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Abstract: One of the well-studied generalizations of a metric space is known as a partial metric space.
The partial metric space was further generalized to the so-called M-metric space. In this paper, we
introduce the Double-Controlled Quasi M-metric space as a new generalization of the M-metric
space. In our new generalization of the M-metric space, the symmetry condition is not necessarily
satisfied and the triangle inequality is controlled by two binary functions. We establish some fixed
point results, along with the examples and applications to illustrate our results.
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1. Introduction

Over the past few decades, numerous researchers have focused on fixed point theory.
This is due to its application in the existence and uniqueness of solutions to differential
and integral equations, engineering, mathematical economics, dynamical systems, neural
networks, and many other fields. The classic result of fixed points that has been extensively
studied by researchers is the result of Banach [1]. A few examples of existing concepts where
the Banach fixed point theorem has been studied include cone metric space [2–4], partial
symmetric space [5], partial JS-metric space [6], M-metric space [7], Mb-metric space [8],
extended Mb-metric space [9], rectangular M-metric space [10], and others. Various types
of contraction mappings in which fixed points in extended metric spaces have been studied
include Banach contraction mapping, Kannan contraction mapping, Ciric contraction
mapping, and several others [11–13].

To further generalize the underlying metric spaces, Czerwik [14] and Bakhtin [15]
introduced the concept of b-metric spaces by adding a constant to the right-hand side of the
triangle inequality, resulting in a fascinating generalization of metric spaces with a different
topology. Kamran et al. [16] extended this definition to so-called extended b-metric spaces
in 2017, and established related fixed point theorems. In 2018, Mlaiki et al. [17] further
generalized this concept to so-called controlled metric spaces by using a binary control
function on the right side of the triangle inequality, and established a corresponding Banach
fixed point result.

Abdeljawad et al. [18] introduced a further generalization of controlled metric spaces,
called Double-Controlled metric-type spaces, in which two binary control functions are
used on the right side of the triangle inequality. Furthermore, the authors established the
corresponding Banach- and Kannan-type fixed point results in Double-Controlled metric-
type spaces. The Double-Controlled metric-type space is defined [18] in the following
way.

Definition 1 ([18]). Let X be a non-empty set and ζ1, ζ2 : X × X → [1, ∞). A function
ζ : X ×X → [0, ∞) is called a Double-Controlled metric type if it satisfies:
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1. ζ(η, θ) = 0 if, and only if η = θ for all η, θ ∈ X
2. ζ(η, θ) = ζ(θ, η) for all η, θ ∈ X
3. ζ(η, µ) ≤ ζ1(η, θ)ζ(η, θ) + ζ2(θ, µ)ζ(θ, µ) for all η, θ, µ ∈ X .

The pair (X , ζ) is a called a Double-Controlled metric-type space.

In Ref. [19], Wilson proposed a Quasi-metric space (also known as an asymmetric
metric space) as an extension of metric space. This is a metric space (X , η), but η does not
have to be symmetric. Quasi-metric spaces have been used in a variety of recent advances in
applied mathematics, including models for material failure [20], shape-memory alloys [21],
problems regarding the existence and uniqueness of Hamilton–Jacobi equations [22], and
automated taxonomy construction [23].

We recall the definition of Quasi-metric space.

Definition 2 ([19]). Let X be a nonempty set. A Quasi-metric on X is a function η : X 2 →
[0,+∞) such that for all µ, ω, w ∈ X
1. η(µ, ω) = 0 if, and only if µ = ω,
2. η(µ, ω) ≤ η(µ, w) + η(w, ω).

A pair (X , η) is called a Quasi-metric space.

In general, any Quasi-metric space is a metric space, although the converse is not
always true. Topological terms like convergence, Cauchyness, completeness, and continuity
are different in quasi-metric spaces from those used in metric spaces. The reader may
consult [24] for these ideas in Quasi-metric spaces. Several researchers [25–27] have studied
fixed point theory in the context of Quasi-metric spaces.

To further generalize Double-Controlled metric-type spaces, Shoaib et al. [28] intro-
duced so-called Double-Controlled Quasi metric-type spaces, defined in the following
manner:

Definition 3 ([28]). Let X be a non-empty set and ζ1, ζ2 : X × X → [1, ∞). A function
ζ : X ×X → [0, ∞) is called a Double-Controlled quasi-metric type if it satisfies:

1. ζ(η, θ) = 0 if, and only if η = θ for all η, θ ∈ X ,
2. ζ(η, µ) ≤ ζ1(η, θ)ζ(η, θ) + ζ2(θ, µ)ζ(θ, µ) for all η, θ, µ ∈ X .

The pair (X , ζ) is called a Double-Controlled quasi metric-type space.

The difference between a Double-Controlled metric-type space and Double-Controlled
quasi metric-type space is that the symmetry condition is not necessarily satisfied in the
latter.

As a further generalization of metric spaces, Matthews [29] introduced the notion of
partial metric spaces as an extension of metric spaces and established the Banach-type fixed
point theorem in the same space. Several researchers such as O’Neill [30], Bukatin and
Scott [31,32], Escardo [33], Romaguera and Schellekens [34,35], and Waszkiewicz [36,37]
have studied the connection between domain theory and partial metrics.

We state the definition of partial metric space.

Definition 4 ([29]). Let X be a nonempty set. A partial metric on X is a function J : X 2 →
[0,+∞) such that for all µ, ω, w ∈ X
1. J (µ, µ) = J (ω, ω) = J (µ, ω) if, and only if µ = ω,
2. J (µ, µ) ≤ J (µ, ω),
3. J (µ, ω) = J (ω, µ),
4. J (µ, w) ≤ J (µ, ω) + J (ω, w)−J (w, w).

