | = 0 ILb O e |,
e3 0 0 13 e3

(17)

(18)
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where || = aja; + aya3 + Bax + yas, I = ayap — apaz — aay + yaz, I = ajaz — axaz — wag +
Baz. Moreover, we have s = 2aya + 2a1a3 — 2aa3 — 2aay + 2Bap + 2yasz. So

Dey = (Ip — (2ayap + 2aya3 — 2axa3 — 2eay + 2Pay + 2yaz)Ag — c)ea, (19)

Dey = (I1 — (2a1ap + 2aya3 — 2aa3 — 2aay + 2Bap + 2yaz) g — ¢)ey,
Des = (13 — (2&1&2 + 2aqa3 — 2ara3 — 2aaq + Zﬁaz + 2')/{13)/\0 — C)€3

Therefore, (8) now becomes

Y02+ 3B = 397 —aBtay+ By — (—30% — 37— 377 +ap+ay + pr)do—c) =0,
pla2 - 3p2 + T+ ap—ay+py — (—30% = 37— 37° +ap+ay + py)do—c) =0, (20)
w(3a2— 12— Ty —ap—ay+ By + (—5e? — 1B — 12 L ap+ ay + Byho+ ) — 0.
Suppose that ¥ = 0, we have
{ ﬁ(%“27%ﬁ2+aﬁ7(7% 2:32+“AB) O*C)—O (21)
a(30% — 3> —ap+ (—3a% — 3>+ aP)Ag+c) =0.
If B = 0, we have two cases (i)-(ii). If B 7& 0, for cases (iii)—(v), system (21) holds. Now
we assume that v # 0, then ¢ = %ocz—f—%ﬁz— 2 —wB+ay+By— (—zzx 2/32 5
af + ay + By)Ao. Meanwhile, we have
18(7:82+72+“137“7) :0/ (22)
a(o? =9 —ap+ py) = 0.

If B = 0, cases (vi)—(viii) hold. If B # 0, for cases (ix)—(xii), system (22) holds. []

Theorem 6. When o =0, B = njand ¢ = 2y, (Gy, g) is the algebraic Schouten soliton associated
with the connection V.

Proof of Theorem 4. Ref. [3] makes it obvious that

€1 %0&2 0 0 €1

Ric| eo |=| 0 —1a2+ap—27(a—p)—2 a— 28+ 21 e |- (23)
e3 0 —a+2B8-2y —1a2+ap— 2By +2 e3

A direct computation shows that the value of the scalar curvature is —a? +2ap —

2an — 2. We have

Delz(% +(2¢x —2af +2an +2) O—C)El,
Dezz(—ier—i—txrB 2n(a—B) — 2+(2¢x —21x/3+2my+2)/\0—c)ez+((x—2/3+217)e3, (24)
Des = (—a+2B —2n7)es + (—2a® + af — 2By + 2+ (3a% — 2aB + 201 + 2)Ag — C)es.

By applying the formula shown in (8), we can calculate

0% + (302 — 20p + 20+ 2)Ao — ¢+ 2(B — ) (w ~2(p 1)) = 0,

(20— B) (307 + (30 20 + 207 +2)A0 — ) +2(F — 1) (@~ 2( - )) 0 s
B(3a (% —2“l3+20¢77+2) Ao —c)+2n(B—1n)(a—2 ( 1) =

( + (=3 &% 4+ 2aB — 2an —2)Ag +c —2a(B— 1)) =

Via simple calculations, we can obtain

302 =20 + 2017 +2)Ag —c +2(B — i) (a = 2(B—17)) =
(a2 + (a2 —2aB +2an +2)Ag — ¢) =0, (26)
(=307 + 20 — 201 —2)Ag + ¢ —2a(f — 1)) =
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Let 3 =n,wehavea =0,c =2A¢. If B # 5, thenc = %Déz + (%az —2aB +2an +2)Ay,

we have

This is a contradiction. [

Theorem 7. If one of the following two conditions is satisfied
(i) B=7=0,c=—a®—5*— (2a2 +2ad +262)A,

(27)

(i) (B,v) # (0,0),a2+ B2 =2+ c=—a?—L(B+7)2—6*— (22> +2a5 + L (B +
v)2 +26%) Ao, then (Gs, g) is the algebraic Schouten soliton associated with the connection V.

