

Article On Relational Weak (F_{\Re}^m, η) -Contractive Mappings and Their Applications

Muhammad Tariq¹, Muhammad Arshad¹, Eskandar Ameer², Ahmad Aloqaily^{3,4}, Suhad Subhi Aiadi³ and Nabil Mlaiki^{3,*}

- ¹ Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan; tariq.phdma104@iiu.edu.pk (M.T.)
- ² Department of Mathematics, Taiz University, Taiz 6803, Yemen
- ³ Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833,
 - Riyadh 11586, Saudi Arabia
- ⁴ School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney 2150, Australia
- Correspondence: nmlaiki@psu.edu.sa

Abstract: In this article, we introduce the concept of weak (F_{\Re}^m, η) -contractions on relation-theoretic m-metric spaces and establish related fixed point theorems, where η is a control function and \Re is a relation. Then, we detail some fixed point results for cyclic-type weak (F_{\Re}^m, η) -contraction mappings. Finally, we demonstrate some illustrative examples and discuss upper and lower solutions of Volterra-type integral equations of the form $\xi(\alpha) = \int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma))m\sigma + \Psi(\alpha), \ \alpha \in [0, 1].$

Keywords: relation theoretic *M*-metric space; weak $(F_{\Re}^m; \eta)$ -contractions; integral equation; fixed point

MSC: 47H10; 54H25

check for **updates**

Citation: Tariq, M.; Arshad, M.; Ameer, E.; Aloqaily, A.; Aiadi, S.S.; Mlaiki, N. On Relational Weak (F_{\Re}^m, η) -Contractive Mappings and Their Applications. *Symmetry* **2023**, *15*, 922. https://doi.org/ 10.3390/sym15040922

Academic Editor: Alexander Zaslavski

Received: 17 March 2023 Revised: 9 April 2023 Accepted: 11 April 2023 Published: 15 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction and Preliminaries

The classical Banach contraction theorem [1] is an important and fruitful tool in nonlinear analysis. In the past few decades, many authors have extended and generalized the Banach contraction mapping principle in several ways (see [2-12]). On the other hand, several authors, such as Boyd and Wong [13], Browder [14], Wardowski [15], Jleli and Samet [16], and many other researchers have extended the Banach contraction principle by employing different types of control functions (see [17–21] and the references therein). Alam et al. [22] introduced the concept of the relation-theoretic contraction principle and proved some well known fixed-point results in this area. Afterward, many researchers focused on fixed-point theorems in relation-theoretic metric spaces. Here, we will present some basic knowledge of relation-theoretic metric spaces (see more detail in [23–26]). Furthermore, Sawangsup et al. [27] introduced the concept of the $(F, \gamma)_{\Re}$ -contractive of mappings to extend F-contractions in metric spaces endowed with binary relations. One of the latest extensions of metric spaces and partial metric spaces [10] was given in paper [28], which completed the concept of *m*-metric spaces. Using this concept, several researchers have proven some fixed point results in this area (see [20,29–33]). Subsequently, since every F-contraction mapping is contractive and also continuous, Secelean et al. [34] proved that the continuity of an F-contraction can be obtained from condition F_2 . After that, Imdad et al. [35] introduced the idea of a new type of *F*-contraction by dropping the condition of F_1 and replacing condition (F_3) with the continuity of F. They also proved some new fixed point results in relation to theoretic metric spaces.

In this paper, we introduce weak (F_{\Re}^m, η) -contractive mappings and cyclic-type weak (F_{\Re}^m, η) -contractions and provide some new fixed point theorems for such mappings in relation to theoretic m-metric spaces. Finally, as an application, we discuss the lower and upper solutions of Volterra-type integral equations.

Throughout this article, \mathbb{N} indicates a set of all natural numbers, \mathbb{R} indicates a set of real numbers and \mathbb{R}^+ indicates a set of positive real numbers. We also denote $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Henceforth, U will denote a non-empty set and the self mapping $\gamma : U \to U$ with a Picard sequence based on an arbitrary ξ_0 in U is given by $\xi_n = \gamma(\xi_{n-1}) = \gamma^n(\xi_0)$, where all n are members of \mathbb{N} and γ^n denotes the n^{th} -iteration of γ .

The notion of *m*-metric spaces was introduced by Asadi et al. [28] as a real generalization of a partial metric space and they supported their claim by providing some constructive examples. For more detail, see, e.g., [29,31].

Definition 1 ([28]). An *m*-metric space on a non-empty set U is a mapping $m : U \times U \rightarrow \mathbb{R}^+$ such that for all $\xi, \mathfrak{H}, \mathfrak{H} \in U$,

(*i*) $\xi = \Im \iff m(\xi, \xi) = m(\Im, \Im) = m(\xi, \Im)(T_0$ -separation axiom);

(*ii*) $m_{\xi\Im} \leq m(\xi,\Im)$ (minimum self distance axiom);

(*iii*) $m(\xi, \Im) = m(\Im, \xi)$ (symmetry);

(*iv*) $m(\xi, \Im) - m_{\xi\Im} \leq (m(\xi, \aleph) - m_{\xi\aleph}) + (m(\aleph, \Im) - m_{\aleph\Im})$ (modified triangle inequality) where

nere

$$m_{\xi\Im} = \min\{m(\xi,\xi), m(\Im,\Im)\};$$

$$M_{\xi\Im} = \max\{m(\xi,\xi), m(\Im,\Im)\}.$$

The pair (U, m) *is called an m-metric space on nonempty* U*.*

Lemma 1 ([28]). Each partial metric forms an m-metric space but the converse is not true.

Among the classical examples of an m-metric space is a pair (U, m), where $U = \{\xi, \Im, \aleph\}$ and *m* is a self mapping on *U* given by $m(\xi, \xi) = 1$, $m(\Im, \Im) = 9$ and $m(\aleph, \aleph) = 5$. It is clear that *m* is an m-metric space. Note that *m* does not form a partial metric space.

Every m-metric space *m* on *U* generates a T_0 topology, e.g., τ_m , on *U* which is based on a collection of *m*-open balls:

$$\{B_m(\xi,\epsilon):\xi\in U,\epsilon>0\},\$$

where

$$B_m(\xi, \epsilon) = \{\Im \in U : m(\xi, \Im) < m_{\xi\Im} + \epsilon\}$$
 for all $\xi \in U, \epsilon > 0$

If *m* is an m-metric space on *U*, then the functions m^w and $m^s : U \times U \to \mathbb{R}^+$ given by

$$m^{w}(\xi,\mathfrak{F}) = m(\xi,\mathfrak{F}) - 2m_{\xi\mathfrak{F}} + M_{\xi\mathfrak{F}},$$
$$m^{s} = \begin{cases} m(\xi,\mathfrak{F}) - m_{\xi\mathfrak{F}}, \text{ if } \xi \neq \mathfrak{F} \\ 0, \text{ if } \xi = \mathfrak{F}. \end{cases},$$

define ordinary metrics on U. It is easy to see that m^w and m^s are equivalent metrics on U.

Definition 2 ([28]). Let $\{\xi_n\}$ be a sequence in an *m*-metric space (U, m), then

(*i*) $\{\xi_n\}$ is said to be convergent with respect to τ_m to ξ if and only if

$$\lim_{\mu\to\infty} (m(\xi_n,\xi) - m_{\xi_n\xi}) = 0. \text{ for all } n \in \mathbb{N}.$$

- (*ii*) If $\lim_{n,m\to\infty} (m(\xi_n,\xi_m) m_{\xi_n\xi_m})$ and $\lim_{n,m\to\infty} (M_{\xi_n,\xi_m} m_{\xi_n\xi_m})$ for all $n,m \in \mathbb{N}$ exists and is finite, then the sequence $\{\xi_n\}$ in a m-metric space (U,m) is m-Cauchy.
- (iii) If every m-Cauchy $\{\xi_n\}$ in U is m-convergent with respect to τ_m to ξ in U such that

$$\lim_{n\to\infty}m(\xi_n,\xi)-m_{\xi_n\xi}=0, \text{ and } \lim_{n\to\infty}(M_{\xi_n,\xi}-m_{\xi_n\xi})=0. \text{ for all } n\in\mathbb{N},$$

then (U, m) is said to be complete.

- (*iv*) $\{\xi_n\}$ is an *m*-Cauchy sequence if and only if it is a Cauchy sequence in the metric space (U, m^w) ,
- (v) (U,m) is M-complete if and only if (U,m^w) is complete.

Denote $\nabla(F)$ by the collection of all mappings $F : (0, \infty) \to R$ satisfying [15]:

- (F_1) $F(\xi) < F(\Im)$ for all $\xi < \Im$;
- (*F*₂) For each sequence $\{\xi_n\}$ of positive numbers

$$\lim_{n\to\infty}\xi_n=0 \text{ if } \lim_{n\to\infty}F(\xi_n)=-\infty;$$

(*F*₃) There exists $p \in (0, 1)$ such that $\lim_{n \to 0^+} \xi^p F(\xi) = 0$.

As in [27], we denote $\nabla(\rho)$ and $\nabla(\pi)$ (where ρ and π are two new control functions) by the collection of all mappings $F : (0, \infty) \to R$, $\eta : (0, \infty) \to R$, respectively, satisfying:

- (*F*₂) For each sequence $\{\xi_n\}$ of positive numbers, $\lim_{n\to\infty} \xi_n = 0$ if $\lim_{n\to\infty} F(\xi_n) = -\infty$;
- (F_3) *F* is lower semicontinuous;
- (η_1) For each sequence $\{\xi_n\}$ of positive numbers, $\lim_{n\to\infty} \xi_n = 0$ if $\lim_{n\to\infty} \eta(\xi_n) = -\infty$;
- (η_2) η is right upper semicontinuous.