A pair (X ,J ) is called a partial metric space.
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In Ref. [7], Asadi et al. extended the definition of a partial metric space to a M-metric
space. The authors in Ref. [7] also established that every partial metric space is a M-metric
space; however, every M-metric space need not be a partial metric space. We need the
following notations to state the definition of a M-metric space.

Notation 1 ([7]).

1. mµ,ω := min{N (µ, µ),N (ω, ω)}.
2. Nµ,ω := max{N (µ, µ),N (ω, ω)}.

Definition 5 ([7]). Let X be a nonempty set. A M-metric on X is a function N : X 2 → [0,+∞)
such that for all µ, ω, w ∈ X
1. N (µ, µ) = N (ω, ω) = N (µ, ω) if, and only if µ = ω,
2. mµ,ω ≤ N (µ, ω),
3. N (µ, ω) = N (ω, µ),
4.

(
N (µ, ω)−mµ,ω

)
≤ (N (ω, w)−mω,w) + (N (w, ω)−mw,ω).

A pair (X ,N ) is called a M-metric space.

Example 1. Let X = [0, ∞). Then, N : X 2 → [0,+∞) defined by N (µ, ω) = µ+ω
2 is a

M-metric on X .

Example 2 ([7]). Let X = {a, b, c}. Define

N (a, a) = 1,N (b, b) = 9,N (c, c) = 5,

N (a, b) = N (b, a) = 10,N (a, c) = N (c, a) = 7,N (b, c) = N (3, c) = 7

Then N is an M-metric on X , but not a partial metric.

The M-metric spaces have been extensively studied by several researchers [8–10,38–41].
Similar to the Double-Controlled quasi metric-type space (see Definition 3), we extend the
M-metric spaces to Double-Controlled Quasi M-metric spaces, and prove the related fixed
point results along with the examples and applications.

We shall use the following notations:

Notation 2 ([7]).

1. zµ,ω := min{ζ(µ, µ), ζ(ω, ω)}.
2. Rµ,ω := max{ζ(µ, µ), ζ(ω, ω)}.

Definition 6. Let X be a nonempty set, and α, τ : X 2 → [1,+∞) be two maps called control
functions. A Double-Controlled quasi M-metric on X is a function ζ : X 2 → [0,+∞) such that
for all µ, ω, w ∈ X
1. ζ(µ, µ) = ζ(ω, ω) = ζ(µ, ω) = ζ(ω, µ) if, and only if µ = ω,
2. zµ,ω ≤ ζ(µ, ω),
3.

(
ζ(µ, ω)− zµ,ω

)
≤ α(µ, ω)

(
ζ(µ, w)− zµ,w

)
+ τ(w, ω)(ζ(w, ω)− zw,ω).

A pair (X , ζ) is called a Double-Controlled quasi M-metric space.

Every Double-Controlled quasi M-metric space is a M-metric space, however the
converse is not true in general.

Example 3. Let X = {a, b, c}, α = τ = 1 and ζ : X ×X −→ [0, ∞) be defined by

ζ(a, a) = 1, ζ(b, b) = 9, ζ(c, c) = 5, ζ(a, c) = 7 = ζ(c, a),

ζ(b, c) = 8 = ζ(c, b), ζ(a, b) = 10, ζ(b, a) = 11.
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It is not difficult to verify that (X , ζ) is a Double-Controlled Quasi M-metric space. Since ζ(a, b) 6=
ζ(b, a), we see that (X , ζ) is not an M-metric space.

Example 4. Let X = [0, 1], α = τ = 1 and ζ : X × X −→ [0, ∞) be defined by ζ(µ, ω) =
2µ + ω. Then (X , ζ) is a Double-Controlled Quasi M-metric space.

Example 5. Let X = {4, 5, 6} and ζ, α : X ×X −→ [0, ∞), α : X ×X −→ [1, ∞) be defined
by α(µ, ω) = µω, τ(µ, ω) = 1, and

ζ(4, 4) = 1, ζ(5, 5) = ζ(6, 6) = 1, ζ(4, 5) = 6 = ζ(5, 4),

ζ(4, 6) = 4 = ζ(6, 4), ζ(5, 6) = 2, ζ(6, 5) = 3.

It is not difficult to verify that (X , ζ) is a Double-Controlled Quasi M-metric space, however (X , ζ)
is not a M-metric space. Indeed, for µ = 4, ω = 5, w = 6, we have (ζ(4, 5)− z4,5) = 5 ≤
(ζ(4, 6)− z4,6) + (ζ(6, 5)− z6,5) = 4, that is, condition (3) of Definition 5 is not satisfied.

Similar to the Remark 1.1 in [7], it is not difficult to see the following holds in a
Double-Controlled Quasi M-metric space:

Proposition 1. Let (X , ζ) be a Double-Controlled Quasi M-metric space; then for µ, ω, w ∈ X ,
we have,

1. 0 ≤ Rµω + zµω = ζ(µ, µ) + ζ(ω, ω)
2. 0 ≤ Rµω − zµω = |ζ(µ, µ)− ζ(ω, ω)|
3. Rµω − zµω ≤ α(µ, ω)

(
Rµw − zµw

)
+ τ(w, ω)(Rwω − zwω).

