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1. Introduction and Preliminaries

The classical Banach contraction theorem [1] is an important and fruitful tool in
nonlinear analysis. In the past few decades, many authors have extended and generalized
the Banach contraction mapping principle in several ways (see [2–12]). On the other hand,
several authors, such as Boyd and Wong [13], Browder [14], Wardowski [15], Jleli and
Samet [16], and many other researchers have extended the Banach contraction principle
by employing different types of control functions (see [17–21] and the references therein).
Alam et al. [22] introduced the concept of the relation-theoretic contraction principle and
proved some well known fixed-point results in this area. Afterward, many researchers
focused on fixed-point theorems in relation-theoretic metric spaces. Here, we will present
some basic knowledge of relation-theoretic metric spaces (see more detail in [23–26]).
Furthermore, Sawangsup et al. [27] introduced the concept of the (F, γ)<-contractive of
mappings to extend F-contractions in metric spaces endowed with binary relations. One of
the latest extensions of metric spaces and partial metric spaces [10] was given in paper [28],
which completed the concept of m-metric spaces. Using this concept, several researchers
have proven some fixed point results in this area (see [20,29–33]). Subsequently, since
every F-contraction mapping is contractive and also continuous, Secelean et al. [34] proved
that the continuity of an F-contraction can be obtained from condition F2. After that,
Imdad et al. [35] introduced the idea of a new type of F-contraction by dropping the
condition of F1 and replacing condition (F3) with the continuity of F. They also proved
some new fixed point results in relation to theoretic metric spaces.

In this paper, we introduce weak
(

Fm
< , η

)
-contractive mappings and cyclic-type weak(

Fm
< , η

)
-contractions and provide some new fixed point theorems for such mappings in

relation to theoretic m-metric spaces. Finally, as an application, we discuss the lower and
upper solutions of Volterra-type integral equations.
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Throughout this article, N indicates a set of all natural numbers, R indicates a set of
real numbers and R+indicates a set of positive real numbers. We also denote N0 = N∪ {0}.
Henceforth, U will denote a non-empty set and the self mapping γ : U → U with a Picard
sequence based on an arbitrary ξ0 in U is given by ξn = γ(ξn−1) = γn(ξ0), where all n are
members of N and γn denotes the nth-iteration of γ.

The notion of m-metric spaces was introduced by Asadi et al. [28] as a real generaliza-
tion of a partial metric space and they supported their claim by providing some constructive
examples. For more detail, see, e.g., [29,31].

Definition 1 ([28]). An m-metric space on a non-empty set U is a mapping m : U ×U → R+

such that for all ξ,=,ℵ ∈ U,

(i) ξ = = ⇐⇒ m(ξ, ξ) = m(=,=) = m(ξ,=)(T0-separation axiom);
(ii) mξ= ≤ m(ξ,=) (minimum self distance axiom);
(iii) m(ξ,=) = m(=, ξ) (symmetry);
(iv) m(ξ,=)−mξ= ≤ (m(ξ,ℵ)−mξℵ) + (m(ℵ,=)−mℵ=) (modified triangle inequality)

where

mξ= = min{m(ξ, ξ), m(=,=)};
Mξ= = max{m(ξ, ξ), m(=,=)}.

The pair (U, m) is called an m-metric space on nonempty U.

Lemma 1 ([28]). Each partial metric forms an m-metric space but the converse is not true.

Among the classical examples of an m-metric space is a pair (U, m), where U =
{ξ,=,ℵ} and m is a self mapping on U given by m(ξ, ξ) = 1, m(=,=) = 9 and m(ℵ,ℵ) = 5.
It is clear that m is an m-metric space. Note that m does not form a partial metric space.

Every m-metric space m on U generates a T0 topology, e.g., τm, on U which is based
on a collection of m-open balls:

{Bm(ξ, ε) : ξ ∈ U, ε > 0},

where
Bm(ξ, ε) = {= ∈ U : m(ξ,=) < mξ= + ε}for all ξ ∈ U, ε > 0.

If m is an m-metric space on U, then the functions mw and ms : U ×U → R+ given by

mw(ξ,=) = m(ξ,=)− 2mξ= + Mξ=,

ms =

{
m(ξ,=)−mξ=, if ξ 6= =
0, if ξ = =.

,

define ordinary metrics on U. It is easy to see that mw and ms are equivalent metrics on U.

Definition 2 ([28]). Let {ξn} be a sequence in an m-metric space (U, m), then

(i) {ξn} is said to be convergent with respect to τm to ξ if and only if

lim
µ→∞

(
m(ξn, ξ)−mξnξ

)
= 0. for all n ∈ N.