Proof of Theorem 5. By [3], it is immediate that

2 2
e —a? — a5 — 7 0 0 e

Ric| e | = 0 —as+ BT 82 0 e |-
e3 0 0 2 (/5+2'r)2 _R e3

Then we have s = —2a% — 206 — 1 (B + )% — 262, and

—_

Dey = (—ad + —(ﬁz —92) = 6% — (=242 — 2a0 — %(,B +9)% —25%)Ag — c)ey,
De3 = (—a? — B+ ¥)? — 6% — (—20c2 — 206 — %(,B + 'y)z —28%)Ag — c)es.

=N

{ Dey = (—a2 — a6 — }(B2 = 12) — (262 = 206 — L(B +7)2 ~ 20)do — cJey,

By using (8) and making tedious calculations, we have the following;:

(a+0)(a® + 3(B+7)%+ 0%+ (—20% — 206 — (B +7)? —20%)Ag +¢) =0,
{ B(2a2 + $(38% + 2By — 72) + (—2a% — 206 — (B + )% —20%)Ag +¢) =0,

v(—26% + 3(B2 — 2By — 39%) — (—2a% — 206 — $(B+7)? —26%)Ag — ) = 0.

We assume that § = 0. Since &« + 6 # 0 and ay + Bd = 0, we have

ay =0,

a+6#0,

(a+06)(a® + 392+ 82+ (=242 — 208 — 19?2 —26%)Ag +¢) =0,
(=262 — 39? — (=242 — 208 — $79* — 26%)Ag — ¢) = 0.

Consider v = 0, then case (i) is true. If v # 0,

a=0,

5#0,

192+ 82 4+ (=192 —20%)A0 = —¢,
=20% =37 = (37" —28%)Ao =¢,

we have case (ii). Now, we assume that 8 # 0, then

—202 — %(3/32 +2By — 92

) — (—2a% —2a6 — J(B+7)% —26%)Ag = ¢,
0,

for case (i), system (29) holds. O

(28)

(29)

(30)

(31)

(32)

(33)

Theorem 8. (G, ) is the algebraic Schouten soliton associated with the connection V if and

only if
(i) B=7=0,c=a>+0— (20> +26%+2ad)Ag,
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Ao,
a?Ag,
—3(B— 1)+ — (20 +2a0 — 5(B— 1)+

(i) a=B=0,9#0,7=6c=737"—

(iii) a#o,wZ:ﬁZ,v:J:o,c:%az_

() B#0,7#0,0>—p=6"—7%c=
26%)Ag.

NMWMw

Proof of Theorem 6. In [3], the Ricci operator is given by

el “2 (B 'Y) +52 0 0 el
RiC<€2)— O ocz—f—ucé—@ 0 (62)~ (34)

e 0 0 W+ B0 452 )\ 63

Sos = 2a% +2ad — 3 (B — )% +262. A simple calculation shows that

Dey = (a® +ad — (/52—7) (2% +206 = 5(B = 7)* +26*)Ag —c)ea,  (35)

Dey = (a2 — J(B— )2+ 62 — (202 +2a0 — $(B—7)2 +26%)Ag — C)ey,
Des = (a6 + 3(B* — 72) + 62 — (2% +2a8 — $(B— 7)? +26%)Ag — C)es.

Thus, Equation (8) is satisfied if and only if

(a? +(52)(—¢x2 +3(B—7)* =2+ (2a% + 205 — J(B—7)? +26%)Ag+¢) =0,
{ B(—2a2 + 3 (387 — 2By — 72) + (202 +2a6 — (B — 7)% +20%)Ag +¢) =0, (36)
V(=262 + 3(—p* = 2B7 +372) + (202 +2a6 — (B —7)? +26%)Ag +¢) = 0.

Suppose that § = 0, by taking into account « 4+ ¢ # 0 and ay + Bé = 0, we have

ay =0,

a+06#0,

(0% +82)(—a? + 192 — 8% + (204 +2a8 — 292 +26%)Ag +¢) =0,
(=202 + 397 + (21x 4208 — 192 + 252)A0 +¢) =0.

(37)

Set v = 0, we have case (i). If v # 0, we have case (ii). Let B # 0, then
c=2a%— 1382 — 2By — 9%) — (2a% + 205 — J (B — )% +26%) A. Consequently,

a+d5#0,
xy+po =0,
(02 +02) (a2 — B2 + 92 — 82) = 0, (38)
e — 472 — ) = 0.
Consider v = 0, then case (iii) is true. If ¢ # 0, for case (iv), system (33) holds. O

Theorem 9. If (Gy, g) is the algebraic Schouten soliton associated with the connection ¥V, then we
have y =0,c = 0.