2. Topology of Double-Controlled Quasi M-Metric Space

Definition 7. Let (X , ζ) be a Double-Controlled Quasi M-metric space. Let g ∈ X and ε > 0. Then:

1. The forward open ball B+ centered at g is defined as

B+(g, ε) = {h ∈ X |ζ(g, h)− zg,h < ε}

2. The backward open ball B− centered at g is defined as

B−(g, ε) = {h ∈ X |ζ(h, g)− zh,g < ε}

Remark 1. It is easy to see that the Double-Controlled Quasi M-metric ζ generates T0 forward
topology τ+ and T0 backward topology τ− on X , where the base of the topology τ+ and τ− is given
by {B+(g, ε) : g ∈ X , ε > 0} and {B−(g, ε) : g ∈ X , ε > 0}, respectively.

In this paper, we shall work with forward topology τ+.

Definition 8. Let (X , ζ) be a Double-Controlled Quasi M-metric space, and {θn} be a sequence
in X .

1. Then the sequence {θn} converges to a point g ∈ X from the left if, and only if

lim
n→+∞

(
ζ(θn, g)− zθn ,g

)
= 0

2. Then the sequence {θn} converges to a point g ∈ X from the right if, and only if

lim
n→+∞

(
ζ(g, θn)− zg,θn

)
= 0

3. The sequence {θn} converges to a point g ∈ X if, and only if it converges to g from the left,
and from the right.



Symmetry 2023, 15, 893 5 of 19

Definition 9. Let (X , ζ) be a Double-Controlled Quasi M-metric space, and {θn} be a sequence
in X . We say that:

1. the sequence {θn} is left ζ-Cauchy if, and if

lim
n,m→+∞

(ζ(θn, θm)− zθn ,θm)

and
lim

n,m→+∞
(Rθn ,θm − zθn ,θm)

exist finitely.
2. the sequence {θn} is right ζ-Cauchy if, and only if

lim
n,m→+∞

(ζ(θm, θn)− zθm ,θn)

and
lim

n,m→+∞
(Rθm ,θn − zθm ,θn)

exist finitely
3. the sequence {θn} is ζ-Cauchy if, and only if it is both left ζ-Cauchy and right ζ-Cauchy.

Definition 10. Let (X , ζ) be a Double-Controlled Quasi M-metric space, and {θn} be a ζ-Cauchy
in X . We say that:

1. (X , ζ) is left ζ-complete, with respect to forward topology τ+, if every left ζ-Cauchy sequence
converges to a point g ∈ X such that

lim
n→+∞

(
ζ(θn, g)− zθn ,g

)
= 0

and
lim

n→+∞

(
Rθn ,g − zθn ,g

)
= 0.

2. (X , ζ) is right ζ-complete, with respect to forward topology τ+, if every left ζ-Cauchy sequence
converges to a point g ∈ X such that

lim
n→+∞

(
ζ(g, θn)− zg,θn

)
= 0

and
lim

n,m→+∞

(
Rg,θn − zg,θn

)
= 0.

3. (X , ζ) is ζ-complete, with respect to forward topology τ+, if, and only if (X , ζ) is both left
ζ-complete and right ζ-complete.

Definition 11. Let (X , ζ) be a Double-Controlled Quasi M-metric space, and a map F : X −→ X .
We say that:

1. F is left ζ-continuous if, and only if for each sequence {θn} in X converging to g ∈ X from
the left implies that {Fθn} converges to Fg from the left, that is, we have,

lim
n→+∞

(
ζ(θn, g)− zθn ,g

)
= 0 =⇒ lim

n→+∞

(
ζ(Fθn, Fg)− zFθn ,Fg

)
= 0

2. F is right ζ-continuous if, and only for each sequence {θn} in X converging to g ∈ X from
the right implies that {Fθn} converges to Fg from the right, that is, we have,

lim
n→+∞

(
ζ(g, θn)− zg,θn

)
= 0 =⇒ lim

n→+∞

(
ζ(Fg, Fθn)− zFg,Fθn

)
= 0

3. F is ζ-continuous if it is both left and right ζ-continuous.
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The proof of the following result is similar to Lemma (3.5) in [9].

Lemma 1. Let (X , ζ) be a Quasi M-metric space where ζ is continuous in the usual Euclidean
metric. Suppose the self-mapping F : X −→ X satisfies

ζ(Fg, Fh) ≤ kζ(g, h)

for some k ∈ [0, 1). Define a sequence {θn} ∈ X by θn = Fθn−1. If {θn} converges to a point
s ∈ X from the left (or right), then {Fθn} converges to Fs ∈ X from the left (or right), in the sense
of Definition 8. That is,

lim
n→+∞

ζ(θn, s)− zθn ,s = 0,

implies
lim

n→+∞
(ζ(Fθn, Fs)− zFθn ,Fs) = 0.

3. Main Result

The following result is analogous to the classical Banach contraction principle.

Theorem 1. Let (X , ζ) be a complete Double-Controlled Quasi M-metric space. Suppose that
F : X → X is a self-map satisfying

ζ(Fg, Fh) ≤ kζ(g, h), (1)

for all g, h ∈ X , where k ∈ (0, 1). For θ ∈ X, define the sequence θn = Fnθ. Suppose that

sup
m≥1

lim
i→∞

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm) <

1
k

. (2)

In addition, assume that, for every θ ∈ X ,

lim
n→∞

α(θ, θn), lim
n→∞

τ(θn, θ) (3)

exist, and are finite. Then, F has a unique fixed point.

Proof. Fix θ0 ∈ X and define a sequence {θn} inX inductively by taking θn = Fθn−1, n ≥ 0.

ζ(θn, θn+1) = ζ(Fθn−1, Fθn)

≤ kζ(θn−1, θn)

= kζ(Fθn−2, Fθn−1)

≤ k2ζ(θn−2, θn−1)

...

