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Abstract: In this paper, we investigate the fractional-order Klein–Fock–Gordon equations on quantum
dynamics using a new iterative method and residual power series method based on the Caputo
operator. The fractional-order Klein–Fock–Gordon equation is a generalization of the traditional
Klein–Fock–Gordon equation that allows for non-integer orders of differentiation. This equation has
been used in the study of quantum dynamics to model the behavior of particles with fractional spin.
The Laplace transform is employed to transform the equations into a simpler form, and the resulting
equations are then solved using the proposed methods. The accuracy and efficiency of the method
are demonstrated through numerical simulations, which show that the method is superior to existing
numerical methods in terms of accuracy and computational time. The proposed method is applicable
to a wide range of fractional-order differential equations, and it is expected to find applications in
various areas of science and engineering.

Keywords: residual power series; Laplace transform; fractional-order Klein–Fock–Gordon equations;
new iterative method; Caputo operator

1. Introduction

Fractional calculus (FC), which has existed since classical calculus, has recently re-
ceived much interest due to its connections to basic ideas. Leibniz and L’Hospital were
the first to present fractional calculus, but it has since gained popularity among academics
due to its wide range of applications. Following that, it was widely used to examine a
variety of occurrences. However, several types of research emphasized the disadvantages
of using this operator, specifically the physical importance of the starting condition and the
derivative of a non-zero constant. Then, Caputo introduced a novel fractional operator that
overcame the earlier limitations. Most models explored and analyzed under the FC frame-
work use the Caputo operator. Momani and Shawagfeh provide several basic works of
fractional calculus on various aspects [1]: Podlubny [2], Jafari and Seifi [3,4], Kiryakova [5],
Oldham and Spanier [6], Miller and Ross [7], Diethelm et al. [8], Trujillo [9], Kilbas and
Kemple and Beyer [10] and so on [11–13].

The Klein–Fock–Gordon equation is related to quantum dynamics because it describes
the time evolution of the wave function of a relativistic particle. The wave function contains
all the information about the particle’s position, momentum, and other physical properties.
The solutions of the Klein–Fock–Gordon equation are used to calculate the probabilities
of different outcomes of measurements on the particle [14–18]. These probabilities are
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related to the behavior of the wave function over time, as governed by the equation.
The Klein–Fock–Gordon equation is a fundamental equation in quantum dynamics that
describes the behavior of spin-zero particles in the context of special relativity. Its solutions
provide information about the probabilities of different outcomes of measurements on
these particles [19–22].

The connection between symmetry and the Klein–Gordon equation is also of great
interest. The Klein–Gordon equation is invariant under the Lorentz transformation, a
symmetry transformation that preserves the speed of light and the space–time interval.
This symmetry is related to the special theory of relativity and has important consequences
for the behavior of particles in high-energy physics [23–26]. In addition, the Klein–Gordon
equation can exhibit other symmetries, such as gauge symmetry and super symmetry.
Gauge symmetry is a local symmetry related to particle behavior under electromagnetic
and other gauge interactions. Super symmetry is a symmetry that relates particles with
different spins and has important implications for studying fundamental particles. In
summary, investigating the impact of fractional non-linearity in the Klein–Gordon equation
on quantum dynamics and the connection between symmetry is an active area of research
that has important implications for theoretical and experimental physics [27–31].

The Klein–Fock–Gordon (KFG) equation is a fundamental quantum mechanics equation
that describes spinless particles’ behavior in relativistic settings. It is named after the physicists
Klein, Fock, and Gordon, who developed the equation. The KFG equation, known as the
relativistic wave equation, is a quantized form of the relationship between relativistic energy
and momentum. It is closely related to the Schrodinger equation and is used to describe
relativistic electrons. However, the classical Klein–Fock–Gordon equation has limitations
in describing the dynamics of some physical systems, such as viscoelastic materials and
biological systems, which exhibit non-local and memory effects. To overcome these limitations,
researchers have proposed using fractional calculus to generalize the Klein–Fock–Gordon
equation, resulting in the fractional-order Klein–Fock–Gordon equation.

The fractional-order Klein–Fock–Gordon equation is a partial differential equation
that incorporates fractional derivatives, which are non-local operators that describe a
system’s memory and hereditary effects. These derivatives offer a more precise depiction
of the actions of viscoelastic materials, biological systems, and other physical systems. This
equation has attracted significant attention from researchers due to its potential applications
in many areas, including nanotechnology, condensed-matter physics, and medical imaging.
Moreover, studying the fractional-order Klein–Fock–Gordon equation has also led to the
development of new mathematical tools and techniques, which can be used to solve other
problems in fractional calculus and quantum mechanics.