(ii) If limn,m→∞
(
m(ξn, ξm)−mξnξm

)
and limn,m→∞

(
Mξn ,ξm −mξnξm

)
for all n, m ∈ N exists

and is finite, then the sequence {ξn} in a m-metric space (U, m) is m-Cauchy.
(iii) If every m-Cauchy {ξn} in U is m-convergent with respect to τm to ξ in U such that

lim
n→∞

m(ξn, ξ)−mξnξ = 0, and lim
n→∞

(
Mξn ,ξ −mξnξ

)
= 0. for all n ∈ N,
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then (U, m) is said to be complete.
(iv) {ξn} is an m-Cauchy sequence if and only if it is a Cauchy sequence in the metric space

(U, mw),
(v) (U, m) is M-complete if and only if (U, mw) is complete.

Denote ∇(F) by the collection of all mappings F : (0, ∞)→ R satisfying [15]:

(F1) F(ξ) < F(=) for all ξ < =;
(F2) For each sequence {ξn} of positive numbers

lim
n→∞

ξn = 0 if lim
n→∞

F(ξn) = −∞;

(F3) There exists p ∈ (0, 1) such that limn→0+ ξ pF(ξ) = 0.

As in [27], we denote ∇(ρ)and ∇(π) (where ρ and π are two new control functions)
by the collection of all mappings F : (0, ∞)→ R, η : (0, ∞)→ R, respectively, satisfying:

(F2) For each sequence {ξn} of positive numbers, limn→∞ ξn = 0 if limn→∞ F(ξn) = −∞;
(F3) F is lower semicontinuous;
(η1) For each sequence {ξn} of positive numbers, limn→∞ ξn = 0 if limn→∞ η(ξn) = −∞;
(η2) η is right upper semicontinuous.

Now, we present some extensive examples of control functions in ρ and η.

Example 1. The following functions belong to ∇(ρ) and ∇(π)

(1) F1(ξ) =

{ −1
ξ , if ξ ∈ [3, ∞)
−1

(ξ+1) , if ξ ∈ (3, ∞)
(2) F2(ξ) =

{
−1
ξ + ξ, if ξ ∈ [2.8, ∞)

2ξ − 3, if ξ ∈ (3, ∞)

(3) η1(v) =

{
−1
ξ , if ξ ∈ (0, 4.6)

cos ξ, if ξ ∈ [4.6, ∞)
(4) η2(s) =

{
ln
(

ξ
3 + sin ξ

)
, if ξ ∈ (0, 3.2)

sin ξ, if ξ ∈ [3.2, ∞)
.

Let <=
{
(ξ,=) ∈ U2 : ξ,= ∈ U

}
be a relation on U. If (ξ,=) ∈ < then we say that

ξ � = (ξ precede =) under < denoted by ξ<=, and the inverse of < is denoted by <−1 ={
(ξ,=) ∈ U2 : (=, ξ) ∈ <

}
. The set S= <∪<−1 ⊆ U2 consequently illustrates another

relation S∗ on U given by ξS∗= ⇔ =Sξ with ξ 6= =.
As (γ)Fix denotes a set of all fixed points of γ, Θ([Ψ, S]) = {ξ ∈ U : ξSγ(ξ)} and

z(ξ,=,∇) denotes the fashion of all paths in ∇ from ξ to =.

Definition 3 ([22]). Let U 6= φ and γ : U → U, and < is a binary relation on U. Then, < is
γ-closed if for any Ω,= ∈ U,

ξ<= ⇒ γ(ξ)<γ(=).

Definition 4 ([22]). Let U 6= φ and < be a binary relation on U. Then, < is transitive if ξ<ℵ ∈
and ℵ<= ⇒ ℵ<= for all ξ,=,ℵ ∈ U.

Definition 5 ([22]). Let ξ,= ∈ U. A path of length n ∈ N in <: ξ → = is a finite sequence
{t0, t1, t2, . . . , tn} ⊆ U such that

(i) t0 = ξ and tn = =;
(ii)

(
tj, tj+1

)
∈ < for all j in this set {0, 1, 2, . . . , n− 1}.

Consider that a class of all paths from ξ to = in < is written as ∇(ξ,=,<). Note that a path
of length n involves n + 1 elements of U, although they are not necessarily distinct.

Definition 6 ([36]). Let (U, m) be a relation theoratic m-metric space endowed with binary relation
< on U, which is regular if for each sequences {ξn} in U, we have

ξn<ξn+1 for all n ∈ N
limn→∞

(
m(ξn, ξ)−mξnξ

)
= 0 i.e., ξn

tm→ ξ ∈ <

}
⇒ ξn<ξ for all n ∈ N.
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Definition 7 ([36]). Let (U, m) be a relation theoratic m-metric space endowed with binary
relation < on U. A sequence ξn ∈ U is called <-preserving if ξn<ξn+1.

Definition 8 ([36]). Let (U, m) be a relation theoratic m-metric space endowed with binary
relation < on U, which is said to be <-complete if for each <-preserving m-Cauchy sequence {ξn}
in U, there exists some ξ in U such that

lim
n→∞

m(ξn, ξ)−mξnξ = 0, and lim
n→∞

(
Mξn ,ξ −mξnξ

)
= 0.