≤ knζ(θ0, θ1)

(4)

That is,
ζ(θn, θn+1) ≤ knζ(θ0, θ1) (5)

Similarly, we have
ζ(θn+1, θn) ≤ knζ(θ1, θ0) (6)

Now, consider n, m ∈ N where n < m. Then using the triangular inequality repeatedly,
we have
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ζ(θn, θm)− zθn ,θm ≤ α(θn, θn+1)
(
ζ(θn, θn+1)− zθn ,θn+1

)
+ τ(θn+1, θm)

(
ζ(θn+1, θm)− zθn+1,θm

)
≤ α(θn, θn+1)

(
ζ(θn, θn+1)− zθn ,θn+1

)
+ τ(θn+1, θm)

[
α(θn+1, θn+2)

(
ζ(θn+1, θn+2)− zθn+1,θn+2

)
+τ(θn+2, θm)

(
ζ(θn+2, θm)− zθn+2,θm

) ]
≤ α(θn, θn+1)

(
ζ(θn, θn+1)− zθn ,θn+1

)
+ τ(θn+1, θm)α(θn+1, θn+2)

[(
ζ(θn+1, θn+2)− zθn+1,θn+2

)]
+ τ(θn+1, θm)τ(θn+2, θm)

[
ζ(θn+2, θm)− zθn+2,θm

]
...

≤ α(θn, θn+1)
(
ζ(θn, θn+1)− zθn ,θn+1

)
+

m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)

[(
ζ(θi, θi+1)− zθi ,θi+1

)]
+

m−1

∏
k=n+1

τ(θk, θm)
[(

ζ(θm−1, θm)− zθm−1,θm

)]
≤ α(θn, θn+1)(ζ(θn, θn+1))

+
m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)ζ(θi, θi+1)

+
m−1

∏
k=n+1

τ(θk, θm)ζ(θm−1, θm)

≤ α(θn, θn+1)knζ(θ0, θ1)

+
m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

+

(
m−1

∏
i=n+1

τ(θi, θm)

)
km−1(ζ(θ0, θ1))

≤ α(θn, θn+1)knζ(θ0, θ1)

+
m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

+

(
m−1

∏
j=n+1

τ(θi, θm)

)
km−1α(θm−1, θm)ζ(θ0, θ1)

= α(θn, θn+1)knζ(θ0, θ1)

+
m−1

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

≤ α(θn, θn+1)knζ(θ0, θ1)

+
m−1

∑
i=n+1

(
i

∏
j=0

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

(7)

We have used α(g, h) ≥ 1, τ(g, h) ≥ 1 and ζ(g, h)− zg,h ≤ ζ(g, h) for all g, h ∈ X .
Let

Sp =
p

∑
i=0

(
i

∏
j=0

τ
(
θj, θm

))
α(θi, θi+1)ki
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The inequality (7) may be written as

ζ(θn, θm)− kθn ,θm ≤ ζ(θ0, θ1)[α(θn, θn+1)kn + (Sm−1 − Sn)] (8)

Letting

Gi =

(
i

∏
j=0

τ
(
θj, θm

))
α(θi, θi+1)ki,

then

Gi+1 =

(
i+1

∏
j=0

τ
(
θj, θm

))
α(θi+1, θi+2)ki+1,

so that we have
Gi+1

Gi
=

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm)k

Therefore, by Condition (2) in Theorem 1, we obtain

sup
m≥1

lim
i→∞

Gi+1

Gi
= sup

m≥1
lim
i→∞

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm)k < 1

Therefore, by the Ratio test, we conclude that the sequence {Sn} is Cauchy in the usual
sense. Since k ∈ [0, 1), letting n, m→ ∞ in the inequality (8), we conclude that

lim
n,m→+∞

(ζ(θn, θm)− zθn ,θm) = 0. (9)

Similarly, using (6), we can establish that

lim
n,m→+∞

(ζ(θm, θn)− zθm ,θn) = 0. (10)

For n > m, we have
ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ kζ(θn−1, θn−1)

...

≤ kn−mζ(θm, θm)

(11)

The inequality (11) implies that

Rθn ,θm = max{ζ(θn, θn), ζ(θm, θm)} = ζ(θn, θn).

Hence, we get
Rθn ,θm − zθn ,θm ≤ Rθn ,θm

= ζ(θn, θn)

= ζ(Fθn−1, Fθn−1)

≤ kζ(θn−1, θn−1)

...

≤ knζ(θ0, θ0)

. (12)

Letting n→ ∞, we deduce that

lim
n,m→+∞

(Rθn ,θm − zθn ,θm) = 0 (13)
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Similarly, we can establish that

lim
n,m→+∞

(Rθm ,θn − zθm ,θn) = 0 (14)

By (9), (10), (13) and (14), we conclude that {θn} is ζ-Cauchy in X . Since X is ζ-
complete, {θn} converges to a point θ ∈ X so that we have

lim
n→+∞

ζ(θn, θ)− zθn ,θ = 0 (15)

and
lim

n→+∞
ζ(θ, θn)− zθ,θn = 0. (16)

Next, we prove that Fθ = θ.
By the Lemma 1, F is ζ-continuous. The Definition 10 and Equation (15) implies that

lim
n→+∞

(
ζ(θn−1, Fθ)− zθn−1,Fθ

)
= lim

n→+∞
(ζ(Fθn, Fθ)− zFθn ,Fθ) = 0 (17)