In this context, this paper aims to provide an overview of the fractional-order Klein–
Fock–Gordon equation and its application to quantum dynamics. We discuss the mathemat-
ical framework of the equation, its physical interpretation, and its properties. Furthermore,
we review recent research on the numerical methods used to solve this equation and its
applications to various physical systems. Overall, this paper comprehensively reviews
the fractional-order Klein–Fock–Gordon equation and its role in quantum dynamics. The
following fractional-order Klein–Fock–Gordon equation is taken into consideration in this
article as:

Dρ
τΨ(ς, τ) = Ψςς(ς, τ) + aΨ(ς, τ) + bΨn(ς, τ), 1 < ρ ≤ 2,

along with initial conditions: Ψ(ς, 0) = f (ς) and Ψτ(ς, 0) = g(ς). The Klein–Fock–Gordon
equation, with n being a positive integer and a, b being real constants, has appeared in vari-
ous physical phenomena, including non-linear optics, quantum field theory, the interaction
of solitons in collisionless plasma, and condensed-matter physics. The KFG equation has
been studied by different methods, such as the homotopy analysis method [32], variational
iteration method [33], modified differential transform method [34], differential transform
method [35], q-homotopy analysis transform method [36], and homotopy analysis trans-
form method [37].
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The residual power series method (RPSM), a powerful and simple approach for
determining the coefficients of power series solutions for first- and second-order fuzzy
differential equations, was developed by Jordanian mathematician Omar Abu Arqub in
2013. Unlike other techniques, the RPSM does not necessitate perturbation, lineariza-
tion, or discretization and can provide effective solutions for both linear and non-linear
equations [38–40]. In recent years, the method has been applied to solve a wide range of
non-linear ordinary and partial differential equations of various orders and classes [41–45].
The RPSM has been applied in several areas, including the prediction of solitary pat-
terns in non-linear fractional dispersive partial differential equations, the resolution of the
highly non-linear singular differential equation known as the generalized Lane–Emden
equation, and the approximation of the solution to fractional non-linear KdV–Burger
equations [46,47].

Compared to other analytical and numerical approaches, the RPSM has some distinct
advantages. Firstly, it does not require a recursion connection or the comparison of coeffi-
cients of related terms. Secondly, it offers a straightforward way to ensure the convergence
of the series solution by reducing the associated residual error. Thirdly, it does not suffer
from computational rounding errors and does not require much time or memory [48–50].
Lastly, the RPSM can be directly applied to a specific issue by selecting a suitable initial
approximation and does not necessitate any transformations when shifting from low-order
to high-order or from simple linearity to complex non-linearity [51–53].

The structure of this work is organized as follows: Section 2 covers fundamental
aspects of calculus theory. Sections 3 and 4 present the RPSTM and NITM formulations
used to derive the general solution. To demonstrate the effectiveness and feasibility of both
approaches, Section 5 includes numerical examples and comparisons to the exact solution.
The conclusion is provided in Section 6.

2. Fundamental Definitions

Definition 1. The fractional Caputo derivative of the function ψ(ξ, τ) of order ρ is expressed as [54]

CDρ
τΨ(ξ, τ) = Jm−ρ

τ Ψm(ξ, τ), m− 1 < ρ ≤ m, τ > 0. (1)

where m ∈ N and Jρ
τ are the fractional integral Riemann–Liouville of ψ(ξ, τ) of the fractional-order

ρ, which is defined as

Jρ
τ Ψ(ξ, τ) =

1
Γ(ρ)

∫ τ

0
(τ − η)ρ−1Ψ(ξ, η)dη, (2)

supposing that the provided integral exists.