Definition 9 ([36]). Let U 6= φ and γ : U → U. Then, γ is said to be <-continuous at ξ if, for <-
preserving sequence {ξn} with ξn → ξ, we have γ(ξn)→ γ(ξ) as µ→ ∞. γ is <-continuous if it
is <-continuous at each point of U.

2. Weak
(

Fm
< , η

)
-Contractions

In this section, we introduce the concept of weak
(

Fm
< , η

)
-contraction relations and

establish related fixed point theorems in relation theoretic m-metric space, where η is a
control function and < is a relation. We begin with the following Lemma.

Lemma 2. Assume that (U, m) is an m-metric space and let {ξn} be a sequence in U such that
limn→∞ m(ξn, ξn+1) = 0. If {ξn} is not an m-Cauchy sequence in U, then there exists ε > 0 and
two subsequences

{
ξα(χ)

}
and

{
ξβ(χ)

}
of positive integers such that {αχ} > {βχ} > χ and the

following sequences converges to ε+ as χ converges to +∞. With M∗(ξ,=) = m(ξ,=)−mξ=;

M∗
(

ξα(χ), ξβ(χ)

)
, M∗

(
ξα(χ), ξβ(χ)+1

)
, M∗

(
ξα(χ)−1, ξβ(χ)

)
, (1)

M∗
(

ξβ(χ)+1ξβ(χ)−1

)
, M∗

(
ξβ(χ)+1, ξβ(χ)+1

)
.

Proof. If {ξn} is not an m-Cauchy sequence in U, there exists ε > 0 and two sequences
{αχ} and {βχ} of positive integers such that {αχ} > {βχ} > χ and

M∗
(

ξα(χ), ξβ(χ)−1

)
< ε, M∗

(
ξα(χ), ξβ(χ)

)
≥ ε, (2)

for all positive integers χ. Using the triangle inequality of m-metric space, we obtain

ε ≤ M∗
(

ξα(χ), ξβ(χ)

)
≤ M∗

(
ξα(χ), ξβ(χ)

)
+ M∗

(
ξα(χ)−1, ξβ(χ)

)
< M∗

(
ξα(χ), ξβ(χ)

)
+ ε.

Thus,
lim

χ→∞
M∗
(

ξα(χ), ξβ(χ)

)
= ε,

which implies
lim

χ→∞

(
m
(

ξα(χ), ξβ(χ)

)
−mξα(χ),ξβ(χ)

)
= ε.

Furthermore,
lim

χ→∞
mξα(χ),ξβ(χ)

= 0.

Hence,
lim

χ→∞
m
(

ξα(χ), ξβ(χ)

)
= ε. (3)
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Again, using the triangle inequality,

M∗
(

ξα(χ), ξβ(χ)

)
≤ M∗

(
ξα(χ), ξβ(χ)+1

)
+ M∗

(
ξα(χ)+1, ξβ(χ)+1

)
+M∗

(
ξα(χ)+1, ξβ(χ)

)
,

and

M∗
(

ξα(χ)+1, ξβ(χ)+1

)
≤ M∗

(
ξα(χ), ξβ(χ)+1

)
+ M∗

(
ξα(χ), ξβ(χ)

)
+M∗

(
ξα(χ)+1, ξβ(χ)

)
.

Taking χ→ +∞ in the above inequality and from (3), we have

lim
χ→∞

M∗
(

ξα(χ)+1, ξβ(χ)+1

)
= ε.

Now, we introduce the concept of weak
(

Fm
< , η

)
-contractions.

Definition 10. Given a relation theoretic m-metric space (U, m) endowed with binary relation <
on U. Suppose

Ξ = {ξS∗= : m(ξ,=) > 0}.

We can say that a self mapping γ : U → U is a weak
(

Fm
< , η

)
-contraction if there exists

Fm
< ∈ ∇(ρ), η ∈ ∇(π) and

τ + Fm
< (m(γ(ξ), γ(=))) ≤ η(m(ξ,=)), (4)

for all (ξ,=) ∈ Ξ.

Our main result is demonstrated in the following.

Theorem 1. Let (U, m) be a complete relation theoretic m-metric space endowed with transitive
binary relation < on U, γ : U → U, satisfying the following conditions:

(i) Θ([γ,<]) is non-empty;
(ii) < is γ-closed;
(iii) γ is <-continuous;
(iv) γ is a weak

(
Fm
< ,η

)
-contraction mapping with Fm

< (ξ) > η(ξ) for all ξ > 0 .

Then, γ possesses a fixed point in U.