Proof of Theorem 7. From [3], we have

e1 %’)/2 0 0 e1
Ric| e | = 0 a?—ad+By—1iq? a% —ad + By e |. (39
e3 0 —a? +ad — Py —a?+ad— By — 147 e3

Then s = — 142 Computations show that

Dey = (a® — ad + By — %’yz + %72)\0 —c)ep + (& —ad + By)es, (40)

{ Dey = (377 + 37*A0 — )ey,
De3 = (—a? 4 aé — By)ex+ (—a? 4+ ad — By — %’yz + %72)\0 —c)es.
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Hence, (8) now yields

(a® +6%)(37* — 37 A0 +¢) =0,
B3+ 370 —¢) =0, (41)
1537 = 37%A0 +¢) =0.

Sinceay =0, 4+ 6 #0,wehavey =0andc=0. [

3.2. Algebraic Schouten Solitons Associated with Canonical Connections and Kobayashi—-Nomizu
Connections on Three-Dimensional Lorentzian Lie Groups

We define a product structure | on G; by

Jer =e1,Jer = eo, Jes = —e3, (42)

then J2 = id and g(Je;, Jej) = g(ej, ¢;). By [5], we define the canonical connection and the
Kobayashi-Nomizu connection is as follows:

1
VY = VY — 5 (Vx)JY, (43)
1
VY = VY = 2[(Vy))]X = (Vy))X]. (44)
We define
RU(X,Y)Z = VYVYZ = VYVXZ = Vix yZ, (45)
RYX,Y)Z = VxVyZ = VyVXZ = Viy | Z. (46)

The Ricci tensors of (G;, g) associated with the canonical connection and the Kobayashi—
Nomizu connection are defined by

p(X,Y) = —g(R%(X,e1)Y,e1) — g(R*(X, e2)Y, €2) + (R (X, €3)Y, €3), (47)

pl(X,Y) = —g(RY(X,e1)Y,e1) — g(RY(X,e2)Y, e2) + (R (X, e3)Y, e3). (48)

The Ricci operators Ric? and Ric! are given by

(X, Y) = g(Ric®(X), Y), p} (X, Y) = g(Rick(X),Y). 9)
Let
ﬁO(X, Y) _ PO(XrY) ;po(yl X)/ﬁl(X/ Y) — Pl(XrY) _;pl(yl X)/ (50)
and 0 .
2%, ) = g(R(X),¥),5 (%, Y) = g(R' (X), V). 61)

Similar to (5) and (6), we have
So(ei,ej) =(e;, ej) — s%20g(e;, ej),Sl (ei ef) = ol(e;, ej) — sl)\og(ei,e]-), (52)
and
s =p%(e1,e1) +0°(e2,e2) —p°(e3,€3), 8" = pl (e, e1) + ' (e, 2) — ' (e3,e3). (53
Definition 2. (G, g, ]) is called the algebraic Schouten soliton associated with the connection V°
if it satisfies
Ric’ = (%A + ¢)Id + D, (54)
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where c is a real number, and D is a derivation of g; that is
D[X,Y] = [DX, Y]+ [X,DY]forX,Y € g. (55)

(Gi, g, ]) is called the algebraic Schouten soliton associated with the connection V' if it satisfies

Ric' = (s'Ag + c)Id + D. (56)

Theorem 10. When B = 0, ¢ = —%vcz +2a2Mo, (Gy,8,]) is the algebraic Schouten soliton

associated with the connection V9.
Proof of Theorem 8. From [7], it is obvious that
e
€2 . (57)
€3

o @ —(a2+ 3% 0 —1ap
Ric' [ e | = 0 —(a?+3p*) —3a?
0

Moreover, s° = —2(a? + 3 B2). We obtain that

Dey = —(a? 4+ 3p% —2(a® + 3 B*)Ag + c)er — jafes,
Dey, = (0( + 2‘32 ( + %‘B )/\ + C)EZ — %06263, (58)
Des = jafe; + 1a2e; — (—2(a® + 182)Ag + ¢)es.