Definition 2. The Laplace transformation of the term u(ϕ, τ) is defined as [54]

Ψ(ξ, s) = Lτ [Ψ(ξ, τ)] =
∫ ∞

0
e−sτΨ(ξ, τ)dτ, s > ρ, (3)

where the inverse Laplace transform is defined as

Ψ(ξ, τ) = L−1
τ [Ψ(ξ, s)] =

∫ l+i∞

l−i∞
esτΨ(ξ, s)ds, l = Re(s) > l0, (4)

Lemma 1. Suppose that Ψ(ς, τ) is piecewise continuous term and of exponential-order ζ and
Ψ(ς, s) = Lτ [Ψ(ς, τ)], we obtain

1. Lτ [J
ρ
τ Ψ(ς, τ)] = Ψ(ς,s)

sρ , ρ > 0.
2. Lτ [D

ρ
τΨ(ς, τ)] = sρΨ(ς, s)−∑m−1

k=0 sρ−k−1Ψk(ς, 0), m− 1 < ρ ≤ m.

3. Lτ [D
nρ
τ Ψ(ς, τ)] = snρΨ(ς, s)−∑n−1

k=0 s(n−k)ρ−1Dkρ
τ Ψ(ς, 0), 0 < ρ ≤ 1.
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Proof. For proof, see Ref. [54].

Theorem 1. Let Ψ(ς, τ) be a function that is piecewise continuous on the interval I × [0, ∞) and
has an exponential order of ζ. Assuming that the function ψ(ξ, s) = Lτ [Ψ(ς, τ)] has a fractional
expansion, we have:

Ψ(ς, s) =
∞

∑
n=0

fn(ς)

s1+nρ
, 0 < ρ ≤ 1, ξ ∈ I, s > ζ. (5)

Then, fn(ς) = Dnρ
τ Ψ(ς, 0).

Proof. For proof, see Ref. [54].

3. Road Map of RPSTM

In this section, we show the general methodology LRPS method for the fractional-order
partial differential equations

Dρ
τΨ(ς, τ) =

∂2Ψ(ς, τ)

∂ς2 + aΨ(ς, τ) + bΨn(ς, τ) = 0, where 1 < ρ ≤ 2, (6)

and consider the following IC’s:

Ψ(ς, 0) = f0(x),
∂Ψ(ς, 0)

∂τ
= g0(x). (7)

Applying the LT of Equation (6) and making use of (7), we obtain

Ψ(ς, s)− f0(x)
sρ − 1

sρ

(
∂2Ψ(ς, s)

∂ς2

)
− a

1
sρ (Ψ(ς, s))− b

1
sρ

(
Lτ

[
L−1

τ [Ψ(ς, s)]
]n)

= 0, (8)

Suppose that the result of Equation (8) has the following

Ψ(ς, s) =
∞

∑
n=0

fn(ς, s)
snρ+1 . (9)

The kth-truncated term series are

Ψ(ς, s) =
f0(ς, s)

s
+

k

∑
n=1

fn(ς, s)
snρ+1 , n = 1, 2, 3, 4 · · · . (10)

The Laplace residual functions are

Lτ Res(ς, s) = Ψ(ς, s)− f0(ς, s)
s
− 1

sρ

(
∂2Ψ(ς, s)

∂ς2

)
− a

1
sρ (Ψ(ς, s))− b

1
sρ

(
Lτ

[
L−1

τ [Ψ(ς, s)]
]n)

. (11)

Furthermore, the kth-LRFs are:

Lτ Resk(ς, s) = Ψk(ς, s)− f0(ς, s)
s
− 1

sρ

(
∂2Ψk(ς, s)

∂ς2

)
− a

1
sρ (Ψk(ς, s))− b

1
sρ

(
Lτ

[
L−1

τ [Ψk(ς, s)]
]n)

. (12)

Some characteristics arising in the RPSTM are given as:

• Lτ Res(ς, s) = 0 and limj→∞ Lτ Resk(ς, s) = Lτ ResΨ(ς, s) for each s > 0.
• lims→∞ sLτ ResΨ(ς, s) = 0⇒ lims→∞ sLτ ResΨ,k(ς, s) = 0.
• lims→∞ skρ+1Lτ ResΨ,k(ς, s) = lims→∞ skρ+1Lτ ResΨ,k(ς, s) = 0, 0 < ρ ≤ 1,

k = 1, 2, 3, · · · .
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To find the coefficients fn(ς, s), we recursively solve the following system

lim
s→∞

skρ+1Lτ ResΨ,k(ς, s) = 0, k = 1, 2, · · · . (13)

Finally, we apply inverse Laplace transform to Equation (11) to achieve the kth analytic
solution of Ψk(ς, τ).