Proof. Let ξ0 ∈ Θ([γ,<]). Define a sequence {ξn+1} in U by ξn+1 = γ(ξn) = γn+1(ξ0) for
each n ∈ N. If there exists a member n0 of N such that γ(ξn0) = ξn0 , then γ has a fixed
point ξn0 and the proof is complete. Let

ξn+1 6= ξn, (5)

for all member n of N such that m(ξn+1, ξn) > 0. Since γ(Ω0)S∗Ω0, and by the γ-closedness
of <, Ωn+1S∗Ωn for all n ∈ N. Thus, (ξn, ξn+1) ∈ Ξ and from (iv) we obtain

Fm
< (m(ξn+1, ξn)) = Fm

< (m(γ(ξn), γ(ξn−1)))

≤ Fm
< (m(ξn, ξn−1))− τ



Symmetry 2023, 15, 922 6 of 18

Let δn = m(ξn, ξn+1) for all n ∈ N. Then, δµ > 0 for all n ∈ N, and using (5), one
obtains

Fm
< (δn) ≤ (δn−1)− τ < Fm

< (δn−1)− τ ≤ η(δn−2)− 2τ ≤ . . . ≤ η(δn−2)− nτ.

From the above inequality, we obtain limn→∞ Fm
< (δn) = −∞. Then, by (F2), we have

lim
n→∞

δn = 0. (6)

From (3) and (6), we have ξn+1 6= ξn for all n, m ∈ N with n 6= m. Now, we shall prove
that {ξn} is am m-Cauchy sequence in (U, m). Assume, in contrast, that {ξn} is not an
m-Cauchy sequence. By Lemmas 2.1 and 2.6, there exists ε > 0 and two subsequences{

ξα(χ)

}
and

{
ξβ(χ)

}
of {ξn} such that

{
ξα(χ)

}
>
{

ξβ(χ)

}
> χ and

lim
χ→∞

m
(

ξα(χ), ξβ(χ)

)
= ε

lim
χ→∞

m
(

ξα(χ)−1, ξβ(χ)−1

)
= ε.

Since < is a transitive relation,
(

ξα(χ)−1, ξβ(χ)−1

)
∈ <. From condition (iv), we have

τ + Fm
<

(
m
(

ξα(χ), ξβ(χ)

))
≤ η

(
m
(

ξα(χ)−1, ξβ(χ)−1

))
and so

τ + lim
χ→∞

inf Fm
<

(
m
(

ξα(χ), ξβ(χ)

))
≤ lim

χ→∞
inf η

(
m
(

ξα(χ)−1, ξβ(χ)−1

))
≤ lim

χ→∞
sup η

(
m
(

ξα(χ)−1, ξβ(χ)−1

))
.

Thus,

τ + Fm
< (ε

∗) ≤ η(ε∗)

< Fm
< (ε

∗)

is a contradiction; hence, {ξn} is an m-Cauchy sequence in (U, m). Since (U, m) is <-
complete, there exists ξ∗ ∈ U such that

{
ξµ

}
converges to ξ∗ with respect to tm; that is,

m(ξn, ξ∗)−mξn ,ξ∗ → 0 as n→ ∞. Now, the <-continuity of γ implies that

ξ = lim
n→∞

ξn+1 = lim
n→∞

γ(ξn) = γ(ξ).

Therefore, ξ is a fixed point of γ.

Example 2. Let U = [0, ∞) and m be a relation theoretic m-metric space defined by m(ξ,=) =
ξ+=

2 for all ξ,= ∈ U. Then, (U, m) is a complete m-metric space. Consider a sequence {vn} ⊆ U
given by vn = n(n+1)(n+2)

3 for all µ ∈ N. Set a binary relation < on U by <={(1, 1)} ∪
{(1, vΓ) : Γ ∈ N } ∪ {(vΓ, vΛ) : Γ < Λ for each Γ, Λ ∈ N}. Define a mapping γ : U → U by

γ(ξ) =


ξ, if ξ ∈ [0, 1]

ceil(ln ξ), if ξ ∈ [1, v1](
ξ−v1

v2−v1

)
+ 1, if ξ ∈ [v1, v2]

vn−1(vn+1−ξ)+vn(ξ−vn)
vn+1−vn

, if ξ ∈
[
vn, vµ+1

]
for all n = 2, 3, . . . 100.
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Obviously, < is γ-closed and γ is continuous. Define Fm
< , η : (0, ∞)→ R by

Fm
< (v) = {−1

v
+

4
5

v if v ∈ (0, 1.1]
−1
v

+ v if v ∈ (1.1, ∞) and

η(v) = {−1
v

+
1
3

v if v ∈ (0, 6.5)
−2
v

+ v if v ∈ [6.5, ∞)

Now, we will show that γ is a
(

Fm
< ,η

)
-contraction mapping. Assume that (ξ,=) ∈ Ξ =

{ξS∗= : m(γ(ξ), γ(=)) > 0}. Therefore, we will discuss four cases.
Case 1 If ξ = 1 and = = v2, then m(ξ,=) = 4.5 and m(γ(ξ), γ(=)) = 1.5,

2 + Fm
< (m(γ(ξ), γ(=))) = 2− 1

m(γ(ξ), γ(=)) +
4
5

m(γ(ξ), γ(=))

≤ − 2
m(ξ,=) + m(ξ,=) = η(m(ξ,=))