Then, Equation (52) becomes
w?B =0,
(% 22+ 1) Ao +c) =0,
B(3a2+ 2 — 2(a% + 12N + ) =0, (59)
B(-2(e2 +16)0 1) =0,
B(3a? —2(a2 + 3o + ) = 0.

Taking into account that, « # 0, we have f =0and ¢ = — %062 +2a%2). O

Theorem 11. If B = 0, c = —Ja? + 242\, then this case corresponds to (Gy,g,]) being the
algebraic Schouten soliton associated with the connection V1.

Proof of Theorem 9. In [7], it is shown that

[ @ —(a® 4 p?) ap 3P e
Ric ( e ) = ( ap —(a2+p?) —1a? ) ( e ) (60)
es —%aﬁ %(xz 0 es3

Therefore, s' = —2(a? + B?). D is described by

De, = aﬁel - (0(2 + ‘32 - 2(0&2 + ﬁz)/\o + C)€2 — %azeg, (61)

Dey = — (a2 + B2 —2(a® + B?)Ag + c)er + afer + safes,
De3 = —3aper + sale; — (=2(a? + p*)Ag + c)es.

We calculate that

B =0,

a(ia? 4247 — (a2+ﬁ2)2\0+c) =0,
,B(Dc + 282 —2(a® + p*)Ag+c¢) =0,
B(a? —2(a® + B?)Ag+c) = 0.

(62)
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Note that a # 0, then we have B = 0and ¢ = —3a? +2a%Ag. O

Theorem 12. When a = B = 0 and c = —7* +29%Ao, (Gy, 8, ]) is the algebraic Schouten
soliton associated with the connection V°.

Proof of Theorem 10. According to [7], we have

— 0 €1 _(%OCIB +’)/2) 0 0 e1
Ric | e | = 0 —(%aﬁ +9?) %a'y - %ﬁfy e |- (63)
e3 0 —tay+1py 0 e3

Obviously, s° = —(ap + 29?). From Equation (52) it is easy to obtain

De, = —(3 “/3+7 — (aB +29*) Ao+ 0)er + (3ay — 3B7)es, (64)

{ Dey = —(3 “/3+“Y — (aB+279%)Ag + c)er,
Des = (— a7y + 3By)es — (—(ap + 279> )Ao+6)63

Consequently, we have

v(@p— B> +7° — (@B +27%)Ao +¢) =0,
B(ap+29* — (ap+279° JAo + ¢) +v(—zar+py) =0, ©5)
B(— (vc!%+27 )Ao +c) +7(—3a7+p7) =0,
a(—(ap+29*)Ag+¢c) =0.
The second and third equations in (62) transform into

B(aB +29%) = 0. (66)

Then, we have

B(ap +29%) =0, (67)

{ Y(a? +ap— B> — (af+29*)Ag +¢) =0,
a(—(aB+29%)Ag +c¢) = 0.

Note that v # 0. We have a?y = 0 and a = B, then ¢ = —9% +2921,. O

Theorem 13. If & = B = 0, ¢ = —* + 29*Ag are satisfied, then (Gy, g, ]) is the algebraic
Schouten soliton associated with the connection V1.

Proof of Theorem 11. We have

(@ —(B*+77) 0 0 e
Ric | e | = 0 —(aB+ %) %(x'y e |, (68)
e3 0 —%o«y 0 e3

this can be found in [7]. Moreover, s! = —(af + 8 +29?). From this, D is given by

De; = —(B? + 9% — (aB + B> +29%)Ag + )ey,
Dey = —(af+ 72 — (aB+ B> +29%) Ao + c)ex + 3ayes, (69)
De; = —%zx’yez — (—(aB+ B2+ 29*) Ao+ c)es

In this way, (52) is satisfied if and only if

Y@+ B+ — (afp+ B +27%)Ao+¢) =0,

B(ap+ B> +29% — (ap + B> +29%)Ag +¢) —ay® =0, (70)
B(—ap+ B> — (ap + B> +27")Ag +¢) —ar* =0,

a(wp — B> — (aB+ B> +29%)Ag +¢) = 0.
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Since 7y # 0, we have c = —aB — % — v> + (aB + B> +27°)Ag. The second equation
in (67) transforms into

(—B)7* =0. (71)
Wehavea =5 =0,c = —92 +292%Ap. O

Theorem 14. If one of the following conditions is satisfied, then (Gs, g, ) is the algebraic Schouten
soliton associated with the connection VO :

(i) a=B=vy=0forallc,

(ii) a:ﬁzo,yyéo,c:'yz—'yz)\o,

(ii)) a«#00rfp#0,v=0,c=0,

(iv) a#00rp#0,vy=a+p,c=0.