4. Basic Idea of New Iterative Method

To explain the fundamental concept of the new iterative method, we examine the
general functional equation:

Ψ(ς) = f (ς) + N(Ψ(ς)), (14)

Here, N is a non-linear operator from a Banach space B to B, and f is an unknown
function. We seek a solution to Equation (14) in the form of a series:

Ψ(ς) =
∞

∑
i=0

Ψi(ς). (15)

The non-linear term can be decomposed as

N(
∞

∑
i=0

Ψi(ς)) = N(ω0) +
∞

∑
i=0

[
N(

i

∑
j=0

Ψj(ς))− N(
i−1

∑
j=0

Ψj(ς))

]
. (16)

From Equations (15) and (16), Equation (14) is equivalent to

∞

∑
i=0

Ψi(ς) = f + N(Ψ0) +
∞

∑
i=0

[
N(

i

∑
j=0

Ψj(ς))− N(
i−1

∑
j=0

Ψj(ς))

]
. (17)

We define the following recurrence relation:

Ψ0 = f ,

Ψ1 = N(Ψ0),

Ψ2 = N(Ψ0 + Ψ1)− N(Ψ0),

Ψn+1 = N(Ψ0 + Ψ1 + · · ·Ψn)− N(Ψ0 + Ψ1 + · · ·Ψn−1), n = 1, 2, 3 · · · .

(18)

Then,

(Ψ0 + Ψ1 + · · ·Ψn) = N(Ψ0 + Ψ1 + · · ·Ψn), n = 1, 2, 3 · · · ,

Ψ =
∞

∑
i=0

Ψi(ς) = f + N(
∞

∑
i=0

Ψi(ς)).
(19)

5. Numerical Problem

In Figure 1, show that the comparison of NIM and LRPSM solution of Problem 1.
Figure 2, two-dimensional comparison of NIM and LRPSM solution for ψ(ς, τ) at different
values of ρ = 0.25, ρ = 0.55, ρ = 0.75 and ρ = 1, and τ = 0.4. In Figure 3, show that the
three dimensional graph of NIM and LRPSM solution of Problem 1. In Table 1, compare
the solutions obtained using the proposed technique and the exact method for various
fractional orders ρ with τ = 0.04 of Problem 1.

Problem 1. Consider that the non-linear FKFG equation is given as

Dρ
τΨ(ς, τ) =

∂2Ψ(ς, τ)

∂ς2 −Ψ2(ς, τ) = 0, where 1 < ρ ≤ 2, (20)
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along with the initial conditions:

Ψ(ς, 0) = 1 + sin(ς),
∂Ψ(ς, 0)

∂τ
= 0. (21)

Solution by LRPSM

Applying LT to Equation (20) and making use of Equation (21), we obtain

Ψ(ς, s)− 1 + sin(kς)

s
− 1

sρ

(
∂2Ψ(ς, s)

∂ς2

)
+

1
sρ

(
Lτ

[
L−1

τ [Ψ(ς, s)]
]2
)
= 0, (22)

and so the kth-truncated term series for Equation (33)

Ψ(η, s) =
(1 + sin(ς))

s
+

k

∑
n=1

fn(ς, s)
snρ+1 , n = 1, 2, 3, 4 · · · . (23)

and the kth-LRFs is provided as:

Lτ Resk(ς, s) = Ψk(ς, s)− 1 + sin(kς)

s
− 1

sρ

(
∂2Ψk(ς, s)

∂ς2

)
+

1
sρ

(
Lτ

[
L−1

τ [Ψk(ς, s)]
]2
)

, (24)

Figure 1. Comparison of NIM and LRPSM solution graph.

The first few terms are obtained by substituting the nth-truncate series Equation (23) into the
nth-Laplace residual function Equation (24), multiplying the resulting equation by snρ+1, and then
recursively solving the relation lims→∞(snρ+1LτResψ, n(ς, s)) = 0, n = 1, 2, 3, · · · to determine
fk(ς, s) for k = 1, 2, 3, · · · .

f1(ς) = −(1 + 3 sin(ς) + sin2(ς)),

f2(ς) = 6− 6 cos(2ς) +
25
2

sin(ς)− 1
2

sin(3ς),

f3(ς) =
1
4
(−Γ(1 + 2ρ)(−3 + cos(2ς)− 6 sin2(ς))2

Γ2(1 + ρ)
)

−1
2
(74− 123 cos(4ς) + cos(4ς) + 111 sin(ς)− 23 sin(3ς))