Case 2 If ξ = 1 and = = vΓ for all Γ > 2, then m(ξ,=) =
∣∣∣ 1+vΓ

2

∣∣∣ ≥ 10.5 and

m(γ(ξ), γ(=)) =
∣∣∣ 1+vΓ−1

2

∣∣∣ ≥ 4.5,

2
∣∣∣∣1 + vΓ−1

2

∣∣∣∣− ∣∣∣∣1 + vΓ

2

∣∣∣∣ < 2
∣∣∣∣1 + vΓ−1

2

∣∣∣∣ < ∣∣∣∣1 + vΓ

2

∣∣∣∣∣∣∣∣1 + vΓ−1

2

∣∣∣∣
<

∣∣∣∣1 + vΓ

2

∣∣∣∣∣∣∣∣1 + vΓ−1

2

∣∣∣∣(∣∣∣∣1 + vΓ

2

∣∣∣∣∣∣∣∣1 + vΓ−1

2

∣∣∣∣− 2
)

which implies

2 +
2∣∣∣ 1+vΓ
2

∣∣∣ − 1∣∣∣ 1+vΓ−1
2

∣∣∣ ≤
∣∣∣∣1 + vΓ

2

∣∣∣∣− ∣∣∣∣1 + vΓ−1

2

∣∣∣∣,
and thus,

2− 1∣∣∣ 1+vΓ−1
2

∣∣∣ −
∣∣∣∣1 + vΓ−1

2

∣∣∣∣ ≤ − 2∣∣∣ 1+vp
2

∣∣∣ −
∣∣∣∣1 + vΓ

2

∣∣∣∣.
Then,

2 + Fm
< (m(γ(ξ), γ(=))) = 2− 1

m(γ(ξ), γ(=)) + m(γ(ξ), γ(=))

≤ − 2
m(ξ,=) + m(ξ,=) = η(m(ξ,=)).

Case 3 If ξ = v1 and = = v2, then m(ξ,=) = 5 and m(γ(ξ), γ(=)) = 1,

2 + Fm
< (m(γ(ξ), γ(=))) = 2− 1

m(γ(ξ), γ(=)) +
4
5

m(γ(Ω), γ(=))

≤ − 2
m(ξ,=) + m(ξ,=) = η(m(ξ,=)).

Case 4 If ξ = vΓ and = = vΛ for all Γ and Λ in N and (Γ, Λ) is not equal to (1, 2) with
Γ < Λ, then m(ξ,=) =

∣∣∣vΓ+vΛ
2

∣∣∣ ≥ 14 and m(γ(ξ), γ(=)) =
∣∣∣vΓ−1+vΛ−1

2

∣∣∣ ≥ 7,

2
∣∣∣∣vΓ−1 + vΓ−1

2

∣∣∣∣− ∣∣∣∣vΓ + vΛ
2

∣∣∣∣ < 2
∣∣∣∣vΓ−1 + vΛ−1

2

∣∣∣∣ < ∣∣∣∣vΓ + vΛ
2

∣∣∣∣∣∣∣∣vΓ−1 + vΛ−1
2

∣∣∣∣
<

∣∣∣∣vΓ + vΛ
2

∣∣∣∣∣∣∣∣vΓ−1 + vΛ−1
2

∣∣∣∣(∣∣∣∣vΓ + vΛ
2

∣∣∣∣∣∣∣∣vΓ−1 + vΛ−1
2

∣∣∣∣− 2
)

,
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which implies

2 +
2∣∣∣vΓ+vΛ
2

∣∣∣ − 1∣∣∣vΓ−1+vΛ−1
2

∣∣∣ ≤
∣∣∣∣vΓ + vΛ

2

∣∣∣∣− ∣∣∣∣vΓ−1 + vΛ−1

2

∣∣∣∣.
Then,

2− 1∣∣∣vΓ−1+vΛ−1
2

∣∣∣ +
∣∣∣∣vΓ−1 + vΛ−1

2

∣∣∣∣ ≤ − 2∣∣∣vΓ+vΛ
2

∣∣∣ + 2∣∣∣vΓ+vΛ
2

∣∣∣ .
Hence,

2 + Fm
< (m(γ(ξ), γ(=))) = 2− 1

m(γ(ξ), γ(=)) + m(γ(ξ), γ(=))

≤ − 2
m(ξ,=) + m(ξ,=) = η(m(ξ,=)).

Therefore, from all cases, we deduce that

τ + Fm
< (m(γ(ξ), γ(=))) ≤ η(m(ξ,=)),

for all ξ,= ∈ Ξ. Then, γ is a weak
(

Fm
< ,η

)
-contraction mapping with τ = 2. Furthermore,

there exists ξ0 = 1 in U such that Ω0S∗γ(Ω0) and the class Θ([γ,<]) is non-empty. Thus, all
conditions of Theorem 2.3 hold and γ has a fixed point.

Theorem 2. Theorem 1 remains true if the condition (ii) is replaced by the following:

(ii)′ (X, κ,∇) is regular.