Proof of Theorem 12. By [7], we have

o[ & —yas 0 0 e1
Ric e | = 0 —yas 0 e |, (72)
€3 0 0 0 e3

i = 5(e—p—)mr = 56— p+7) 03 = 5 (a+p— 7). 73)

where

A direct computation for the scalar curvature shows that s = —2ya3 = —y(a + 8 — 7).
It is easy to obtain

Dey = —(yaz — 2yazAg + ¢)ey, (74)

{ Dey = —(yaz — 2ya3Ao +c)ey,
Des = —(—2yasAg + ¢)es.

Thus,

B(—r(a+B—7)Ao+c) =0, (75)

{ Y(r(a+B—7)—r(@+B—"7)Ao+c) =0,
a(—y(a+p—v)Ag+c)=0.

If &« = 0, then cases (i)—(iii) hold. Choose & # 0 and ¢ = y(a + f — y)Ap, we obtain
two cases (iii)—(iv). O

Theorem 15. (Gs, g, ]) is the algebraic Schouten soliton associated with the connection V' if and
only if

(i) a=B=7=0,c#0,

(i) a=0,c=—PBy+Prhro,

(iii) B=0,c=—ay+ayl,

(iv) af#0,7v=0,c=0.

Proof of Theorem 13. We have

(= v(a —a3) 0 0 e
Ric 1) = 0 —’)’(ﬂz + a3) 0 e |, (76)
e3 0 0 0 e3
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which is clear from [7]. By definition, we have s' = «y(a; — ay — 2a3) = —(a + B). Hence,

Dey = —(y(az +a3) + y(a; — ap — 2a3)Ag +c)ey, (77)

{ Dey = —(—(a; — a3) + (a1 — az — 2a3)Ag + c)ey,
Des = —(7y(a; — ap — 2a3)Ag + ¢)es.

Equation (52) now becomes

y(ay + By —v(a+p)Ao+c) =0,
B(—ay + By —v(a+B)Ao+¢c) =0, (78)
a(ay — By —y(a+pB)Ao+c) =0.

It is easy to check that

apy? =0,
{ aB(—y(a+ B)Ag+c) = 0. (79)

We consider a8 = 0. In this case, cases (i)—(iii) hold. If we consider af # 0, then v =0,
¢ = 0 and case (iv) holds. O

Theorem 16. If (Gy, g, ]) is the algebraic Schouten soliton associated with the connection V°, then
wehavea =0, =1,c=0.

Proof of Theorem 14. From [7], we have

o @ bs(2n —B) — 1 0 0 e1
Ric [ e | = 0 bs(2p—B)—1 —1(bs—B) ex |, (80)
es 0 %(bg, — ,B) 0 €3

where 1 1 1
b1:§a+;7—‘81b2:§0(—17,b3:§&+17. (81)

Then s¥ = 2b3(27 — B) —2 = (2 + a)(27 — B) — 2. According to the condition
Ric’ = (s%A¢ + ¢)Id + D, we calculate that

De; = (b3(21’] — ,B) —-1- 2b3(217 — ,B)/\O +2A0 — c)el,
Dey = (b3(27 — B) — 1 —2b3(27 — B)Ag + 240 — c)ea — (b3 — Bes, (82)
D€3 = %(b:; — ‘B)ez — (2b3(277 — ‘B)/\O — 2)\0 + C)€3.
Hence, (52) now yields
a((27 4 a)(2n — B)Ao — 210 +¢) =0,
B((20+ ) (25— B)ho ~ 2o +¢) — (Ja+ 17— B) = 0, )

(27— B) (27 +a)(2n — B) =2 — (27 + &) (27 — B)Ao +2A0 —¢) — (3a+7 — B) =0,
(Ba4+n)(27 —B) —1— 2y +a) (27 — B)Ao+2A —c+ (a+1—B) (5 — B) = 0.

For 7 = +1 and a = 0, a straightforward calculation shows that

B(=2Byro+2Mo+¢) — (1 —p) =0,
(27— B)(=2Bn +2+2nAo — 240 — ) — (1 — B) =0, (84)
—Bn +1+2ByAg —2Ag —c+ (n— B)2 = 0.