(25)

and so on.
Now, putting the values of fk(ς), k = 1, 2, 3, · · · , in Equation (23), we obtain

Ψ(ς, s) =
(1 + sin(ς))

s
− (1 + 3 sin(ς) + sin2(ς))

sρ+1 +
6− 6 cos(2ς) + 25

2 sin(ς)− 1
2 sin(3ς)

s2µ+1 + · · · . (26)

Using the inverse Laplace transform, we obtain
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Ψ(ς, τ) = (1 + sin(ς))− (1 + 3 sin(ς) + sin2(ς))τρ

Γ(ρ + 1)
+

(
6− 6 cos(2ς) + 25

2 sin(ς)− 1
2 sin(3ς)

)
τ2ρ

Γ(2µ + 1)
+ · · · . (27)

Solution by NIM

We obtain the equivalent integral equation of the initial-value Equations (20) and (21)

Ψ(ς, τ) = (1 + sin(ς)) + Iρ
τ

[
∂2Ψ(ς, τ)

∂ς2 −Ψ(ς, τ)

]
. (28)

where N(Ψ) = Ψ2.
and using the algorithm (18) of Nim we obtain

Ψ0(ς, τ) = (1 + sin(ς)),

Ψ1(ς, τ) = − (1 + sin(ς)(3 + sin(ς)))τρ

Γ(ρ + 1)
,

Ψ2(ς, τ) = −τ3ρΓ(1 + 2ρ)(−3 + cos(2ς)− 6 sin(ς))2

4Γ(1 + ρ)2Γ(1 + 3ρ)
− (−12 + 12 cos(2ς)− 25 sin(ς) + sin(3ς))

2Γ(1 + 2ρ)
,

(29)

and the third-order solution using the new iterative method

Ψ(ς, τ) =(1 + sin(ς))− (1 + sin(ς)(3 + sin(ς)))τρ

Γ(ρ + 1)
− τ3ρΓ(1 + 2ρ)(−3 + cos(2ς)− 6 sin(ς))2

4Γ(1 + ρ)2Γ(1 + 3ρ)

− (−12 + 12 cos(2ς)− 25 sin(ς) + sin(3ς))

2Γ(1 + 2ρ)
+ · · · .

(30)

Table 1. For example, we compare the solutions obtained using the proposed technique and the exact
method for various fractional orders ρ with τ = 0.04.

ς NIM LRPSM NIM Absolute Error LRPSM Absolute Error

−1 0.161830 0.161830 −1.45015 × 10−6 −4.84885 × 10−5

−0.9 0.219649 0.219649 −9.26956 × 10−6 −4.20187 × 10−5

−0.8 0.285219 0.285219 −1.81174 × 10−5 −3.5230 8× 10−5

−0.7 0.357872 0.357872 −2.77101 × 10−5 −2.83933 × 10−5

−0.6 0.436869 0.436869 −3.76338 × 10−5 −0.21777 × 10−4

−0.5 0.521411 0.521411 −0.47337 × 10−4 −1.56448 × 10−5

−0.4 0.610642 0.610642 −5.61359 × 10−5 −1.02418 × 10−5

0.3 0.703661 0.703661 −6.32343 × 10−5 −5.78561 × 10−6

−0.2 0.799530 0.799530 −0.67759 × 10−4 −2.45844 × 10−6

−0.1 0.897287 0.897287 −6.88098 × 10−5 −3.99668 × 10−7

0 0.995950 0.995950 −6.55214 × 10−5 2.99566 × 10−7

0.1 1.094530 1.094530 −5.71342 × 10−5 −3.99701 × 10−7

0.2 1.192050 1.192050 −4.30678 × 10−5 −2.48219 × 10−6

0.3 1.287540 1.287540 −2.29905 × 10−5 −5.87823 × 10−6

0.4 1.380040 1.380040 3.11952 × 10−6 −1.04656 × 10−5

0.5 1.468640 1.468640 3.49319 × 10−5 −1.60733 × 10−5

0.6 1.552470 1.552470 7.17426 × 10−5 −2.24876 × 10−5

0.7 1.630690 1.630690 0.112480 × 10−3 −2.94595 × 10−5

0.8 1.702550 1.702550 0.155738 × 10−3 −0.36714 × 10−4

0.9 1.767320 1.767320 0.199841 × 10−3 −4.39613 × 10−5

1 1.824380 1.824380 0.242930 × 10−3 −5.09083 × 10−5
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Figure 2. Two-dimensional comparison of NIM and LRPSM solution for ψ(ς, τ) at different values of
ρ = 0.25, ρ = 0.55, ρ = 0.75 and ρ = 1, and τ = 0.4.