Proof. Similar to the argument of Theorem 1 we will show the sequence {ξn} is m-cauchy
and converges to some ξ in U such that m(ξn, ξ)−mξn ,ξ as n→ ∞. Now,

lim
n→∞

m(ξn, ξ) = lim
n→∞

mξn ,ξ = lim
n→∞

min{m(ξn, ξn), m(ξ, ξ)} = m(ξ, ξ)

= lim
n,m→∞

m(ξn, ξm) = 0 and lim
n,m→∞

mξn ,ξm = 0.

As ξnS∗ξn+1, then ξnS∗ξ for all n ∈ N. Set L = {n ∈ N : γ(ξn) = γ(ξ)}. We have two
cases dependent on L.

Case 1: If {L is finite}, then there exists n0 ∈ N such that γ(ξn) 6= γ(ξ) for every
n ≥ n0. Moreover, ξnS∗ξ and γ(ξn)S∗γ(ξ) for all n ≥ n0. Since γ is a weak

(
Fm
< , η

)
-

contraction mapping, we have

τ + Fm
<
(
m
(
γ
(
ξµ

)
, γ(ξ)

))
≤ η

(
m
(
ξµ, ξ

))
.

Since, limn→∞ m(ξn, ξ) = 0,

lim
n→∞

Fm
< (m(ξn, ξ)) = −∞.

Hence,
lim

n→∞
Fm
< (m(γ(ξn), γ(ξ))) = −∞.

Therefore, limn→∞ m(γ(ξn), γ(ξ)) = 0 and γ(ξ) = ξ, where ξ is a fixed point of γ.
Case 2: If { L is infinite}, then there exists a subsequence

{
ξnk

}
⊂ {ξn} such that

ξnk+1 = γ
(
ξnk

)
= γ(ξ) for all k ∈ N. Thus, γ

(
ξnk

)
→ γ(ξ) with respect to tm as ξn → ξ,

then γ(ξ) = ξ, i.e., γ has a fixed point. Hence, the proof is complete.

Now, we discuss various results to ensure the uniqueness of the fixed points:
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Theorem 3. If z(ξ,=,∇) 6= φ for all ξ,= ∈ (γ)Fix in Theorem 1 and Theorem 2, then γ
possesses a unique fixed point.

Proof. Let ξ,= ∈Fix(γ) such that ξ 6= =. Since z(ξ,=,∇) 6= φ, then there exists a path
({a0, a1, . . . an}) of some finite length µ in∇ from ξ to= (with as 6= as+1 for all s ∈ [0, p− 1]).
Then, a0 = ξ, ak = =, asS∗as+1 for every s ∈ [0, p− 1]. As as ∈ γ(U), γ(as) = as for all
s ∈ [0, p− 1] and since Fm

η (ξ) > η(ξ), we obtain

Fm
R (m(as, as+1)) = Fm

< (m(γ(as), γ(as+1))) ≤ η(m(as, as+1))

Since Fm
< (a) > η(a) for all a > 0,

Fm
< (m(as, as+1)) < Fm

< (m(as, as+1)).

Hence, γ possesses a unique fixed point.

Theorem 4. Let (U, m) be a complete relation theoretic m-metric space endowed with a transitive
binary relation < on U. Let γ : U → U satisfy the following:

(i) The class Θ([γ,<]) is nonempty;
(ii) The binary relation < is γ-closed;
(iii) The mapping γ is <-continuous;
(iv) There exists Fm

< ∈ ∇(ρ), η ∈ ∇(π) and ξ > 0 such that

τ + Fm
<

(
κ
(

m(ξ), γ2(ξ)
))
≤ η(m(ξ, γ(ξ)))

for all ξ ∈ U, with γ(ξ)S∗γ2(ξ) and Fm
η (ξ) > η(ξ) for all ξ > 0.

Then, γ has a fixed point.
Furthermore, if the following conditions are satisfied:

(v) (iv)
′

(vi) ξ ∈ (γn)Fix (for some n ∈ N) which implies that ξS∗γ(ξ).

Then, (γn)Fix = (γ)Fix for each n is a member of N.

Proof. Let ξ0 ∈ Θ([γ,<]), i.e., ξ0S∗γ(ξ0), then, from (ii), we obtain ξnS∗ξn+1 for each
n ∈ N. Denote ξn+1 = γ(ξn) = γn+1(ξ0) for all n ∈ N. If there exists n0 ∈ N such that
γ(ξn0) = ξn0 , then γ has a fixed point ξn0 . Now, assume that

ξn+1 6= ξn, (7)

for every n ∈ N. Then, ξnS∗ξn+1(for all n ∈ N). Continuing this process and from (iv)
we have,

Fm
<

(
m
(

γ(ξn−1), γ2(ξn−1)
))
≤ Fm

< (m(ξn−1, γ(ξn−1))) ≤ m(ξn−1, ξn)− τ,

for all n ∈ N, which implies,

Fm
< (m(ξn, ξn+1)) ≤ η(m(ξn−1, ξn))− τ

< Fm
< (m(ξn−2, ξn−1))− τ

≤ η(m(ξn−1, ξn))− 2τ

. . .