Now, we present some extensive examples of control functions in ρ and η .

Example 1. *The following functions belong to* $\nabla(\rho)$ *and* $\nabla(\pi)$

$$(1) F_{1}(\xi) = \begin{cases} \frac{-1}{\xi}, & \text{if } \xi \in [3, \infty) \\ \frac{-1}{(\xi+1)}, & \text{if } \xi \in (3, \infty) \end{cases}$$

$$(2) F_{2}(\xi) = \begin{cases} \frac{-1}{\xi} + \xi, & \text{if } \xi \in [2.8, \infty) \\ 2\xi - 3, & \text{if } \xi \in (3, \infty) \end{cases}$$

$$(3) \eta_{1}(\omega) = \begin{cases} \frac{-1}{\xi}, & \text{if } \xi \in (0, 4.6) \\ \cos \xi, & \text{if } \xi \in [4.6, \infty) \end{cases}$$

$$(4) \eta_{2}(s) = \begin{cases} \ln\left(\frac{\xi}{3} + \sin \xi\right), & \text{if } \xi \in (0, 3.2) \\ \sin \xi, & \text{if } \xi \in [3.2, \infty) \end{cases}$$

Let $\Re = \{(\xi, \Im) \in U^2 : \xi, \Im \in U\}$ be a relation on U. If $(\xi, \Im) \in \Re$ then we say that $\xi \preceq \Im$ (ξ precede \Im) under \Re denoted by $\xi \Re \Im$, and the inverse of \Re is denoted by $\Re^{-1} = \{(\xi, \Im) \in U^2 : (\Im, \xi) \in \Re\}$. The set $S = \Re \cup \Re^{-1} \subseteq U^2$ consequently illustrates another relation S^* on U given by $\xi S^* \Im \Leftrightarrow \Im S \xi$ with $\xi \neq \Im$.

As $(\gamma)_{Fix}$ denotes a set of all fixed points of γ , $\Theta([\Psi, S]) = \{\xi \in U : \xi S \gamma(\xi)\}$ and $F(\xi, \Im, \nabla)$ denotes the fashion of all paths in ∇ from ξ to \Im .

Definition 3 ([22]). Let $U \neq \phi$ and $\gamma : U \rightarrow U$, and \Re is a binary relation on U. Then, \Re is γ -closed if for any $\Omega, \Im \in U$,

$$\xi \Re \Im \Rightarrow \gamma(\xi) \Re \gamma(\Im).$$

Definition 4 ([22]). Let $U \neq \phi$ and \Re be a binary relation on U. Then, \Re is transitive if $\xi \Re \aleph \in$ and $\aleph \Re \Im \Rightarrow \aleph \Re \Im$ for all $\xi, \Im, \aleph \in U$.

Definition 5 ([22]). Let $\xi, \Im \in U$. A path of length $n \in \mathbb{N}$ in \Re : $\xi \to \Im$ is a finite sequence $\{t_0, t_1, t_2, \dots, t_n\} \subseteq U$ such that

- (*i*) $t_0 = \xi$ and $t_n = \Im$;
- (*ii*) $(t_j, t_{j+1}) \in \Re$ for all *j* in this set $\{0, 1, 2, ..., n-1\}$. Consider that a class of all paths from ξ to \Im in \Re is written as $\nabla(\xi, \Im, \Re)$. Note that a path of length *n* involves n + 1 elements of *U*, although they are not necessarily distinct.

Definition 6 ([36]). Let (U, m) be a relation theoratic *m*-metric space endowed with binary relation \Re on U, which is regular if for each sequences $\{\xi_n\}$ in U, we have

$$\left. \begin{array}{c} \xi_n \Re \xi_{n+1} \text{ for all } n \in \mathbb{N} \\ \lim_{n \to \infty} \left(m(\xi_n, \xi) - m_{\xi_n \xi} \right) = 0 \text{ i.e., } \xi_n \xrightarrow{t_m} \xi \in \Re \end{array} \right\} \Rightarrow \xi_n \Re \xi \text{ for all } n \in \mathbb{N}.$$

Definition 7 ([36]). Let (U, m) be a relation theoratic *m*-metric space endowed with binary relation \Re on U. A sequence $\xi_n \in U$ is called \Re -preserving if $\xi_n \Re \xi_{n+1}$.

Definition 8 ([36]). Let (U, m) be a relation theoratic *m*-metric space endowed with binary relation \Re on U, which is said to be \Re -complete if for each \Re -preserving *m*-Cauchy sequence $\{\xi_n\}$ in U, there exists some ξ in U such that

$$\lim_{n\to\infty}m(\xi_n,\xi)-m_{\xi_n\xi}=0, and \lim_{n\to\infty}(M_{\xi_n,\xi}-m_{\xi_n\xi})=0.$$

Definition 9 ([36]). Let $U \neq \phi$ and $\gamma : U \to U$. Then, γ is said to be \Re -continuous at ξ if, for \Re -preserving sequence $\{\xi_n\}$ with $\xi_n \to \xi$, we have $\gamma(\xi_n) \to \gamma(\xi)$ as $\mu \to \infty$. γ is \Re -continuous if it is \Re -continuous at each point of U.

2. Weak (F_{\Re}^m, η) -Contractions

In this section, we introduce the concept of weak (F_{\Re}^m, η) -contraction relations and establish related fixed point theorems in relation theoretic m-metric space, where η is a control function and \Re is a relation. We begin with the following Lemma.

Lemma 2. Assume that (U, m) is an m-metric space and let $\{\xi_n\}$ be a sequence in U such that $\lim_{n\to\infty} m(\xi_n, \xi_{n+1}) = 0$. If $\{\xi_n\}$ is not an m-Cauchy sequence in U, then there exists $\varepsilon > 0$ and two subsequences $\{\xi_{\alpha(\chi)}\}$ and $\{\xi_{\beta(\chi)}\}$ of positive integers such that $\{\alpha_{\chi}\} > \{\beta_{\chi}\} > \chi$ and the following sequences converges to ε^+ as χ converges to $+\infty$. With $M^*(\xi, \mathfrak{I}) = m(\xi, \mathfrak{I}) - m_{\xi\mathfrak{I}}$;

$$M^{*}\left(\xi_{\alpha(\chi)},\xi_{\beta(\chi)}\right), M^{*}\left(\xi_{\alpha(\chi)},\xi_{\beta(\chi)+1}\right), M^{*}\left(\xi_{\alpha(\chi)-1},\xi_{\beta(\chi)}\right),$$
(1)
$$M^{*}\left(\xi_{\beta(\chi)+1}\xi_{\beta(\chi)-1}\right), M^{*}\left(\xi_{\beta(\chi)+1},\xi_{\beta(\chi)+1}\right).$$

Proof. If $\{\xi_n\}$ is not an *m*-Cauchy sequence in *U*, there exists $\varepsilon > 0$ and two sequences $\{\alpha_{\chi}\}$ and $\{\beta_{\chi}\}$ of positive integers such that $\{\alpha_{\chi}\} > \{\beta_{\chi}\} > \chi$ and

$$M^*\left(\xi_{\alpha(\chi)},\xi_{\beta(\chi)-1}\right) < \varepsilon, \ M^*\left(\xi_{\alpha(\chi)},\xi_{\beta(\chi)}\right) \ge \varepsilon,$$
(2)

for all positive integers χ . Using the triangle inequality of m-metric space, we obtain

$$\begin{split} \varepsilon &\leq & M^* \Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)} \Big) \leq M^* \Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)} \Big) + M^* \Big(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)} \Big) \\ &< & M^* \Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)} \Big) + \varepsilon. \end{split}$$

Thus,

$$\lim_{\chi o \infty} M^* \Bigl(\xi_{lpha(\chi)}, \xi_{eta(\chi)} \Bigr) = arepsilon,$$

which implies

$$\lim_{\chi\to\infty} \left(m\Big(\xi_{\alpha(\chi)},\xi_{\beta(\chi)}\Big) - m_{\xi_{\alpha(\chi)},\xi_{\beta(\chi)}}\Big) = \varepsilon.$$

Furthermore,

$$\lim_{\chi\to\infty}m_{\xi_{\alpha(\chi)},\xi_{\beta(\chi)}}=0$$

Hence,

$$\lim_{\chi \to \infty} m\Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)}\Big) = \varepsilon.$$
(3)

Again, using the triangle inequality,

$$egin{aligned} M^*ig(\xi_{lpha(\chi)},\xi_{eta(\chi)}ig) &\leq M^*ig(\xi_{lpha(\chi)},\xi_{eta(\chi)+1}ig)+M^*ig(\xi_{lpha(\chi)+1},\xi_{eta(\chi)+1}ig)\ &+M^*ig(\xi_{lpha(\chi)+1},\xi_{eta(\chi)}ig), \end{aligned}$$

and

$$egin{aligned} M^*ig(\xi_{lpha(\chi)+1},\xi_{eta(\chi)+1}ig) &\leq & M^*ig(\xi_{lpha(\chi)},\xi_{eta(\chi)+1}ig)+M^*ig(\xi_{lpha(\chi)},\xi_{eta(\chi)}ig)\ &+ M^*ig(\xi_{lpha(\chi)+1},\xi_{eta(\chi)}ig). \end{aligned}$$

Taking $\chi \to +\infty$ in the above inequality and from (3), we have

$$\lim_{\chi\to\infty} M^* \Big(\xi_{\alpha(\chi)+1},\xi_{\beta(\chi)+1}\Big) = \varepsilon.$$

Now, we introduce the concept of weak (F_{\Re}^m, η) -contractions.