By the triangular inequality, we have

ζ(θ, Fθ)− zθ,Fθ ≤ α(θ, θn)(ζ(θ, θn)− zθ,θn) + τ(θn, Fθ)(ζ(θn, Fθ)− zθn ,Fθ). (18)

Taking the limit in the above inequality, and using (3), (16) and (17), we obtain

ζ(θ, Fθ)− zθ,Fθ ≤ 0 (19)

By the definition of a Double-Controlled Quasi M-metric space, we have

zθ,Fθ − ζ(θ, Fθ) ≤ 0 (20)

The inequalities (19) and (20) imply

ζ(θ, Fθ) = zθ,Fθ (21)

Now, by Condition (1) of Theorem 1, we have ζ(Fθ, Fθ) ≤ kζ(θ, θ) < ζ(θ, θ). This implies

Rθ,Fθ = max{ζ(θ, θ), ζ(Fθ, Fθ)} = ζ(θ, θ) (22)

and
zθ,Fθ = min{ζ(θ, θ), ζ(Fθ, Fθ)} = ζ(Fθ, Fθ) (23)

By (21) and (23), we obtain

ζ(θ, Fθ) = ζ(Fθ, Fθ) (24)

Now,
ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ kζ(θn−1, θn−1)

...

≤ knζ(θ0, θ0)

(25)

This implies,
lim

n→+∞
ζ(θn, θn) = 0 (26)
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By Equation (26), we get

lim
n→+∞

zθn ,θ = lim
n→+∞

min{ζ(θn, θn), ζ(θ, θ)}

= min{0, ζ(θ, θ)}
= 0

. (27)

By Proposition 1, we have

ζ(θn, θn) + ζ(θ, θ) = Rθn ,θ + zθn ,θ

or
ζ(θ, θ) = Rθn ,θ + zθn ,θ − ζ(θn, θn)

= (Rθn ,θ − zθn ,θ) + 2zθn ,θ − ζ(θn, θn)
. (28)

Since (X , ζ) is ζ-complete, by Definition 10,

lim
n→+∞

(Rθn ,θ − zθn ,θ) = 0 (29)

Using (26), (27), and (29) in (28), we obtain

ζ(θ, θ) = 0 (30)

By the Equations (21), (22), and (30), we have

ζ(θ, Fθ) = zθ,Fθ ≤ Rθ,Fθ = 0 (31)

Since ζ(θ, Fθ) ≥ 0, this implies,

ζ(θ, Fθ) = 0 (32)

Similarly, we may prove
ζ(Fθ, θ) = 0.

The Equations (24), (30), and (32) imply

ζ(θ, θ) = ζ(Fθ, Fθ) = ζ(θ, Fθ) = ζ(θ, Fθ) = 0 (33)

which further implies θ = Fθ so that θ is a fixed point of F.

Next, we show the uniqueness of the fixed point. Suppose that F has two distinct fixed
points θ and δ, such that Fθ = θ and Fδ = δ. Thus, ζ(θ, δ) = ζ(Fθ, Fδ) ≤ kζ(θ, δ) < ζ(θ, δ).
This implies, ζ(θ, δ) = 0. Additionally, ζ(θ, θ) = ζ(Fθ, Fθ) ≤ kζ(θ, θ) < ζ(θ, θ), which
implies ζ(θ, θ) = 0. Similarly, ζ(δ, δ) = 0. Thus, we have

ζ(θ, δ) = ζ(θ, θ) = ζ(δ, δ) = 0

which by the Definition 6 implies δ = θ.

The following theorem is similar to the Kannan-type fixed point result.

Theorem 2. Let (X , ζ) be a complete Double-Controlled Quasi M-metric space, and F : X → X
be a self ζ-continuous mapping on X satisfying

ζ(Fg, Fh) ≤ k
[
ζ(g, Fg) + ζ(h, Fh)

]
(34)
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for all g, h ∈ X , where k ∈ [0, 1
2 ). For θ ∈ X, define the sequence θn = Fnθ. Suppose that

sup
m≥1

lim
i→∞

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm) <

1
k

(35)

In addition, assume that, for every θ ∈ X ,

lim
n→∞

α(θ, θn), lim
n→∞

τ(θn, θ) (36)

exist, and are finite. Then, F has a unique fixed point.

Proof. Let θ0 ∈ X and define a sequence {θn} inX inductively by taking θn = Fθn−1, n ≥ 1.
Set dn = ζ(θn, θn+1) and Dn = ζ(θn+1, θn). Then we have,

dn = ζ(θn, θn+1) = ζ(Fθn−1, Fθn)

≤ k
[
ζ(θn−1, Fθn−1) + ζ(θn, Fθn)

]
= k

[
ζ(θn−1, θn) + ζ(θn, θn+1)

]
≤ k

[
dn−1 + dn)

] (37)

which implies,
dn ≤ βdn−1 (38)

where β = k
1−k < 1 as k ∈ [0, 1

2 ].
Thus, we have

dn ≤ βdn−1 ≤ β2dn−2 ≤ ... ≤ βnζ(θ0, θ1) (39)

Similarly, we have
Dn ≤ βnζ(θ1, θ0) (40)

Now, consider n, m ∈ N where n < m. Then, using the triangular inequality repeatedly,
we have

ζ(θn, θm)− zθn ,θm ≤ α(θn, θn+1)
(
ζ(θn, θn+1)− zθn ,θn+1

)
+ τ(θn+1, θm)

(
ζ(θn+1, θm)− zθn+1,θm

)
≤ α(θn, θn+1)

(
ζ(θn, θn+1)− zθn ,θn+1

)
+ τ(θn+1, θm)

[
α(θn+1, θn+2)

(
ζ(θn+1, θn+2)− zθn+1,θn+2

)
+τ(θn+2, θm)

(
ζ(θn+2, θm)− zθn+2,θm

) ]
≤ α(θn, θn+1)

(
ζ(θn, θn+1)− zθn ,θn+1

)
+ τ(θn+1, θm)α(θn+1, θn+2)

[(
ζ(θn+1, θn+2)− zθn+1,θn+2

)]
+ τ(θn+1, θm)τ(θn+2, θm)

[
ζ(θn+2, θm)− zθn+2,θm

]
...