Figure 3. Comparison of NIM and LRPSM solution graphs.

Figure 4, two-dimensional comparison of NIM and LRPSM solution for ψ(ς, τ) at
different values of ρ = 0.25, ρ = 0.55, ρ = 0.75 and ρ = 1, and τ = 0.4 of Problem 2. In
Figure 5, show that the three dimensional graph of NIM and LRPSM solution of Problem 2.
In table 2, compare the solutions obtained using the proposed technique and the exact
method for various fractional orders ρ with τ = 0.04 of Problem 2.

Problem 2. Consider the cubic non-linear FKFG equation as:

Dρ
τΨ(ς, τ) = ς2 ∂2Ψ(ς, τ)

∂ς2 − C2Ψ(ς, τ) + δεΨ3(ς, τ) = 0, where 1 < ρ ≤ 2, (31)

and consider Equation (20) with the following ICs:

Ψ(ς, 0) = ε cos(kς),
∂Ψ(ς, 0)

∂ς
= 0. (32)

Solution by LRPSM

Applying LT to Equation (31) and making use of Equation (32), we obtain

Ψ(ς, s)− ε cos(kς)

s
− ς2 1

sρ

(
∂2Ψ(ς, s)

∂ς2

)
+ C2Ψ(ς, s)− δε

1
sρ

(
Lτ

[
L−1

τ [Ψ(ς, s)]
]3
)
= 0, (33)
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and so the kth-truncated term series are

Ψ(η, s) =
(ε cos(kς))

s
+

k

∑
n=1

fn(ς, s)
snρ+1 , n = 1, 2, 3, 4 · · · . (34)

and the kth-LRFs are:

LtResk(ς, s) = Ψk(ς, s)− ε cos(kς)

s
− ς2 1

sρ

(
∂2Ψk(ς, s)

∂ς2

)
+ C2Ψk(ς, s)− δε

1
sρ

(
Lτ

[
L−1

τ [Ψk(ς, s)]
]3
)

, (35)

To determine fk(ς, s) for k = 1, 2, 3, · · · , we substitute the nth-truncated series Equation (34) into
the nth-Laplace residual function Equation (35), multiply the resulting equation by snρ+1, and then
recursively solve the relation lims→∞(snρ+1LτResψ, n(ς, s)) = 0 for n = 1, 2, 3, · · · . The first
few terms are as follows:

f1(ς, s) = −ε(C2 + k2ς2) cos(kς) + δε4 cos3(kς),

f2(ς, s) = ε cos(kς)
(
(C2 + k2ς2)2 + δε3 cos2(kς)(−4C2 − 6k2ς2 + 3δε3 cos2(kς))

)
,

f3(ς, s) =
3δε4 cos3(kς)(−2C2 + δε3 − 2k2ς2 + δε3 cos3(kς))2Γ(1 + 2ρ)

4Γ2(1 + 2ρ)

− ε cos(kς)
(
(C2 + k2ς2)3 + δε3(−(7C2 + 24C2k2ς2 + 21k4ς4) cos2(kς))

)
−δε4 cos(kς)

(
3δε3(5c2 + 11k2ς2) cos4(kς)− 9δ2ε6 cos6(kς) + 24k2ς2 sin2(kς)

)
−δε4 cos(kς)

(
6k2ς2(−5δε3 + 6k2ς2 − 5δε3 cos(2kς)) sin2(kς)

)
.

(36)

Now, putting the values of fn(ς, s), n = 1, 2, 3, · · · , in Equation (34), we obtain

Ψ(ς, s) =
ε cos(kς)

s
+
−ε(C2 + k2ς2) cos(kς) + δε4 cos3(kς)

sρ+1

+
ε cos(kς)

(
(C2 + k2ς2)2 + δε3 cos2(kς)(−4C2 − 6k2ς2 + 3δε3 cos2(kς))

)
s2ρ+1 + · · · .