Definition 10. *Given a relation theoretic m-metric space* (U, m) *endowed with binary relation* \Re *on U. Suppose*

$$\Xi = \{\xi S^* \Im : m(\xi, \Im) > 0\}.$$

We can say that a self mapping $\gamma : U \to U$ is a weak (F_{\Re}^m, η) -contraction if there exists $F_{\Re}^m \in \nabla(\rho), \eta \in \nabla(\pi)$ and

$$\tau + F_{\Re}^m(m(\gamma(\xi), \gamma(\Im))) \le \eta(m(\xi, \Im)), \tag{4}$$

for all $(\xi, \Im) \in \Xi$.

Our main result is demonstrated in the following.

Theorem 1. Let (U, m) be a complete relation theoretic *m*-metric space endowed with transitive binary relation \Re on $U, \gamma : U \to U$, satisfying the following conditions:

- (*i*) $\Theta([\gamma, \Re])$ is non-empty;
- (*ii*) \Re is γ -closed;
- (*iii*) γ is \Re -continuous;
- (iv) γ is a weak (F_{\Re}^m, η) -contraction mapping with $F_{\Re}^m(\xi) > \eta(\xi)$ for all $\xi > 0$.

Then, γ possesses a fixed point in *U*.

Proof. Let $\xi_0 \in \Theta([\gamma, \Re])$. Define a sequence $\{\xi_{n+1}\}$ in U by $\xi_{n+1} = \gamma(\xi_n) = \gamma^{n+1}(\xi_0)$ for each $n \in \mathbb{N}$. If there exists a member n_0 of \mathbb{N} such that $\gamma(\xi_{n_0}) = \xi_{n_0}$, then γ has a fixed point ξ_{n_0} and the proof is complete. Let

$$\xi_{n+1} \neq \xi_n,\tag{5}$$

for all member *n* of \mathbb{N} such that $m(\xi_{n+1}, \xi_n) > 0$. Since $\gamma(\Omega_0)S^*\Omega_0$, and by the γ -closedness of \Re , $\Omega_{n+1}S^*\Omega_n$ for all $n \in \mathbb{N}$. Thus, $(\xi_n, \xi_{n+1}) \in \Xi$ and from (*iv*) we obtain

$$F_{\Re}^{m}(m(\xi_{n+1},\xi_{n})) = F_{\Re}^{m}(m(\gamma(\xi_{n}),\gamma(\xi_{n-1})))$$

$$\leq F_{\Re}^{m}(m(\xi_{n},\xi_{n-1})) - \tau$$

Let $\delta_n = m(\xi_n, \xi_{n+1})$ for all $n \in \mathbb{N}$. Then, $\delta_\mu > 0$ for all $n \in \mathbb{N}$, and using (5), one obtains

$$F_{\Re}^{m}(\delta_{n}) \leq (\delta_{n-1}) - \tau < F_{\Re}^{m}(\delta_{n-1}) - \tau \leq \eta(\delta_{n-2}) - 2\tau \leq \ldots \leq \eta(\delta_{n-2}) - n\tau.$$

From the above inequality, we obtain $\lim_{n\to\infty} F_{\Re}^m(\delta_n) = -\infty$. Then, by (F_2) , we have

$$\lim_{n \to \infty} \delta_n = 0. \tag{6}$$

From (3) and (6), we have $\xi_{n+1} \neq \xi_n$ for all $n, m \in \mathbb{N}$ with $n \neq m$. Now, we shall prove that $\{\xi_n\}$ is am *m*-Cauchy sequence in (U, m). Assume, in contrast, that $\{\xi_n\}$ is not an *m*-Cauchy sequence. By Lemmas 2.1 and 2.6, there exists $\varepsilon > 0$ and two subsequences $\{\xi_{\alpha(\chi)}\}$ and $\{\xi_{\beta(\chi)}\}$ of $\{\xi_n\}$ such that $\{\xi_{\alpha(\chi)}\} > \{\xi_{\beta(\chi)}\} > \chi$ and

$$\lim_{\chi \to \infty} m \left(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)} \right) = \varepsilon$$
$$\lim_{\chi \to \infty} m \left(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1} \right) = \varepsilon.$$

Since \Re is a transitive relation, $(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1}) \in \Re$. From condition (iv), we have

$$\tau + F_{\Re}^{m}\Big(m\Big(\xi_{\alpha(\chi)},\xi_{\beta(\chi)}\Big)\Big) \leq \eta\Big(m\Big(\xi_{\alpha(\chi)-1},\xi_{\beta(\chi)-1}\Big)\Big)$$

and so

$$\begin{aligned} \tau + \lim_{\chi \to \infty} \inf F_{\Re}^m \Big(m\Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)}\Big) \Big) &\leq \lim_{\chi \to \infty} \inf \eta \Big(m\Big(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1}\Big) \Big) \\ &\leq \lim_{\chi \to \infty} \sup \eta \Big(m\Big(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1}\Big) \Big). \end{aligned}$$

Thus,

$$\begin{aligned} \tau + F_{\Re}^m(\varepsilon^*) &\leq \eta(\varepsilon^*) \\ &< F_{\Re}^m(\varepsilon^*) \end{aligned}$$

is a contradiction; hence, $\{\xi_n\}$ is an *m*-Cauchy sequence in (U, m). Since (U, m) is \Re complete, there exists $\xi^* \in U$ such that $\{\xi_\mu\}$ converges to ξ^* with respect to t_m ; that is, $m(\xi_n, \xi^*) - m_{\xi_n, \xi^*} \to 0$ as $n \to \infty$. Now, the \Re -continuity of γ implies that

$$\xi = \lim_{n \to \infty} \xi_{n+1} = \lim_{n \to \infty} \gamma(\xi_n) = \gamma(\xi).$$

Therefore, ξ is a fixed point of γ . \Box

Example 2. Let $U = [0, \infty)$ and m be a relation theoretic m-metric space defined by $m(\xi, \Im) = \frac{\xi + \Im}{2}$ for all $\xi, \Im \in U$. Then, (U, m) is a complete m-metric space. Consider a sequence $\{\omega_n\} \subseteq U$ given by $\omega_n = \frac{n(n+1)(n+2)}{3}$ for all $\mu \in \mathbb{N}$. Set a binary relation \Re on U by $\Re = \{(1,1)\} \cup \{(1, \omega_{\Gamma}) : \Gamma \in \mathbb{N}\} \cup \{(\omega_{\Gamma}, \omega_{\Lambda}) : \Gamma < \Lambda \text{ for each } \Gamma, \Lambda \in \mathbb{N}\}$. Define a mapping $\gamma : U \to U$ by

$$\gamma(\xi) = \begin{cases} \xi, & \text{if } \xi \in [0,1] \\ ceil(\ln \xi), & \text{if } \xi \in [1, \omega_1] \\ \left(\frac{\xi - \omega_1}{\omega_2 - \omega_1}\right) + 1, & \text{if } \xi \in [\omega_1, \omega_2] \\ \frac{\omega_{n-1}(\omega_{n+1} - \xi) + \omega_n(\xi - \omega_n)}{\omega_{n+1} - \omega_n}, & \text{if } \xi \in [\omega_n, \omega_{\mu+1}] \text{ for all } n = 2, 3, \dots 100. \end{cases}$$

Obviously, \Re *is* γ *-closed and* γ *is continuous. Define* F_{\Re}^m *,* $\eta : (0, \infty) \to R$ *by*

$$F_{\Re}^{m}(\omega) = \left\{\frac{-1}{\omega} + \frac{4}{5}\omega \quad \text{if } \omega \in (0, 1.1] \frac{-1}{\omega} + \omega \quad \text{if } \omega \in (1.1, \infty) \text{ and} \\ \eta(\omega) = \left\{\frac{-1}{\omega} + \frac{1}{3}\omega \quad \text{if } \omega \in (0, 6.5) \frac{-2}{\omega} + \omega \quad \text{if } \omega \in [6.5, \infty) \right\}$$

Now, we will show that γ is a (F_{\Re}^m, η) -contraction mapping. Assume that $(\xi, \Im) \in \Xi = \{\xi S^*\Im : m(\gamma(\xi), \gamma(\Im)) > 0\}$. Therefore, we will discuss four cases.