≤ η(m(ξ0, ξ1))− nτ.
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Setting n→ ∞ in the above inequality, we deduce that limn→∞ Fm
< (m(ξn, ξn+1)) = −∞.

Since Fm
< ∈ ∇(ρ), then

lim
n→∞

m(ξn, ξn+1) = 0. (8)

From conditions (7) and (8), we have ξn+1 6= ξn for all n, m ∈ N with n 6= m. Now,
we will prove that {ξn} is an m-Cauchy sequence in (U, m). Assume, in contrast, that
{ξn} is not an m-Cauchy sequence; then, by Lemma 2 and (6) , there exists ε > 0 and two
subsequences

{
ξα(χ)

}
and

{
ξβ(χ)

}
of {ξn} such that {α(χ)} > {β(χ)} > χ and

lim
χ→∞

m
(

ξα(χ), ξβ(χ)

)
= ε and

lim
χ→∞

m
(

ξα(χ)−1, ξβ(χ)−1

)
= ε.

Since < is a transitive relation,
(

ξα(χ)−1, ξβ(χ)−1

)
∈ <. From condition (iv),

τ + Fm
<

(
m
(

ξα(χ), ξβ(χ)

))
≤ η

(
m
(

ξα(χ)−1, ξβ(χ)−1

))
and hence,

τ + lim
χ→∞

inf Fm
<

(
m
(

ξα(χ), ξβ(χ)

))
≤ lim

χ→∞
inf η

(
m
(

ξα(χ)−1, ξβ(χ)−1

))
≤ lim

χ→∞
sup η

(
m
(

ξα(χ)−1, ξβ(χ)−1

))
.

Then,

τ + Fm
< (ε

∗) ≤ η(ε∗)

< Fm
< (ε

∗)

it is contradiction. Hence, {ξn} is an m-Cauchy sequence in (U, m). Since (U, m) is <-
complete, there exists ξ ∈ U such that {ξn} converges to ξ∗ with respect to tm; that is,
m(ξn, ξ∗)−mξn ,ξ∗ → 0 as n→ ∞. By using the <-continuity of γ,

ξ = lim
n→∞

ξn+1 = lim
n→∞

γ(ξn) = γ(ξ).

Finally, we will prove that (γn)Fix = (γ)Fix where n ∈ N. Assume, in contrast, that
ξ ∈ (γn)Fix and ξ /∈ (γ)Fix for some n ∈ N. Then, from condition (iv)

′
, m(ξ, γ(ξ)) > 0 and

ξS∗γ(ξ) . Using (ii) and (iv), we obtain γn(ξ)S∗γn+1(ξ) for all n ∈ N,

Fm
< (m(ξ, γ(ξ))) = Fm

<

(
m
(

γ
(

γn−1(ξ)
)

, γ2
(

γn−1(ξ)
)))

≤ η
(

m
(

γ
(

γn−1(ξ)
)

, γ2
(

γn−1(ξ)
)))
− τ

< Fm
<

(
m
(

γn−1(ξ)
)

, γn(ξ)
)
− τ

≤ η
(

m
(

γn−2(ξ)
)

, γn−1(ξ)
)
− 2τ

< Fm
<

(
m
(

γn−2(ξ)
)

, γn−1(ξ)
)
− 2τ

≤ η
(

m
(

γn−3(ξ)
)

, γn−2(ξ)
)
− 3τ

. . .

≤ η(m(ξ, γ(ξ)))− nτ

Taking n→ ∞ in the above inequality, we obtain

Fm
< (m(ξ, γ(ξ))) = −∞

as a contradiction. Therefore, (γn)Fix = (γ)Fix for any n ∈ N.
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3. Cyclic-Type Weak
(

Fm
< , η

)
-Contraction Mappings

In 2003, Kirk et al. [37] introduced cyclic contractions in metric spaces and investigated
the existence of proximity points and fixed points for cyclic contraction mappings. Inspired
by [37] and our Theorems 1 and 5 we obtained the following fixed point results for cyclic-
type weak

(
Fm
< , η

)
-contraction mappings.

Theorem 5 ([37] ). Assume that (U, m) is a compete m-metric space and G, H are two non-empty
closed subsets of U and γ : U → U. Suppose that the following conditions hold:

(i) γ(B) ⊆ D and γ(D) ⊆ B;
(ii) There exists a constant k ∈ (0, 1) such that

m(γ(ξ), γ(=)) ≤ km(ξ,=) for all ξ ∈ B, = ∈ D. (9)

Then, B ∩ D is non-empty and ξ in B ∩ D is a fixed point of γ.

Theorem 6. Let (U, m) be a complete relation theoretic m-metric space endowed with a transitive
binary relation < on U, G and H are two non-empty closed subsets of U and γ : U → U. Assume
that the following axioms hold:

(i) γ(G) ⊆ H and γ(H) ⊆ G;
(ii) There exists Fm

< ∈ ∇(ρ) and η ∈ ∇(π) and ξ > 0 such that

τ + Fm
< (m(γ(ξ), γ(=))) ≤ η(m(ξ,=)) (10)

for all ξ in G, = in H, with Fm
η (ξ) > η(ξ) for all ξ > 0.