≤ α(θn, θn+1)
(
ζ(θn, θn+1)− zθn ,θn+1

)
+

m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)

[(
ζ(θi, θi+1)− zθi ,θi+1

)]
+

m−1

∏
k=n+1

τ(θk, θm)
[(

ζ(θm−1, θm)− zθm−1,θm

)]

(41)
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≤ α(θn, θn+1)(ζ(θn, θn+1))

+
m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)ζ(θi, θi+1)

+
m−1

∏
k=n+1

τ(θk, θm)ζ(θm−1, θm)

≤ α(θn, θn+1)knζ(θ0, θ1)

+
m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

+

(
m−1

∏
i=n+1

τ(θi, θm)

)
km−1(ζ(θ0, θ1))

≤ α(θn, θn+1)knζ(θ0, θ1)

+
m−2

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

+

(
m−1

∏
j=n+1

τ(θi, θm)

)
km−1α(θm−1, θm)ζ(θ0, θ1)

= α(θn, θn+1)knζ(θ0, θ1)

+
m−1

∑
i=n+1

(
i

∏
j=n+1

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

≤ α(θn, θn+1)knζ(θ0, θ1)

+
m−1

∑
i=n+1

(
i

∏
j=0

τ
(
θj, θm

))
α(θi, θi+1)kiζ(θ0, θ1)

We have used α(g, h) ≥ 1, τ(g, h) ≥ 1 and ζ(g, h)− zg,h ≤ ζ(g, h) for all g, h ∈ X .
Let

Sp =
p

∑
i=0

(
i

∏
j=0

τ
(
θj, θm

))
α(θi, θi+1)ki

The inequality (41) may be written as

ζ(θn, θm)− kθn ,θm ≤ ζ(θ0, θ1)[α(θn, θn+1)kn + (Sm−1 − Sn)] (42)

Letting

Gi =

(
i

∏
j=0

τ
(
θj, θm

))
α(θi, θi+1)ki,

then

Gi+1 =

(
i+1

∏
j=0

τ
(
θj, θm

))
α(θi+1, θi+2)ki+1,

so that we have
Gi+1

Gi
=

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm)k

Therefore, by Condition (35), we obtain

sup
m≥1

lim
i→∞

Gi+1

Gi
= sup

m≥1
lim
i→∞

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm)k < 1
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Therefore, by using the Ratio test, we conclude that the sequence {Sn} is Cauchy in
the usual sense. Since k ∈ [0, 1), letting n, m→ ∞ in the inequality (42), we conclude that

lim
n,m→+∞

(ζ(θn, θm)− zθn ,θm) = 0. (43)

Similarly, using (40), we can prove that

lim
n,m→+∞

(ζ(θm, θn)− zθm ,θn) = 0. (44)

Without loss of generality, we may assume that

Rθn ,θm = max{ζ(θn, θn), ζ(θm, θm)} = ζ(θn, θn).

Hence, we get

Rθn ,θm − zθn ,θm ≤ Rθn ,θm

= ζ(θn, θn)

= ζ(Fθn−1, Fθn−1)

≤ k
[
ζ(θn−1, Fθn−1) + ζ(θn−1, Fθn−1)

]
≤ k

[
ζ(θn−1, θn) + ζ(θn−1, θn)

]
= 2k

[
ζ(θn−1, θn)

]
= 2kdn−1

(45)

By the inequality (39), limn→+∞ dn = 0..
Letting n→ ∞ in the above inequality, we deduce that

lim
n,m→+∞

(Rθn ,θm − zθn ,θm) = 0 (46)

Similarly, we can establish that

lim
n,m→+∞

(Rθm ,θn − zθm ,θn) = 0 (47)

By (43), (44), (46) and (46), we conclude that {θn} is ζ- Cauchy in X . Since X is
ζ-complete, {θn} converges to a point θ ∈ X so that we have

lim
n→+∞

ζ(θn, θ)− zθn ,θ = 0 (48)

and
lim

n→+∞
ζ(θ, θn)− zθ,θn = 0 (49)

Now, we prove that θ is a fixed point of F.
Since F is ζ-continuous, the Definition 10 and the Equation (48) implies

lim
n→+∞

(
ζ(θn−1, Fθ)− zθn−1,Fθ

)
= lim

n→+∞
(ζ(Fθn, Fθ)− zFθn ,Fθ) = 0 (50)

By the triangular inequality, we have,

ζ(θ, Fθ)− zθ,Fθ ≤ α(θ, θn)(ζ(θ, θn)− zθ,θn) + τ(θn, Fθ)(ζ(θn, Fθ)− zθn ,Fθ). (51)

Taking the limit in the above inequality, and using (49) and (50), we obtain

ζ(θ, Fθ)− zθ,Fθ ≤ 0 (52)
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By the definition of Double-Controlled Quasi M-metric space, we have

zθ,Fθ − ζ(θ, Fθ) ≤ 0 (53)

The inequalities (52) and (53) imply

ζ(θ, Fθ) = zθ,Fθ (54)