Solving (81), wehave f =#,c=0. O

Theorem 17. (Gy, g, ) is not the algebraic Schouten soliton associated with the connection V*.

Proof of Theorem 15. In this case, we have
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1 eq _(1+(ﬁ_277>(b3_b1)) 0 0 e1
Ric ( e ) 0 ~(1+(B—27)(ba+bs)) DBp ( e ) (85)

e 0 aphiths 0 e

That is

[ @ —(1+B(B—21)) 0 0 er
Ric | e | = 0 —(14+a(B—21)) —5a e |- (86)
e3 0 %D& e3

Sowehaves! = —(2+ (a + B)(B —27)). If (G4, g, ]) is the algebraic Schouten soliton
associated with the connection V1, then liivc1 = (sl/\o +¢)Ild+ D, so

{ Dey = —(1+ (B —217) = (2+ (a + B)(B = 21)) Ao + ey,

S Nl

Dey = —(1+a(B—2y) — 2+ (a+ B) (B —27)) Ao +c)ez — jae3, (87)
Des = Yaey — (— (24 (a4 B) (B —27)) Ao + c)es.

For this reason, Equation (52) now becomes

1+ (30 +B)(B—217) — (2+ (a+ B)(B—21)) Ao + ¢+ 3ap =0,

(B=20)(2+ (a4 B)(p~21) — 2+ (a+ B (B—2p)Ao+0) —a =0, g0
B(—(a—=B)(B—217)— 2+ (a+B)(B—21))Ao+¢c) —a=0,
a((a—=pB)(B—21)— 2+ (a+B)(B—21))Ao+c) = 0.

Equation (85) has no solutions, we find that (Gy, g, J) is not the algebraic Schouten soliton
associated with the connection V1. [

Theorem 18. If ¢ = 0, then this case corresponds to (Gs, g, | ) being the algebraic Schouten soliton
associated with the connection V°.

Proof of Theorem 16. We have

o €1 0 0 O €1
Ric e | =100 0 e |. (89)
e3 0 0O e3
So s¥ = 0. We see that
De; = —ceq,
Dey, = —cey, (90)
Des = —ces.
By the analysis above, we have
ac =0,
Bc=0,
ve=0, 91)
éc=0.

On the basisof a +J # 0, 2y + 6 =0, wehavec =0. O

Theorem 19. If ¢ = 0 is satisfied, (Gs, g, ]) is the algebraic Schouten soliton associated with the
connection V1.



Symmetry 2023, 15, 866 14 of 18

Proof of Theorem 17. From

1 €1 0 0O e1
Ric e = 0 0 O e |, (92)
e3 0 0O €3
we have s = 0. It follows that
De; = —ceq,
Dey = —cep, (93)
Des = —ce3
Thus,
ac =0,
Bc=0,
v =0, (94)
6c=0.

Note thatif &« +J # 0, then we havec =0. O

Theorem 20. If one of the following two conditions is satisfied

(i) a+6#0,p=9=0c=—a>+a’A,

(i) a #0, ﬁz =202, 9y =6=0,c =0, then (Ge,8,]) is the algebraic Schouten soliton
associated with the connection V0.

Proof of Theorem 18. We recall the following result:
o[ @ 3B(B— ) —a? 0 0 el
Ric | e | = 0 IB(B—7)—a? —3(=ya+33(B—7)) er |. (95)
e 0 3(—ya+35(B—7)) 0

Moreover, we have s° = B(B — ) — 2a2. Therefore, for (G, g, ]) we have

Dey = (3B(B—7) —a® — (B(B—7) —2a*)Ag — C)ey,
Dey = (;8(B - v)fa — (B(B—7) —20*)Ag — c)ey — 3 (—ya+ 36(B—7))es,  (96)
De3 = 3 (—ya+ 38(B—7))e2 — ((B(B—) — 2062)?\o+6)63
By (52), we have
a(3B(B— 7) — o2 = BB 7)Ao +20%A0 — ¢) + 3 (B+7)(ya — 35(B— 7)) =
BB(B— ) — 20> — B(B— v)Ao+2a2Ao—C)+%(5—vc)('w—15(/5 7)) = ©@7)
T(B(B— 7)Ao —20%Ag +¢) — 3(6 — &) (ya — 36(B — 7)) =0,

S(AB(B—7) —a? —B(B— 7)Ao +202Ag —c) — L(B+7)(ya — L8(B— 7)) = 0.