Case 1 If $\xi = 1$ and $\Im = \omega_2$, then $m(\xi, \Im) = 4.5$ and $m(\gamma(\xi), \gamma(\Im)) = 1.5$,

$$2 + F_{\Re}^{m}(m(\gamma(\xi), \gamma(\mathfrak{F}))) = 2 - \frac{1}{m(\gamma(\xi), \gamma(\mathfrak{F}))} + \frac{4}{5}m(\gamma(\xi), \gamma(\mathfrak{F}))$$
$$\leq -\frac{2}{m(\xi, \mathfrak{F})} + m(\xi, \mathfrak{F}) = \eta(m(\xi, \mathfrak{F}))$$

Case 2 If $\xi = 1$ and $\Im = \omega_{\Gamma}$ for all $\Gamma > 2$, then $m(\xi, \Im) = \left|\frac{1+\omega_{\Gamma}}{2}\right| \ge 10.5$ and $m(\gamma(\xi), \gamma(\Im)) = \left|\frac{1+\omega_{\Gamma-1}}{2}\right| \ge 4.5$,

$$2\left|\frac{1+\omega_{\Gamma-1}}{2}\right| - \left|\frac{1+\omega_{\Gamma}}{2}\right| < 2\left|\frac{1+\omega_{\Gamma-1}}{2}\right| < \left|\frac{1+\omega_{\Gamma}}{2}\right| \left|\frac{1+\omega_{\Gamma-1}}{2}\right| < \left|\frac{1+\omega_{\Gamma-1}}{2}\right| < \left|\frac{1+\omega_{\Gamma-1}}{2}\right| < \left|\frac{1+\omega_{\Gamma-1}}{2}\right| < \left|\frac{1+\omega_{\Gamma-1}}{2}\right| < 2\right|$$

which implies

$$2 + \frac{2}{\left|\frac{1+\omega_{\Gamma}}{2}\right|} - \frac{1}{\left|\frac{1+\omega_{\Gamma-1}}{2}\right|} \leq \left|\frac{1+\omega_{\Gamma}}{2}\right| - \left|\frac{1+\omega_{\Gamma-1}}{2}\right|,$$

and thus,

$$2-rac{1}{\left|rac{1+arphi_{\Gamma-1}}{2}
ight|}-\left|rac{1+arphi_{\Gamma-1}}{2}
ight|\leq -rac{2}{\left|rac{1+arphi_p}{2}
ight|}-\left|rac{1+arphi_{\Gamma}}{2}
ight|.$$

Then,

$$2 + F_{\Re}^{m}(m(\gamma(\xi), \gamma(\mathfrak{F}))) = 2 - \frac{1}{m(\gamma(\xi), \gamma(\mathfrak{F}))} + m(\gamma(\xi), \gamma(\mathfrak{F}))$$
$$\leq -\frac{2}{m(\xi, \mathfrak{F})} + m(\xi, \mathfrak{F}) = \eta(m(\xi, \mathfrak{F})).$$

Case 3 If $\xi = \omega_1$ and $\Im = \omega_2$, then $m(\xi, \Im) = 5$ and $m(\gamma(\xi), \gamma(\Im)) = 1$,

$$2 + F_{\Re}^{m}(m(\gamma(\xi), \gamma(\mathfrak{T}))) = 2 - \frac{1}{m(\gamma(\xi), \gamma(\mathfrak{T}))} + \frac{4}{5}m(\gamma(\Omega), \gamma(\mathfrak{T}))$$

$$\leq -\frac{2}{m(\xi, \mathfrak{T})} + m(\xi, \mathfrak{T}) = \eta(m(\xi, \mathfrak{T})).$$

Case 4 If $\xi = \omega_{\Gamma}$ and $\Im = \omega_{\Lambda}$ for all Γ and Λ in \mathbb{N} and (Γ, Λ) is not equal to (1, 2) with $\Gamma < \Lambda$, then $m(\xi, \Im) = \left| \frac{\omega_{\Gamma} + \omega_{\Lambda}}{2} \right| \ge 14$ and $m(\gamma(\xi), \gamma(\Im)) = \left| \frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2} \right| \ge 7$,

$$\begin{split} 2 \left| \frac{\omega_{\Gamma-1} + \omega_{\Gamma-1}}{2} \right| &- \left| \frac{\omega_{\Gamma} + \omega_{\Lambda}}{2} \right| &< 2 \left| \frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2} \right| < \left| \frac{\omega_{\Gamma} + \omega_{\Lambda}}{2} \right| \left| \frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2} \right| \\ &< \left| \frac{\omega_{\Gamma} + \omega_{\Lambda}}{2} \right| \left| \frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2} \right| \left(\left| \frac{\omega_{\Gamma} + \omega_{\Lambda}}{2} \right| \left| \frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2} \right| - 2 \right), \end{split}$$

which implies

$$2 + \frac{2}{\left|\frac{\varpi_{\Gamma} + \varpi_{\Lambda}}{2}\right|} - \frac{1}{\left|\frac{\varpi_{\Gamma-1} + \varpi_{\Lambda-1}}{2}\right|} \le \left|\frac{\varpi_{\Gamma} + \varpi_{\Lambda}}{2}\right| - \left|\frac{\varpi_{\Gamma-1} + \varpi_{\Lambda-1}}{2}\right|$$

Then,

$$2 - \frac{1}{\left|\frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2}\right|} + \left|\frac{\omega_{\Gamma-1} + \omega_{\Lambda-1}}{2}\right| \le -\frac{2}{\left|\frac{\omega_{\Gamma} + \omega_{\Lambda}}{2}\right|} + \frac{2}{\left|\frac{\omega_{\Gamma} + \omega_{\Lambda}}{2}\right|}$$

Hence,

$$2 + F_{\Re}^{m}(m(\gamma(\xi), \gamma(\mathfrak{F}))) = 2 - \frac{1}{m(\gamma(\xi), \gamma(\mathfrak{F}))} + m(\gamma(\xi), \gamma(\mathfrak{F}))$$

$$\leq -\frac{2}{m(\xi, \mathfrak{F})} + m(\xi, \mathfrak{F}) = \eta(m(\xi, \mathfrak{F})).$$

Therefore, from all cases, we deduce that

$$\tau + F_{\Re}^m(m(\gamma(\xi), \gamma(\Im))) \le \eta(m(\xi, \Im)),$$

for all $\xi, \Im \in \Xi$. Then, γ is a weak (F_{\Re}^m, η) -contraction mapping with $\tau = 2$. Furthermore, there exists $\xi_0 = 1$ in U such that $\Omega_0 S^* \gamma(\Omega_0)$ and the class $\Theta([\gamma, \Re])$ is non-empty. Thus, all conditions of Theorem 2.3 hold and γ has a fixed point.

Theorem 2. Theorem 1 remains true if the condition (*ii*) is replaced by the following: (*ii*)' (X, κ, ∇) is regular.

Proof. Similar to the argument of Theorem 1 we will show the sequence $\{\xi_n\}$ is *m*-cauchy and converges to some ξ in *U* such that $m(\xi_n, \xi) - m_{\xi_n, \xi}$ as $n \to \infty$. Now,

$$\lim_{n \to \infty} m(\xi_n, \xi) = \lim_{n \to \infty} m_{\xi_n, \xi} = \lim_{n \to \infty} \min\{m(\xi_n, \xi_n), m(\xi, \xi)\} = m(\xi, \xi)$$
$$= \lim_{n, m \to \infty} m(\xi_n, \xi_m) = 0 \text{ and } \lim_{n, m \to \infty} m_{\xi_n, \xi_m} = 0.$$

As $\xi_n S^* \xi_{n+1}$, then $\xi_n S^* \xi$ for all $n \in \mathbb{N}$. Set $L = \{n \in \mathbb{N} : \gamma(\xi_n) = \gamma(\xi)\}$. We have two cases dependent on *L*.

Case 1: If {*L* is finite}, then there exists $n_0 \in \mathbb{N}$ such that $\gamma(\xi_n) \neq \gamma(\xi)$ for every $n \geq n_0$. Moreover, $\xi_n S^* \xi$ and $\gamma(\xi_n) S^* \gamma(\xi)$ for all $n \geq n_0$. Since γ is a weak (F_{\Re}^m, η) -contraction mapping, we have

$$\tau + F_{\Re}^m(m(\gamma(\xi_{\mu}), \gamma(\xi))) \leq \eta(m(\xi_{\mu}, \xi)).$$

Since, $\lim_{n\to\infty} m(\xi_n, \xi) = 0$,

$$\lim_{n\to\infty}F_{\Re}^m(m(\xi_n,\xi))=-\infty.$$

Hence,

$$\lim_{n\to\infty}F_{\Re}^m(m(\gamma(\xi_n),\gamma(\xi)))=-\infty.$$

Therefore, $\lim_{n\to\infty} m(\gamma(\xi_n), \gamma(\xi)) = 0$ and $\gamma(\xi) = \xi$, where ξ is a fixed point of γ . **Case 2:** If { *L* is infinite}, then there exists a subsequence { ξ_{n_k} } \subset { ξ_n } such that $\xi_{n_k+1} = \gamma(\xi_{n_k}) = \gamma(\xi)$ for all $k \in \mathbb{N}$. Thus, $\gamma(\xi_{n_k}) \to \gamma(\xi)$ with respect to t_m as $\xi_n \to \xi$, then $\gamma(\xi) = \xi$, i.e., γ has a fixed point. Hence, the proof is complete. \Box

Now, we discuss various results to ensure the uniqueness of the fixed points:

Theorem 3. If $F(\xi, \Im, \nabla) \neq \phi$ for all $\xi, \Im \in (\gamma)_{Fix}$ in Theorem 1 and Theorem 2, then γ possesses a unique fixed point.