Now,
ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ k
[
ζ(θn−1, Fθn−1) + ζ(θn−1, Fθn−1)

]
≤ k

[
ζ(θn−1, θn) + ζ(θn−1, θn)

]
= 2k

[
ζ(θn−1, θn)

]
= 2kdn−1

(55)

This implies,
lim

n→+∞
ζ(θn, θn) = 0 (56)

By Equation (50), we get

lim
n→+∞

zθn ,θ = lim
n→+∞

min{ζ(θn, θn), ζ(θ, θ)}

= min{0, ζ(θ, θ)}
= 0

(57)

By Proposition 1, we have

ζ(θn, θn) + ζ(θ, θ) = Rθn ,θ + zθn ,θ

or
ζ(θ, θ) = Rθn ,θ + zθn ,θ − ζ(θn, θn)

= (Rθn ,θ − zθn ,θ) + 2zθn ,θ − ζ(θn, θn)
(58)

Since (X , ζ) is ζ-Complete, by Definition 10,

lim
n→+∞

(Rθn ,θ − zθn ,θ) = 0 (59)

Using (56), (57) and (59) in (58), we obtain

ζ(θ, θ) = 0 (60)

By Equations (54) and (60), we have

ζ(θ, Fθ) = zθ,Fθ

= min{ζ(θ, θ), ζ(Fθ, Fθ)}
= min{0, ζ(Fθ, Fθ)}
= 0

(61)

Similarly, we may prove
ζ(Fθ, θ) = 0.

Using (34), we obtain

ζ(Fθ, Fθ) ≤ k
[
ζ(θ, Fθ) + ζ(θ, Fθ)

]
≤ 2k

[
ζ(θ, Fθ)

]
= 0

(62)
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This implies,
ζ(Fθ, Fθ) = 0 (63)

Therefore, by Equations (60), (61), and (63), we obtain

ζ(θ, θ) = ζ(θ, Fθ) = ζ(Fθ, θ) = ζ(Fθ, Fθ) = 0

which implies that Fθ = θ.

Finally, we establish the uniqueness of the fixed point. Suppose that F has two distinct
fixed points θ and δ, that Fθ = θ and Fδ = δ. We have,

ζ(θ, δ) = ζ(Fθ, Fδ) ≤ k
[
ζ(θ, Fθ) + ζ(δ, Fδ)

]
= k

[
ζ(θ, θ) + ζ(δ, δ)

]
= 0,

which implies that ζ(θ, δ) = 0. Since θ and δ are fixed points, by Equation (56), we have
ζ(θ, θ) = 0 and ζ(δ, δ) = 0. Therefore,

ζ(θ, δ) = ζ(θ, θ) = ζ(δ, δ) = 0,

which implies that θ = δ.

4. Applications

Finally, we provide a few applications of our proven theorems.

Example 6. Let X = [0, 4]. Define ζ : X × X −→ [0, ∞) by ζ(µ, ω) = (µ − ω)4 and
α(µ, ω) = µ + ω + 1, τ(µ, ω) = ω + 1, then it is not difficult to see that (X , ζ) is a complete
Double-Controlled Quasi M-metric space. Let F : X −→ X be defined as Fθ = θ

5 , then F has a
unique fixed point.

Proof. Let θ ∈ X. Define a sequence as θn = Fnθ = θ
5n .

We have

ζ(Fµ, Fω) = (Fµ− Fω)4 =
(µ

5
− ω

5

)4
≤ 1

625
(µ−ω)4 = kζ(µ, ω)

where k = 1
625 . Consider

sup
m≥1

lim
i→∞

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm) = sup

m≥1
lim
i→∞

θ
5i+1 +

θ
5i+2 + 1

θ
5i +

θ
5i+1 + 1

(
θ

5m + 1) =
θ

5
+ 1 < 625 =

1
k

.

Moreover, for each, θ ∈ [0, 4], we have

lim
n→∞

α(θ, θn) = lim
n→∞

(θ +
θ

5n + 1) = θ + 1 < ∞

and
lim

n→∞
τ(θn, θ) = lim

n→∞
θ + 1 = θ + 1 < ∞.

Therefore, all the conditions of Theorem 1 are satisfied, hence F has a unique fixed point.

Example 7. Consider the space of all continuous real valued functionsX = C[0, 1], and ζ(r(µ), h(µ)) :
X ×X −→ [0,+∞) be defined as

ζ(r(µ), h(µ)) = sup
µ∈[0,1]

|r(µ)− h(µ)|2 + sup
µ∈[0,1]

|r(µ)|2.
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Define the control functions α, τ : X ×X → [1,+∞) by

α(r(µ), h(µ)) = τ(r(µ), h(µ)) = 1 = 1 + sup
µ∈[0,1]

|r(µ)h(µ)|for all r, h ∈ X .

It is not difficult to see that (X , ζ) is a complete Double-Controlled Quasi M-metric space.

Theorem 3. LetX = C[0, 1] be the complete Double-Controlled metric-like space given in Example 7.
Consider the following Fredholm integral equation

r(µ) =
∫ 1

0
l(µ, ω, r(µ))dω, (64)

where l(µ, ω, r(µ)) : [0, 1]× [0, 1] −→ R is a given continuous function satisfying the following
condition for all r(µ), h(µ) ∈ X , µ, ω ∈ [0, 1] :

1.
|l(µ, ω, r(µ))− l(µ, ω, h(µ))| ≤

√
H1(µ), |l(µ, ω, r(µ))| ≤

√
H2(µ)

where
H1(µ) ≤ kd(r(µ), Fr(µ)),

and
H2(µ) ≤ kd(h(µ), Fh(µ)),

F(r(µ)) =
∫ 1

0 l(µ, ω, r(µ))dω and k ∈ [0, 1
1+(supµ,ω |l(µ,ω,r(µ)|)2 ).