According to the condition & 4+ 6 # 0, ay — Bd = 0, we calculate that

3B(B—7) —a* —B(B— 7)Ao +2a%Ag —c =0,
(B+7)(ye = 36(B—7)) =0, (98)
(B+7)(B(B— 7)Ao —202Ag +¢) = 0.

We choose B+ = 0, then we have B(a +J) = 0, and ¢ = —a® + a?Aj. We set
B+ #0and c = —B(B — 7)Ao + 2a?A. By the calculation, we have % =242,y =6 =0
andthenc=0. O

Theorem 21. If one of the following two conditions is satisfied
(i) a=B=0,6#0,c=0,
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(i) a#0,=7=0,a+0#0,c= —a? 4202\, (Ge, g, J) is the algebraic Schouten soliton
associated with the connection V1.

Proof of Theorem 19. From [7], we have

1 eq — (062 + ,B’Y) 0 0 €1
Ric e | = 0 -2 0 e |. (99)
e3 0 0 0 e3

It is a simple matter of s = —(2&? + B). It follows that

De; = —(a* + By — (202 + By) Ao + c)ey,
Dey = — (% — (2% + By) Ao + C)ea, (100)
Des = —(—(20&2 + ﬁ’}’))\o + C)Eg.

An easy computation shows that

a(a®+ By — (2a% + By)Aog +¢) =0,
B(2a* + ﬁv (202 + By)Ag +¢) =0,
Y(By

(2a% + /37))\0 +c) =0, (101)
5(a® + /3'7 (202 + By)Ag +¢) = 0.
The first and fourth equations of system (98) imply that
(a+0)(a® + By — (26> + By)Ag +¢) = 0. (102)

Because & + 6 # 0, then we have c = —a? — By + (2a% + By) Ao, a?f = 0, and a?y = 0.
Leta =0,thend #0,=0,c=0.Ifa #0,then=7=0,c = —ucz—,B'y—i-thz)\o. O

Theorem 22. (Gy,g,]) is the algebraic Schouten soliton associated with the connection V° if and
only if

(i) a=9=0,06+#0,c=0,

(i) a#0,B=7=0a+0#0c=—31a2+2aA,.

Proof of Theorem 20. By [7], we have
s — (e + 3B7) 0 3(ay +387) e
Ric | e | = 0 —(a2+1By) —L(a2+1Bv) e |. (103)
~3(ar+307)  3(e®+3p 0
Clearly, s° = —(2a2 + ). It follows that

Dey = —(a% + 5By — (202 + By)Ag + c)ex — 5(a® + 3B7)es, (104)

{ Dey = — (a2 + 3y — (242 + By)Ao + c)er + 5 (ay + 367)es,
Des = —%(ay + 167)er + 3(a® + 1Bv)es — (—(2a2 + By)Ag + C)es

A long but straightforward calculation shows that

a(0? + 3By — (2% 4 By)Ao +¢) — 3(B+7)(ay + 570) — sa(a® + 3By) =0,

B(a? + %ﬁv — (20 + By)Ag +¢) — 36(ay + 395) =0,

%a(a +2ﬁ7 2(20% + By)Ag +2¢) — 3B(ay + 376) =0,

B(a? 2,37 (202 +ﬁ7)Ao+6) =0, (105)
7(—(206 +ﬁ7 Ao+ ¢) — 38(ay + 376) =0,

36(a? 2ﬁ7 2(20 +/3’Y)/\0+2C) + 1B(ay + 1v6) =0,

16(a2 + 1py —2(2a2 + By) Ao +2¢) + L (B +7)(ay + 176) = 0.
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The first and third equations of system (102) yield

1
7@y +579) =0, (106)
for ay = 0, we have
Y6 =0,
et -0 (197

Let us regard v = 0. We have
a(a? — 4a’Ag +2c) =0,
B(a? —202Ag +¢) =0, (108)
5(a® —4a®)y +2c) = 0.
Since a + 6 # 0, we have a? — 44?1 + 2c = 0. Then
a?B = 0. (109)

We assume that & = 0, in this case, we obtain § # 0,c = 0. If « # 0, then § = 0,
c=—2a2+2a%Ay. O

Theorem 23. When o # 0,8 = v =0,0 = %oc, and ¢ = —% 2 4202\, (Gy,8,]) is the
algebraic Schouten soliton associated with the connection V1.