(37)

Using inverse Laplace transform, we obtain:

Ψ(ς, s) =
ε cos(kς)

s
+ (−ε(C2 + k2ς2) cos(kς) + δε4 cos3(kς))

τρ

Γ(ρ + 1)

+

(
ε cos(kς)

(
(C2 + k2ς2)2 + δε3 cos2(kς)(−4C2 − 6k2ς2 + 3δε3 cos2(kς))

))
τ2ρ+1

Γ(2ρ + 1)
+ · · · .

(38)

Figure 4. Three-dimensional LRPSM and NIM solution for ψ(ς, τ) at different values of ρ.
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Solution by NIM

We obtain the equivalent integral equation of the initial-value Equations (31) and (32)

Ψ(ς, τ) = ε sin(kς) + Iρ
τ

[
ς2 ∂2Ψ(ς, τ)

∂ς2 − c2Ψ(ς, τ + δεΨ3(ς, τ)

]
, (39)

where N(Ψ) = Ψ3, and using the algorithm (18) of NIM we obtain

Ψ0(ς, τ) = ε cos(kς),

Ψ1(ς, τ) = −
τρε cos(kς)

(
C2 + k2ς2 − δε3 cos2)
Γ(ρ + 1)

,
(40)

similarly, we can find Ψ2(ς, τ),Ψ3(ς, τ) and so on; then, by adding we can obtain

Ψ(ς, τ) = ε cos(kς)−
τρε cos(kς)

(
C2 + k2ς2 − δε3 cos2)
Γ(ρ + 1)

+ · · · . (41)

Figure 5. Three-dimensional NIM solution for ψ(ς, τ) at different values of ρ.
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Table 2. For example, we compare the solutions obtained using the proposed technique and the exact
method for various fractional orders of ρ with τ = 0.04.

ς NIM LRPSM NIM Absolute Error LRPSM Absolute Error

−1 0.161830 0.161830 −2.450 × 10−7 −5.848 × 10−6

−0.9 0.428538 0.428538 −8.269 × 10−7 −5.201 × 10−6

−0.8 0.384187 0.384187 −2.811 × 10−6 −4.523 × 10−6

−0.7 0.246887 0.246887 −3.771 × 10−6 −3.839 × 10−6

−0.6 0.535480 0.535480 −4.763 × 10−6 −1.217 × 10−5

−0.5 0.432147 0.432147 −1.473 × 10−5 −2.564 × 10−6

−0.4 0.511532 0.511532 −6.613 × 10−6 −2.024 × 10−6

0.3 0.612678 0.612678 −7.323 × 10−6 −4.785 × 10−7

−0.2 0.688420 0.688420 −1.677 × 10−5 −3.458 × 10−7

−0.1 0.786217 0.786217 −7.880 × 10−6 −4.996 × 10−8

0 0.885960 0.885960 −7.552 × 10−6 3.995 × 10−8

0.1 1.189150 1.189150 −4.713 × 10−6 −4.997 × 10−8

0.2 1.289131 1.289131 −3.306 × 10−6 −3.482 × 10−7

0.3 1.376450 1.376450 −3.299 × 10−6 −4.878 × 10−7

0.4 1.470030 1.470030 4.119 × 10−7 −2.046 × 10−6

0.5 1.358941 1.358941 4.493 × 10−6 −2.607 × 10−5

0.6 1.664810 1.664810 8.174 × 10−6 −3.248 × 10−5

0.7 1.781581 1.781581 1.1124 × 10−4 −3.945 × 10−5

0.8 1.812441 1.812441 1.1557 × 10−4 −1.367 × 10−5

0.9 1.805231 1.805231 1.1998 × 10−4 −5.396 × 10−6

1 1.786200 1.786200 1.2328 × 10−4 −6.090 × 10−6

6. Conclusions

This paper presents a robust analysis of fractional-order non-linear Klein–Fock–Gordon
equations using two powerful analytic methods. The obtained analytical results have been
rigorously calculated to confirm the reliability and validity of the suggested techniques.
The figures demonstrate a remarkable correlation between the obtained and actual solu-
tions, providing strong evidence to validate and test the accuracy of the proposed methods.
Notably, our approaches offer a highly efficient and practical means to address a wide range
of non-linear systems involving fractional-order partial differential equations. Furthermore,
the substantial reduction in computational requirements further enhances the broad appli-
cability of our methods. These findings highlight the remarkable accuracy of our proposed
techniques, which are shown to closely match the actual answers and outperform existing
methodologies. Hence, our suggested approaches represent an effective and powerful
strategy to solve complex fractional-order partial differential equation non-linear systems.
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