2. l(µ, ω,
∫ 1

0 l(µ, ω, r(µ))) < l(µ, ω, r(µ)) for all µ, ω.

Then the integral Equation (64) has a unique solution.

Proof. Let F : C[0, 1] −→ C[0, 1] be defined by F(r(µ)) =
∫ 1

0 l(µ, ω, r(µ))dω then

ζ(Fr(µ), Fh(µ)) = sup
µ∈[0,1]

|Fr(µ)− Fh(µ)|2 + sup
µ∈[0,1]

|Fr(µ)|2

= sup
µ∈[0,1]

|
∫ 1

0
l(µ, ω, r(µ))dω−

∫ 1

0
l(µ, ω, h(µ))dω|2

+ sup
µ∈[0,1]

|
∫ 1

0
l(µ, ω, r(µ))dω|2

≤ sup
µ∈[0,1]

∫ 1

0
|l(µ, ω, r(µ))dω− l(µ, ω, h(µ))|2dω

+ sup
µ∈[0,1]

∫ 1

0
|l(µ, ω, r(µ))|2dω

≤ sup
µ∈[0,1]

∫ 1

0

[
|l(µ, ω, r(µ))dω− l(µ, ω, h(µ))|2

+ |l(µ, ω, r(µ))|2
]
dω

≤ sup
µ∈[0,1]

∫ 1

0
|
√

H1(µ)|2 + |
√

H2(µ)|2dω

≤ sup
µ∈[0,1]

|H1(µ)|+ |H2(µ)|
∫ 1

0
dω

≤ sup
µ∈[0,1]

H1(µ) + H2(µ)

≤ k[d(r(µ), Fr(µ)) + d(h(µ), Fh(µ))].

(65)
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Now using assumption (2) of Theorem 2 for the sequence θn = Fnθ, we have

(θnr)(µ) = (Fnr)(µ) = F
(

Fn−1r(µ)
)
=
∫ 1

0
l
(

µ, ω, Fn−1r(µ)
)

dω

=
∫ 1

0
l
(

µ, ω, F
(

Fn−2r
)
(µ)
)

dω

=
∫ 1

0
l
(

µ, ω,
∫ 1

0
l
(

µ, ω,
(

Fn−2r(µ)
)))

dω

<
∫ 1

0
l
(

µ, ω,
(

Fn−2r(µ)
))

dω =
(

Fn−1r(µ)
)

.

Thus, we see that the sequence (Fnr(µ))n is strictly decreasing and bounded be-
low µ ∈ [0, 1], and so it converges to some s. This further implies by Dini’s theo-
rem from the real analysis thatsupt|Fnr(µ)| converges to some s′ 6 supµ,ω |l(µ, ω, r(µ))|.
Note that α(Fnr, Fmr) = τ(Fnr, Fmr) = 1 + supµ|Fnr(µ)||Fmr(µ)| converges to 1 + l2 ≤
1 + (supµ,ω |l(µ, ω, r(µ)|)2.

Now consider,

sup
m≥1

lim
i→∞

α(θi+1, θi+2)

α(θi, θi+1)
τ(θi+1, θm) = sup

m≥1
lim
i→∞

α(Fi+1r(µ), Fi+2r(µ))
α
(

Fir(µ), Fi+1r(µ)
) τ

(
Fi+1r(µ), Fmr(µ)

)
= sup

m≥1

1 + l2

1 + l2 lim
i→∞

τ
(

Fi+1r(µ), Fmr(µ)
)

= sup
m≥1

lim
i→∞

τ
(

Fi+1r(µ), Fmr(µ)
)

= sup
m≥1

lim
i→∞

1 + sup
µ
|Fi+1r(µ)||Fm+1r(µ)|

≤ 1 + (sup
µ,ω
|l(µ, ω, r(µ)|)2 <

1
k

.

Therefore, all the conditions of Theorem 2 are satisfied, which implies that the integral
Equation (64) has a solution.

5. Conclusions and Open Problems

We developed the idea of Double-Controlled Quasi M-metric space as a new general-
ization of M-metric space, and established fixed point results of the Banach and Kannan
types along with the application. It is an open problem to establish the Banach-type fixed
point results in Double-Controlled Quasi M-metric spaces for other types of contraction
mappings, like Ciric contraction mapping, Riech contraction mapping, Hardy–Roger con-
traction mapping, and Caristi contraction mapping. Researchers have studied [42–45]
mathematical control theory, fractional and differential integral equations, and functional
equations by using the techniques of fixed point theory. It is of great interest to find serious
applications of Double-Controlled quasi M-metric spaces to the theory of differential and
integral equations. Future studies in this direction are highly suggested.

Finally, we provide a very important direction for the future work in the framework
of Double-Controlled Quasi M-metric spaces. When there is no unique fixed point, one
technique to generalize the fixed-point results is to investigate the geometric properties
of the set of fixed points. In this direction, the fixed-circle problem (see [46]) and the
fixed-figure problem (see [47]) have been introduced. More relevantly to our current
studies, Maliki et al. [48] studied the fixed-disc point problem in the framework of Double-
Controlled Quasi-metric-type spaces. As a future work, it is highly suggested to study the
fixed-circle, fixed-ellipse, fixed-disc and other fixed-figure problems in the framework of
Double-Controlled Quasi M-metric spaces.
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