Proof. Let $\xi, \Im \in \text{Fix}(\gamma)$ such that $\xi \neq \Im$. Since $F(\xi, \Im, \nabla) \neq \phi$, then there exists a path $(\{a_0, a_1, \ldots, a_n\})$ of some finite length μ in ∇ from ξ to \Im (with $a_s \neq a_{s+1}$ for all $s \in [0, p-1]$). Then, $a_0 = \xi$, $a_k = \Im$, $a_s S^* a_{s+1}$ for every $s \in [0, p-1]$. As $a_s \in \gamma(U)$, $\gamma(a_s) = a_s$ for all $s \in [0, p-1]$ and since $F_n^m(\xi) > \eta(\xi)$, we obtain

$$F_{R}^{m}(m(a_{s}, a_{s+1})) = F_{\Re}^{m}(m(\gamma(a_{s}), \gamma(a_{s+1}))) \le \eta(m(a_{s}, a_{s+1}))$$

Since $F_{\Re}^m(a) > \eta(a)$ for all a > 0,

$$F_{\Re}^{m}(m(a_{s}, a_{s+1})) < F_{\Re}^{m}(m(a_{s}, a_{s+1})).$$

Hence, γ possesses a unique fixed point. \Box

Theorem 4. Let (U, m) be a complete relation theoretic *m*-metric space endowed with a transitive binary relation \Re on U. Let $\gamma : U \to U$ satisfy the following:

- (*i*) The class $\Theta([\gamma, \Re])$ is nonempty;
- (*ii*) The binary relation \Re is γ -closed;
- (*iii*) The mapping γ is \Re -continuous;
- (iv) There exists $F_{\Re}^m \in \nabla(\rho)$, $\eta \in \nabla(\pi)$ and $\xi > 0$ such that

$$\tau + F_{\Re}^{m}\Big(\kappa\Big(m(\xi), \gamma^{2}(\xi)\Big)\Big) \leq \eta(m(\xi, \gamma(\xi)))$$

for all $\xi \in U$, with $\gamma(\xi)S^*\gamma^2(\xi)$ and $F_{\eta}^m(\xi) > \eta(\xi)$ for all $\xi > 0$.

Then, γ has a fixed point.

Furthermore, if the following conditions are satisfied:

- (v) (iv)'
- (*vi*) $\xi \in (\gamma^n)_{\text{Fix}}$ (for some $n \in \mathbb{N}$) which implies that $\xi S^* \gamma(\xi)$.

Then, $(\gamma^n)_{\text{Fix}} = (\gamma)_{\text{Fix}}$ for each *n* is a member of \mathbb{N} .

Proof. Let $\xi_0 \in \Theta([\gamma, \Re])$, i.e., $\xi_0 S^* \gamma(\xi_0)$, then, from (*ii*), we obtain $\xi_n S^* \xi_{n+1}$ for each $n \in \mathbb{N}$. Denote $\xi_{n+1} = \gamma(\xi_n) = \gamma^{n+1}(\xi_0)$ for all $n \in \mathbb{N}$. If there exists $n_0 \in \mathbb{N}$ such that $\gamma(\xi_{n_0}) = \xi_{n_0}$, then γ has a fixed point ξ_{n_0} . Now, assume that

$$_{n+1}\neq\xi_n,\tag{7}$$

for every $n \in \mathbb{N}$. Then, $\xi_n S^* \xi_{n+1}$ (for all $n \in \mathbb{N}$). Continuing this process and from (iv) we have,

ξ

$$F_{\Re}^{m}\left(m\left(\gamma(\xi_{n-1}),\gamma^{2}(\xi_{n-1})\right)\right) \leq F_{\Re}^{m}(m(\xi_{n-1},\gamma(\xi_{n-1}))) \leq m(\xi_{n-1},\xi_{n})-\tau,$$

for all $n \in \mathbb{N}$, which implies,

$$F_{\Re}^{m}(m(\xi_{n},\xi_{n+1})) \leq \eta(m(\xi_{n-1},\xi_{n})) - \tau$$

$$< F_{\Re}^{m}(m(\xi_{n-2},\xi_{n-1})) - \tau$$

$$\leq \eta(m(\xi_{n-1},\xi_{n})) - 2\tau$$

$$\ldots$$

$$\leq \eta(m(\xi_{0},\xi_{1})) - n\tau.$$

Setting $n \to \infty$ in the above inequality, we deduce that $\lim_{n\to\infty} F_{\Re}^m(m(\xi_n, \xi_{n+1})) = -\infty$. Since $F_{\Re}^m \in \nabla(\rho)$, then

$$\lim_{n \to \infty} m(\xi_n, \xi_{n+1}) = 0.$$
(8)

From conditions (7) and (8), we have $\xi_{n+1} \neq \xi_n$ for all $n, m \in \mathbb{N}$ with $n \neq m$. Now, we will prove that $\{\xi_n\}$ is an *m*-Cauchy sequence in (U, m). Assume, in contrast, that $\{\xi_n\}$ is not an *m*-Cauchy sequence; then, by Lemma 2 and (6), there exists $\varepsilon > 0$ and two subsequences $\{\xi_{\alpha(\chi)}\}$ and $\{\xi_{\beta(\chi)}\}$ of $\{\xi_n\}$ such that $\{\alpha(\chi)\} > \{\beta(\chi)\} > \chi$ and

$$\lim_{\chi \to \infty} m \Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)} \Big) = \varepsilon \text{ and}$$
$$\lim_{\chi \to \infty} m \Big(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1} \Big) = \varepsilon.$$

Since \Re is a transitive relation, $(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1}) \in \Re$. From condition (iv),

$$\tau + F_{\Re}^{m}\left(m\left(\xi_{\alpha(\chi)},\xi_{\beta(\chi)}\right)\right) \leq \eta\left(m\left(\xi_{\alpha(\chi)-1},\xi_{\beta(\chi)-1}\right)\right)$$

and hence,

$$\begin{aligned} \tau + \lim_{\chi \to \infty} \inf F_{\Re}^m \Big(m\Big(\xi_{\alpha(\chi)}, \xi_{\beta(\chi)}\Big) \Big) &\leq \lim_{\chi \to \infty} \inf \eta \Big(m\Big(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1}\Big) \Big) \\ &\leq \lim_{\chi \to \infty} \sup \eta \Big(m\Big(\xi_{\alpha(\chi)-1}, \xi_{\beta(\chi)-1}\Big) \Big). \end{aligned}$$

Then,

$$\tau + F_{\Re}^{m}(\varepsilon^{*}) \leq \eta(\varepsilon^{*}) < F_{\Re}^{m}(\varepsilon^{*})$$

it is contradiction. Hence, $\{\xi_n\}$ is an *m*-Cauchy sequence in (U, m). Since (U, m) is \Re complete, there exists $\xi \in U$ such that $\{\xi_n\}$ converges to ξ^* with respect to t_m ; that is, $m(\xi_n, \xi^*) - m_{\xi_n, \xi^*} \to 0$ as $n \to \infty$. By using the \Re -continuity of γ ,

$$\xi = \lim_{n \to \infty} \xi_{n+1} = \lim_{n \to \infty} \gamma(\xi_n) = \gamma(\xi).$$

Finally, we will prove that $(\gamma^n)_{Fix} = (\gamma)_{Fix}$ where $n \in \mathbb{N}$. Assume, in contrast, that $\xi \in (\gamma^n)_{Fix}$ and $\xi \notin (\gamma)_{Fix}$ for some $n \in \mathbb{N}$. Then, from condition $(iv)', m(\xi, \gamma(\xi)) > 0$ and $\xi S^* \gamma(\xi)$. Using (ii) and (iv), we obtain $\gamma^n(\xi)S^*\gamma^{n+1}(\xi)$ for all $n \in \mathbb{N}$,

$$\begin{split} F_{\Re}^{m}(m(\xi,\gamma(\xi))) &= F_{\Re}^{m}\Big(m\Big(\gamma\Big(\gamma^{n-1}(\xi)\Big),\gamma^{2}\Big(\gamma^{n-1}(\xi)\Big)\Big)\Big) \leq \eta\Big(m\Big(\gamma\Big(\gamma^{n-1}(\xi)\Big),\gamma^{2}\Big(\gamma^{n-1}(\xi)\Big)\Big)\Big) - \tau \\ &< F_{\Re}^{m}\Big(m\Big(\gamma^{n-1}(\xi)\Big),\gamma^{n}(\xi)\Big) - \tau \\ &\leq \eta\Big(m\Big(\gamma^{n-2}(\xi)\Big),\gamma^{n-1}(\xi)\Big) - 2\tau \\ &< F_{\Re}^{m}\Big(m\Big(\gamma^{n-2}(\xi)\Big),\gamma^{n-2}(\xi)\Big) - 2\tau \\ &\leq \eta\Big(m\Big(\gamma^{n-3}(\xi)\Big),\gamma^{n-2}(\xi)\Big) - 3\tau \\ & \dots \\ &\leq \eta(m(\xi,\gamma(\xi))) - n\tau \end{split}$$

Taking $n \to \infty$ in the above inequality, we obtain

$$F_{\Re}^{m}(m(\xi,\gamma(\xi))) = -\infty$$

as a contradiction. Therefore, $(\gamma^n)_{Fix} = (\gamma)_{Fix}$ for any $n \in \mathbb{N}$. \Box

3. Cyclic-Type Weak (F_{\Re}^m, η) -Contraction Mappings

In 2003, Kirk et al. [37] introduced cyclic contractions in metric spaces and investigated the existence of proximity points and fixed points for cyclic contraction mappings. Inspired by [37] and our Theorems 1 and 5 we obtained the following fixed point results for cyclic-type weak (F_{\Re}^m , η)-contraction mappings.