Proof of Theorem 21. From [7], we have

(@ —a? 5(B6 — ap) —B(a+9) el
Ric | e | = 2(B6—ap) —(a®+B2+PBy) —3(By—+ad+25%) e |. (110)
e3 Bla+08)  I(By+ad+26%) 0 e3

Of course s' = —(2a% + B2 + By). It follows that

Dey = —(a? — (20% + B* + By) Ao + c)er + 3 (BS — ap)er — B(a + b)es,
{ Dey = 1(B5 — aB)er — (a2 + %+ By — (202 + % + By) Ao + ¢)ea — 3(By + ad + 262)es, (111)
Des = B(a+6)er + 3 (By + ad +26%)es — (—(2a2 + B2 + B7)Ag + )es.

Therefore, Equation (52) now becomes

a(a? + B2+ By — (202 + B2+ Br)Ao +¢) + (B2 + By) (a + 8) + 3 B(BS — ap)
—Ja(By+ad+262) =0,

B(30% — (207 + 7+ py) Ao+ + 300 +6%) = 0,

B(202 + B* + By — (2a% + B2 4 By)Ao +¢) — B(By +wd +26%) + B(a +6)(6 —a) =0,
a(— (202 + B2+ By) Ao + ) + sa(By +ad +252) + (B —7)(B5 — ap) + p*(a + ) =0,
—B(B* + By + (202 + B* + By) Ao — ¢) + 5 (& — 8)(B6 — ap) + B(By + ad +26%) =0, (112)
B(—3as — 362 — (202 + B + By)Ao +¢) =0,

v(B* + By — (202 + B> + 7)Ao +¢) — 5 (& = 6)(BS — ap) + B(a+6)(6 —a) =0,

6(— (202 + B+ By) Ao +¢) — 5(B—7)(BS — ap) + 36(By + ab +262) — A(a+5) =0,
—3(a? 4 B2 + By — (202 + B2 + By) Ao +¢) + 2 B(BS — aB) + 15(By + b +26?)
+(B+By)(a+8) =0.

Throughout the proof, recall that « + ¢ # 0 and ay = 0. Assume first thata # 0,y = 0.
In this case,



Symmetry 2023, 15, 866 17 of 18

tx(zx +/32 (202 4+ B2)Ag +¢) + B (a + 0) + 3 B(BS — aB) — Ja(ad +26%) =0,

B(3a% — (242 +/32)/\0+c+ 3a5+0%) =0,

B(2u +ﬂ2 (202 + B2)Ag +¢) — B(ad +262) + Bla+6) (6 — )_o

a(— (202 + B2)Ag +¢) + La(ad +20%) + LB(BS — ap) + P2 (a +6) =

—B(B?+ (202 + B Ao —c) + 5 (a — 6)(BS — ap) + p(ad +26%) = O, (113)
B(—3ad — 162 — (2a% + B2)Ag +¢) =0,

—5(a—8)(Bo—ap) + pla+8) (5 —a) =0,

6(— (202 + Ao+ ¢) — SB(BS — af) + $0(ad + 20%) — B*(a +8) = 0,

—5(a% + B2 — (2a% + B2)Ag +¢) + 1B(BS — aP) + 15 (ad + 20%) + p*(a + 6) = 0.

Next suppose that § = 0,

a(a? —2a%\g + ) — Ja(ad +26%) =0,

a(—2a2Ag +¢) + jzx(océ +26%) =0,
6(—2a2Ag +¢) + 36(ad +262) =0,
—5(a% —2a%M g+ ¢) + $0(ad +20%) =

(114)

©

Then, we have
(a+6)(20 —a) =0; (115)
thatis, 6 = %a, c= —%txz +2a2)A. O

4. Conclusions

In this paper, we present the necessary conditions for (G;, g) to be an algebraic
Schouten soliton on the three-dimensional Lorentzian Lie groups with Levi-Civita connec-
tions and provide corresponding proofs. To enrich the results of this article, we studied
canonical connections and Kobayashi-Nomizu connections and provide corresponding
conclusions. The innovation of this article lies in proposing the definition of algebraic
Schouten solitons, which provides a new perspective for future research.
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