Theorem 5 ([37]). Assume that (U, m) is a compete *m*-metric space and *G*, *H* are two non-empty closed subsets of U and $\gamma : U \to U$. Suppose that the following conditions hold:

- (*i*) $\gamma(B) \subseteq D$ and $\gamma(D) \subseteq B$;
- (*ii*) There exists a constant $k \in (0, 1)$ such that

$$m(\gamma(\xi), \gamma(\Im)) \le km(\xi, \Im) \text{ for all } \xi \in B, \ \Im \in D.$$
(9)

Then, $B \cap D$ *is non-empty and* ξ *in* $B \cap D$ *is a fixed point of* γ *.*

Theorem 6. Let (U, m) be a complete relation theoretic m-metric space endowed with a transitive binary relation \Re on U, G and H are two non-empty closed subsets of U and $\gamma : U \to U$. Assume that the following axioms hold:

- (*i*) $\gamma(G) \subseteq H$ and $\gamma(H) \subseteq G$;
- (ii) There exists $F_{\Re}^m \in \nabla(\rho)$ and $\eta \in \nabla(\pi)$ and $\xi > 0$ such that

$$\tau + F_{\mathfrak{P}}^m(m(\gamma(\xi), \gamma(\mathfrak{F}))) \le \eta(m(\xi, \mathfrak{F}))$$
(10)

for all ξ in G, \Im in H, with $F_{\eta}^{m}(\xi) > \eta(\xi)$ for all $\xi > 0$.

Then, $\xi^* \in Z = G \cup H$ is a fixed point of γ . Moreover, $\xi \in B \cap D$.

Proof. From (*i*), $Z = G \cup H$ is closed, so *Z* is a closed subspace of *U*. Therefore, (*U*, *m*) is a complete m-metric space. Set the a binary relation \Re on *Z* by

$$\Re = G \times H.$$

This implies that

$$\xi \Re \Im \in \Leftrightarrow (\xi, \Im) \in B \times D$$
 for all $\xi, \Im \in Z$.

The set $S = \Re \cup \Re^{-1}$ is an asymmetric relation. Directly, we set (U, m, S) as regular. Let $\{\xi_n\} \in Z$ be any sequence and $\xi \in Z$ be a point such that

$$\xi_n S \xi_{n+1}$$
 for all $n \in \mathbb{N}$

and

$$\lim_{n\to\infty} m(\xi_n,\xi) = \lim_{n\to\infty} \min\{m(\xi_n,\xi_n), m(\xi,\xi)\} = m(\xi,\xi)$$

Using the definition of *S*, we have

$$(\xi_n, \xi_{n+1}) \in (B \times D) \cup (D \times B) \text{ for all } n \in \mathbb{N}$$
 (11)

Immediately, we obtain the product of $Z \times Z$ in the m-metric space *m* as

$$m((\xi_1, \mathfrak{F}_1), (\xi_2, \mathfrak{F}_2)) = \frac{m(\xi_1, \mathfrak{F}_1) + m(\xi_2, \mathfrak{F}_2)}{2}$$

Since (U, m) is a complete m-metric space, $(Z \times Z, m)$ is complete. Furthermore, $G \times H$ and $H \times G$ are close in $(Z \times Z, m)$ because G and H are closed in (U, m). Applying the limit $n \to \infty$ to (11), we have $(\xi, \Im) \in (B \times D) \cup (D \times B)$. This implies that $\xi \in B \cap D$. Furthermore, from (11), we have $\xi_n \in B \cup D$. Thus, we obtain $\xi_n S^* \xi$ for all $n \in \mathbb{N}$. Therefore,

our theorem is proven. Furthermore, since γ is self mapping, from condition (*i*), for all $\xi, \Im \in U$, we obtain

$$(\xi, \mathfrak{F}) \text{ in } G \times H \quad \Rightarrow \quad (\gamma(\xi), \gamma(\mathfrak{F})) \in H \times G (\xi, \mathfrak{F}) \text{ in } H \times G \quad \Rightarrow \quad (\gamma(\xi), \gamma(\mathfrak{F})) \in G \times H.$$

The binary relation \Re is γ -closed, and as $B \neq \phi$, there exists $\xi_0 \in B$ such that $\gamma(\xi_0) \in D$, i.e., $\xi_0 S^* \gamma(\xi_0)$. Therefore, all the hypotheses of Theorem (2.8) are satisfied. Hence, $(\gamma)_{Fix} \neq \phi$ and also $(\gamma)_{Fix} \subseteq B \cap D$. Finally, as $\xi S^* \Im$ for all $\xi, \Im \in G \cap H$. Hence, $G \cap H$ is ∇ -directed. Hence, all conditions of Theorem 3 are satisfied and γ has a unique fixed point. \Box

4. Application

In this section, we study existence of a solution for a Volterra-type integral equation by using Theorem 2.6. Consider the following Volterra-type integral equation:

$$\xi(\alpha) = \int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma)) m\sigma + \Psi(\alpha), \ \alpha \in [0, 1],$$
(12)

where $A : [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ and $\Psi : [0,1] \rightarrow [0,1]$. Consider the Banach contraction $\delta = C([0,1], [0,1])$ of all continuous functions $\xi : [0,1] \rightarrow [0,1]$ equipped with norm $\|\xi\| = \max_{0 \le \alpha \le 1} |\xi(\alpha)|$. Define an m-metric space *m* on δ by $m(\xi, \Im) = \left\|\frac{\xi + \Im}{2}\right\|$ for each ξ , \Im in δ . Then (δ, m) is a complete m-metric space.

Definition 11. Lower and upper solutions of (9) are functions Λ and Θ in Banach space δ , respectively, such that

$$\Lambda(\alpha) \leq \int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma))\kappa\sigma + \Psi(\alpha) \text{ and } \Theta(\alpha) \geq \int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma))m\sigma + \Psi(\alpha), \ \alpha \in [0, 1]$$

In this section, we prove the existence and unique solution to the Volterra-type integral Equation (12).

Theorem 7. Consider Volterra-type integral Equation (12). Assume that there is a positive real number τ such that

$$\left|\frac{A(\alpha,\sigma,\xi) + A(\alpha,\sigma,\Im)}{2}\right| \le \left|\frac{\xi + \Im}{2}\right| e^{-\frac{1}{\left[1 + \left|\frac{\Omega+\Im}{2}\right|\right]} - \tau},\tag{13}$$

for all α , σ in [0,1] and ξ , \Im in δ . if (12) has a lower solution, then a solution exists for the integral *Equation* (12).

Proof. We define an operator $\gamma : \delta \to \delta$, F_{\Re}^m , $\eta : R^+ \to R$ by

$$\gamma(\xi(\alpha)) = \int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma)) m\sigma + \Psi(\alpha), \ \xi \in \delta,$$
$$\eta(\omega) = \ln \omega - \frac{1}{[1+\omega]}$$

and

$$F^m_{\mathfrak{W}}(\omega) = \ln \omega$$

for all $\omega \in \mathbb{R}^+$, $F_{\Re}^m \in \nabla(\rho)$ and $\eta \in \nabla(\pi)$, respectively. We can verify easily that γ is well defined and \leq on \Re is γ -closed. Note that ξ is a fixed point of γ if and only if there is a solution to (12). Now, we want to prove that γ is a F_{\Re}^m -contraction mapping with η . Let

$$(\xi, \Im) \in \Xi = \{\xi S^*\Im : m(\xi, \Im) > 0, \text{ where } m \text{ is Banach space } \},\$$

which implies that $\xi \preceq \Im$. Since \Re is γ -closed, then $\gamma(\xi) \preceq \gamma(\Im)$,

$$\begin{aligned} \left| \frac{\gamma(\xi(\alpha)) + \gamma(\Im(\alpha))}{2} \right| &= \left| \frac{\int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma)) m\sigma + \Psi(\alpha) + \int_0^{\alpha} A(\alpha, \sigma, \Im(\sigma)) m\sigma + \Psi(\alpha)}{2} \right| \\ &= \left| \frac{\int_0^{\alpha} A(\alpha, \sigma, \xi(\sigma)) m\sigma + \Psi(\alpha) + \int_0^{\alpha} A(\alpha, \sigma, \Im(\sigma)) m\sigma + \Psi(\alpha)}{2} \right| \\ &\leq \int_0^{\alpha} \left| \frac{\xi + \Im}{2} \right| e^{-\left[\frac{1}{1+\left\|\frac{\xi+\Im}{2}\right\|}\right]^{-\tau}} \\ &\leq \int_0^{\alpha} \left| \frac{\xi + \Im}{2} \right| e^{-\left[\frac{1}{1+\left\|\frac{\xi+\Im}{2}\right\|}\right]^{-\tau}} \\ &\leq \int_0^{\alpha} \max_{\alpha \in [0,1]} \left| \frac{\xi + \Im}{2} \right| e^{-\left[\frac{1}{1+\left\|\frac{\xi+\Im}{2}\right\|}\right]^{-\tau}} \\ &\leq \left\| \frac{\xi + \Im}{2} \right\| e^{-\left[\frac{1}{1+\left\|\frac{\xi+\Im}{2}\right\|}\right]^{-\tau}}, \end{aligned}$$

and so

$$\left|\frac{\gamma(\xi(\alpha)) + \gamma(\Im(\alpha))}{2}\right| \leq \left\|\frac{\xi + \Im}{2}\right\|^{-\frac{1}{\left[1 + \left\|\frac{\xi + \Im}{2}\right\|\right]} - \tau}$$

Taking the supremum norm on both sides, we have

$$\left\|\frac{\gamma(\xi(\alpha))+\gamma(\Im(\alpha))}{2}\right\| \leq \left\|\frac{\xi+\Im}{2}\right\| e^{-\frac{1}{\left[1+\left\|\frac{\xi+\Im}{2}\right\|\right]}-\tau}.$$

This implies that

$$\ln\left(\left\|\frac{\gamma(\xi(\alpha))+\gamma(\Im(\alpha))}{2}\right\|\right) \leq \ln\left(\left\|\frac{\xi+\Im}{2}\right\|^{-\frac{1}{\left[1+\left\|\frac{\xi+\Im}{2}\right\|\right]}-\tau}\right),$$

then

$$\ln\left(\left\|\frac{\gamma(\xi(\alpha)) + \gamma(\Im(\alpha))}{2}\right\|\right) = \ln\left(\left\|\frac{\xi + \Im}{2}\right\|\right) - \frac{1}{\left[1 + \left\|\frac{\xi + \Im}{2}\right\|\right]} - \tau$$

Consequently,

$$\tau + F_{\Re}^{m}\left(\left\|\frac{\gamma(\xi) + \gamma(\Im)}{2}\right\|_{tr}\right) \leq \eta\left(\left\|\frac{\xi + \Im}{2}\right\|_{tr}\right).$$

Thus,

$$\tau + F_{\Re}^m(m(\gamma(\xi), \gamma(\Im))) \le \eta(m(\xi, \Im)).$$

Therefore, γ is an (F_R^m, η) -contraction and thus, Inequality (4) holds. Since $\{\xi_\mu\}$ is an \Re -preserving sequence $\{\xi_n\}$ in Z([0, 1]) such that ξ_n converges with respect to t_m to ξ for some ξ in Z([0, 1]), we obtain

$$\xi_0(\alpha) \preceq \xi_1(\alpha) \preceq \xi_2(\alpha) \preceq \ldots \preceq \xi_n(\alpha) \preceq \xi_{n+1}(\alpha) \preceq \ldots$$

for all $\alpha \in [0, 1]$. Which implies,

$$\xi_n(\alpha) \preceq \xi(\alpha)$$
 for all $\alpha \in [0, 1]$.

Thus, $\xi, \Im \in (\gamma)_{Fix}$. Then, $\aleph = \max{\xi, \Im} \in Z([0,1])$, and thus $\xi \leq \aleph, \Im \leq \aleph, \xi S^* \aleph$ and $\Im S^* \aleph$. Hence, all axioms of Theorem 3 hold and the integral Equation (12) has a solution. \Box

Theorem 8. Consider Volterra-type integral Equation (12). Assume that A is non-decreasing in the third variables; then, there is positive real number τ such that

$$\left|\frac{A(\alpha,\sigma,\xi)+A(\alpha,\sigma,\Im)}{2}\right| \leq \left|\frac{\xi+\Im}{2}\right|e^{-\left[\frac{1}{\left[1+\left|\frac{\xi+\Im}{2}\right|\right]}\right]^{-\tau}},$$

for all α , σ in [0, 1] and ξ , \Im in δ . If (12) has an upper solution, then a solution exists for the integral Equation (12).

Proof. Define a binary relation on Banach space as follows

$$(\xi, \mathfrak{F}) \in \Xi = \{\xi S^* \mathfrak{F} \text{ with } \alpha(\xi) \succeq \alpha(\mathfrak{F}) : m(\xi, \mathfrak{F}) > 0, \text{ where } m \text{ is a Banach space} \}.$$

Now, due to the proof of the above Theorem, then all conditions of Theorem 8 and integral Equation (12) have unique solutions. \Box

Example 3. Assume that a function

$$\xi(\alpha) = \frac{\alpha}{2}$$
, for all α in $[0,1]$

is a solution of Equation (12)

$$\xi(\alpha) = \frac{3}{2}(\alpha) - (1+\alpha)\ln(1+\alpha) + \int_0^\alpha \ln(1+\xi(\sigma))m\sigma, \text{ for all } \alpha \text{ in } [0,1].$$
(14)

Proof. Let γ be a self operator from δ to δ , which is given by

$$\gamma(\xi(\alpha)) = \frac{3}{2}(\alpha) - (1+\alpha)\ln(1+\alpha) + \int_0^\alpha \ln(1+\xi(\sigma))m\sigma, \text{ for all } \alpha \text{ in } [0,1].$$

Now, we take $\tau \in [0.0091, \infty)$,

$$A(\alpha, \sigma, \xi) = \ln(1 + \xi(\sigma))$$

and

$$\Psi(\alpha) = \frac{3}{2}(\alpha) - (1+\alpha)\ln(1+\alpha).$$

Observe that given function $A(\alpha, \sigma, \xi) = \ln(1 + \xi(\sigma))$ in the third variable is nondecreasing and that $\frac{\alpha}{2} \leq \frac{3}{2}(\alpha) - (1 + \alpha)\ln(1 + \alpha) + \int_0^{\sigma}\ln(1 + \xi(\sigma))m\sigma$ for all α in [0, 1] such that $\xi(\alpha) = \frac{\alpha}{2}$ is a lower solution of (16), then the following below inequality holds,

$$\left|\frac{A(\alpha,\sigma,\xi) + A(\alpha,\sigma,\Im)}{2}\right| \le \left|\frac{\xi + \Im}{2}\right| e^{-\frac{1}{\left[1 + \left|\frac{\xi + \Im}{2}\right|\right]} - \tau}.$$
(15)

Now, from the non-decreasing function $\alpha \mapsto e^{-\frac{1}{\left[1+\left|\frac{\alpha}{2}\right|\right]}-0.091}$, we have

$$\left|\frac{\ln(1+\xi)+\ln(1+\Im)}{2}\right| \leq \left|\frac{\xi+\Im}{2}\right|e^{-\frac{1}{\left[1+\left|\frac{\xi+\Im}{2}\right|\right]}-0.091}.$$

Hence, all conditions of Theorem 7 hold and the integral Equation (12) has a unique solution $\xi(\alpha) = \frac{\alpha}{2}$ for all α in [0, 1]. \Box

Example 4. Assume that a function

$$\xi(\alpha) = \alpha$$
, for all $\alpha \in [0, 1]$

is a solution of Equation (12):

$$\xi(\sigma) = \alpha - (1 - \alpha) \ln(2 - \alpha) - \ln(2) + \int_0^\alpha \ln(2 - \xi(\sigma)) m\sigma, \text{ for all } \alpha \text{ in } [0, 1].$$
(16)

Proof. In view of the above example, the following below inequality holds for all ξ , \Im in [0, 1] and $\tau = 0.091$

$$\left|\frac{\ln(2-\xi)+\ln(2-\Im)}{2}\right| \leq \left|\frac{\xi+\Im}{2}\right| e^{-\left[\frac{1}{\left[1+\left|\frac{\xi+\Im}{2}\right|\right]}\right]^{-\tau}}.$$

Using the arguments of the above example, we can say that the all conditions of Theorem 8 hold. Hence, the integral Equation (12) has a unique solution $\xi(\alpha) = \alpha$ for all α in [0, 1]. \Box

Finally, we give an example different to the above example and others given in the literature [38] which satisfies all conditions of Theorem 15.

Example 5. Assume that a function

$$\xi(\alpha) = \frac{1}{3}\alpha$$
, for all α in $[0,1]$

is a solution of Equation (12):

$$\xi(\alpha) = \frac{5}{3}\alpha - \frac{\alpha}{1+\alpha} + \int_0^\alpha \left(\frac{\xi(\sigma)}{1+\xi(\sigma)}\right) m\sigma, \text{ for all } \alpha \text{ in } [0,1].$$
(17)

Proof. Let γ be a self operator from δ to δ , which is given by

$$\gamma(\xi(\alpha)) = \frac{5}{3}\alpha - \frac{\alpha}{1+\alpha} + \int_0^\alpha \left(\frac{\xi(\sigma)}{1+\xi(\sigma)}\right) m\sigma, \text{ for all } \alpha \text{ in } [0,1].$$

Now, we take $\tau \in [0.091, \infty)$,

$$A(\alpha,\sigma,\xi) = \frac{\xi(\sigma)}{1+\xi(\sigma)}$$

and

$$\Psi(\alpha) = \frac{5}{3}\alpha - \frac{\alpha}{1+\alpha}.$$

Observe that given the function $A(\alpha, \sigma, \xi) = \frac{\xi(\sigma)}{1+\xi(\sigma)}$ in the third variable is nondecreasing and that $\frac{1}{3}\alpha \leq \frac{5}{3}\alpha - \frac{\alpha}{1+\alpha} + \int_0^\alpha \left(\frac{\xi(\sigma)}{1+\xi(\sigma)}\right)m\sigma$ for all α in [0, 1] such that $\xi(\alpha) = \frac{1}{3}\alpha$ is a lower solution of (16), then the following below inequality holds:

$$\left|\frac{A(\alpha,\sigma,\xi) + A(\alpha,\sigma,\Im)}{2}\right| \le \left|\frac{\xi + \Im}{2}\right| e^{-\left[\frac{1}{1+\left|\frac{\xi+\Im}{2}\right|\right]}\right]^{-\tau}}.$$
(18)

Now, from the non-decreasing function $\alpha \mapsto e^{-\frac{1}{\left[1+\left|\frac{\alpha}{2}\right|\right]}-0.9}$, we have

$$\left|\frac{\frac{\xi}{1+\xi}+\frac{\Im}{1+\Im}}{2}\right| \leq \left|\frac{\xi+\Im}{2}\right|e^{-\frac{1}{\left[1+\left|\frac{\xi+\Im}{2}\right|\right]}-0.9}.$$

Hence, all axioms of Theorem 7 hold and the integral Equation (12) has a unique solution $\xi(\alpha) = \frac{\alpha}{3}$ for all α in [0, 1]. \Box

Example 6. Assume that a function

$$\xi(\alpha) = \frac{3}{5}\alpha + \frac{1}{3}$$
, for all $\alpha \in [0, 1]$

is a solution of Equation (12):

$$\xi(\sigma) = \frac{3}{5}\alpha + \frac{1}{3} - (1 - \alpha)(2 - \alpha) + 2 + \int_0^\alpha (1 + \xi(\sigma))m\sigma, \text{ for all } \alpha \text{ in } [0, 1].$$
(19)

Proof. In view of the above example, the following below inequality holds for all ξ , \Im in [0,1] and $\tau = 0.9$

$$\left|\frac{1+\xi+1+\Im}{2}\right| \leq \left|\frac{\xi+\Im}{2}\right| e^{-\frac{1}{\left[1+\left|\frac{\xi}{2}+\Im\right|\right]}-\tau}.$$

Using the arguments of the above example, we can say that the all conditions of Theorem 7 hold. Hence, the integral Equation (12) has a unique solution $\xi(\alpha) = \frac{3}{5}\alpha + \frac{1}{3}$ for all α in [0, 1]. \Box

5. Conclusions

In this article, we have introduced the notion of weak (F_{\Re}^m, η) -contractions and proved related fixed point theorems in relation theoretic m-metric space endowed with a relation \Re using a control function η . Examples and applications to Volterra-type integral equations are given to validate our main results. Analogously, such results can be extended to generalized distance spaces (such as symmetric spaces, m_bm -spaces, rmm-spaces, rm_bm -spaces, pm-spaces and p_bm -spaces) endowed with relations.

Author Contributions: M.T.: writing—original draft, methodology; M.A.: conceptualization, supervision, writing—original draft; E.A.: conceptualization, writing—original draft; A.A.: methodology, writing—original draft; S.S.A.: investigation, writing—original draft; N.M.: conceptualization, supervision, writing—original draft. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors A. ALoqaily, S. S. Aiadi and N. Mlaiki would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest: The authors declare to support that they have no competing interests concerning the publication of this article.

References

- 1. Banach, S. Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales. *Fund. Math.* **1922**, *3*, 133–181. [CrossRef]
- 2. Ameer, E.; Aydi, H.; Arshad, M.; Alsamir, H.; Noorani, M.S. Hybrid multivalued type contraction mappingsin *αK*-complete partial b-metric Spaces and applications. *Symmetry* **2019**, *11*, 86.

[CrossRef]

- 3. Aslam, M.S.; Chowdhury, M.S.R.; Guran, L.; Manzoor, I.; Abdeljawad, T. Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. *AIMS Math.* **2023**, *8*, 4944–4963. [CrossRef]
- Azmi, F.M. Fixed-Point Results for α-ψ-Fuzzy Contractive Mappings on Fuzzy Double-Controlled Metric Spaces. Symmetry 2023, 15, 716. [CrossRef]
- 5. Garodia, C.; Uddin, I.; Abdalla, B.; Abdeljawad, T. A modified proximal point algorithm in geodesic metric space. *AIMS Math.* **2023**, *8*, 4304–4320. [CrossRef]
- Aydi, H.; Abbas, M.; Vetro, C. Partial hausdorff metric and Nadler's fixed point theorem on partial metric spaces. *Topol. Appl.* 2012, 159, 3234–3242. [CrossRef]
- 7. Beg, I.; Butt, A.R. Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces. *Math. Commun.* **2010**, *15*, 65–76.
- 8. Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in *S*-metric spaces. *AIMS Math.* **2023**, *8*, 4407–4441. [CrossRef]
- 9. Kaushik, K.; Kumar, A.; Khan, A.; Abdeljawad, T. Existence of solutions by fixed point theorem of general delay fractional differential equation with pp p-Laplacian operator.*AIMS Math.* **2023**, *8*, 10160–10176. [CrossRef]
- 10. Matthews, S.G. Partial metric topology. Proc. 8th summer conference on general topology and applications. *N. Y. Acad. Sci. USA* **1994**, *728*, 183–197. [CrossRef]
- 11. Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475-488. [CrossRef]
- 12. Valero, O. On Banach fixed point theorems for partial metric spaces. App. Gen. Topol. 2005, 6, 229–240. [CrossRef]
- 13. Boyd, D.W.; Wong, J.S. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [CrossRef]
- 14. Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. *Indag. Math.* **1968**, *71*, 27–35. [CrossRef]
- 15. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. *Fixed Point Theory Appl.* **2012**, 2012, 94. [CrossRef]
- 16. Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 38. [CrossRef]
- 17. Altun, I.; Minak, G.; Dag, H. Multivalued F -contractions on complete metric space. J. Nonlinear Convex Anal. 2015, 16, 659–666.
- 18. Ali, A.; Hussain, A.; Arshad, M.; Tariq, H.A.S.M. Certain new development to the orthogonal binary relations. *Symmetry* **2022**, *14*, 10. [CrossRef]
- 19. Kumar, S.; Luambano, S. On some fixed point theorems for multivalued F-contractions in partial metricspaces. *Mathematica* **2021**, 54, 151–161.
- Tariq, M.; Ameer, E.; Ali, A.; Jarad, H.A.H.F. Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations. *Aims Math.* 2022, *8*, 3842–3859. [CrossRef]
- 21. Vetro, C.; Vetro, F. A homotopy fixed point theorem in 0 -complete partial metric space. Filomat 2015, 29, 2037–2048. [CrossRef]
- 22. Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [CrossRef]
- 23. A. Alam, M. Imdad. Relation-theoretic metrical coincidence theorems. Filomat 2017, 31, 4421–4439. [CrossRef]
- Altun, I.; Asim, M.; Imdad, M.; Alfaqih, W.M. Fixed point results for F_R-generalized contractive mappings in partial metric spaces. *Math. Slovaca* 2019, 69, 1413–1424. [CrossRef]
- 25. Jain, R.; Nashine, H.K.; Kadelburg, Z. Some fixed point results on relational quasi partial metric spaces and application to non-linear matrix equations. *Symmetry* **2021**, *13*, 993. [CrossRef]
- 26. Zada, M.B.; Sarwar, M. Common fixed point theorems for rational *F*_{*R*}-contractive pairs of mappings with applications. *J. Ineq. Appl.* **2019**, 2019, 14.
- 27. Sawangsup, K.; Sintunavarat, W. New algorithm for finding the solution of nonlinear matrix equations based on the weak condition with relation-theoretic F-contractions. *J. Fixed Point Theory Appl.* **2021**, *23*, 20. [CrossRef]
- Asadi, M.; Karapinar, E.; Salimi, P. New extension of *p*-metric spaces with fixed points results on M-metric spaces. *J. Ineq. Appl.* 2014, 18, 2014. [CrossRef]
- Asadi, M.; Azhini, M.; Karapinar, E.; Monfared, H. Simulation functions over M-metric Spaces. *East. Asian Math. J.* 2017, 33, 559–570.
- 30. nar, E.K.; Abbas, M.; Farooq, S. A discussion on the existence of best proximity points that belong to the zero set. *Axioms* **2020**, *9*, 19.
- 31. Monfared, H.; Azhini, M.; Asadi, M. Fixed point results on *m*-metric spaces. J. Math. Anal. 2016, 7, 85–101.
- 32. Patle, P.R.; Patel, D.K.; Aydi, H.; Gopal, D.; Mlaiki, N. Nadler and Kannan type set valued mappings in M-metric spaces and an application. *Mathematics* **2019**, *7*, 373. [CrossRef]
- 33. Tariq, M.; Abbas, M.; Hussain, A.; Arshad, M.; Ali, A.; Sulami, H. Fixed points of non-linear set-valued (α^* , φ_M)-contraction mappings and related applications. *AIMS Math.* **2022**, *8*, 3842–3859. [CrossRef]
- 34. Secelean, N.A. weak F-contractions and some fixed point results. Bull. Iran. Math. Soc. 2016, 42, 779–798.
- 35. Imdad, M.; Khan, Q.; Alfaqih, W.M.; A, R. Gubran relation theoretic (F,R)-contraction principle with applications to matrix equations. *Bull. Math. Anal. Appl.* **2018**, *10*, 1–12.
- 36. Tariq, M.; Arshad, M.; Abbas, M.; Ameer, E.; Mansour, S.; Aydai, H. A Relation theoretic M-metric fixed point algorithm and related appications. *AIMS Math.* 2023, *Submitted*.

- 37. Kirk, W.A.; Srinivasan, P.S.; Veeramani, P. Fixed Points for mapping satsifying Cyclic contractive conditions. *Fixed Point Theory* **2003**, *4*, 79–89.
- 38. Waleed, M.A.; Imdad, M.; Gubran, R.; Idrees, A.K. Relation-theoretic coincidence and common fixed point results under (F,R)g-contractions with an application. *Fixed Point Theory Appl.* **2019**, 2019, 12. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.