Then, ξ∗ ∈ Z = G ∪ H is a fixed point of γ. Moreover, ξ ∈ B ∩ D.

Proof. From (i), Z = G ∪ H is closed, so Z is a closed subspace of U. Therefore, (U, m) is a
complete m-metric space. Set the a binary relation < on Z by

<=G× H.

This implies that

ξ<= ∈ ⇔(ξ,=) ∈ B× D for all ξ,= ∈ Z.

The set S= <∪<−1 is an asymmetric relation. Directly, we set (U, m, S) as regular. Let
{ξn} ∈ Z be any sequence and ξ ∈ Z be a point such that

ξnSξn+1 for all n ∈ N

and
lim

n→∞
m(ξn, ξ) = lim

n→∞
min{m(ξn, ξn), m(ξ, ξ)} = m(ξ, ξ).

Using the definition of S, we have

(ξn, ξn+1) ∈ (B× D) ∪ (D× B) for all n ∈ N (11)

Immediately, we obtain the product of Z× Z in the m-metric space m as

m((ξ1,=1), (ξ2,=2)) =
m(ξ1,=1) + m(ξ2,=2)

2
.

Since (U, m) is a complete m-metric space, (Z× Z, m) is complete. Furthermore,
G× H and H × G are close in (Z× Z, m) because G and H are closed in (U, m). Applying
the limit n→ ∞ to (11), we have (ξ,=) ∈ (B× D) ∪ (D× B). This implies that ξ ∈ B ∩ D.
Furthermore, from (11), we have ξn ∈ B∪D. Thus, we obtain ξnS∗ξ for all n ∈ N. Therefore,
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our theorem is proven. Furthermore, since γ is self mapping, from condition (i), for all
ξ,= ∈ U, we obtain

(ξ,=) in G× H ⇒ (γ(ξ), γ(=)) ∈ H × G

(ξ,=) in H × G ⇒ (γ(ξ), γ(=)) ∈ G× H.

The binary relation< is γ-closed, and as B 6= φ, there exists ξ0 ∈ B such that γ(ξ0) ∈ D,
i.e., ξ0S∗γ(ξ0). Therefore, all the hypotheses of Theorem (2.8) are satisfied. Hence, (γ)Fix
6= φ and also (γ)Fix ⊆ B ∩ D. Finally, as ξS∗= for all ξ,= ∈ G ∩ H. Hence, G ∩ H is
∇-directed. Hence, all conditions of Theorem 3 are satisfied and γ has a unique fixed
point.

4. Application

In this section, we study existence of a solution for a Volterra-type integral equation
by using Theorem 2.6. Consider the following Volterra-type integral equation:

ξ(α) =
∫ α

0
A(α, σ, ξ(σ))mσ + Ψ(α), α ∈ [0, 1], (12)

where A : [0, 1] × [0, 1] × [0, 1] → [0, 1] and Ψ : [0, 1] → [0, 1]. Consider the Banach
contraction δ = C([0, 1], [0, 1]) of all continuous functions ξ : [0, 1]→ [0, 1] equipped with
norm ‖ξ‖ = max0≤α≤1|ξ(α)|. Define an m-metric space m on δ by m(ξ,=) =

∥∥∥ ξ+=
2

∥∥∥ for
each ξ,= in δ. Then (δ, m) is a complete m-metric space.

Definition 11. Lower and upper solutions of (9) are functions Λ and Θ in Banach space δ,
respectively, such that

Λ(α) ≤
∫ α

0
A(α, σ, ξ(σ))κσ + Ψ(α) and Θ(α) ≥

∫ α

0
A(α, σ, ξ(σ))mσ + Ψ(α), α ∈ [0, 1]

In this section, we prove the existence and unique solution to the Volterra-type integral
Equation (12).

Theorem 7. Consider Volterra-type integral Equation (12). Assume that there is a positive real
number τ such that ∣∣∣∣A(α, σ, ξ) + A(α, σ,=)

2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e− 1

[1+|Ω+=
2 |]

−τ

, (13)

for all α, σ in [0, 1] and ξ,= in δ. if (12) has a lower solution, then a solution exists for the integral
Equation (12).

Proof. We define an operator γ : δ→ δ, Fm
< , η : R+ → R by

γ(ξ(α)) =
∫ α

0
A(α, σ, ξ(σ))mσ + Ψ(α), ξ ∈ δ,

η(v) = ln v− 1
[1 + v]

and
Fm
< (v) = ln v

for all v ∈ R+, Fm
< ∈ ∇(ρ) and η ∈ ∇(π), respectively. We can verify easily that γ is well

defined and � on < is γ-closed. Note that ξ is a fixed point of γ if and only if there is a
solution to (12). Now, we want to prove that γ is a Fm

< -contraction mapping with η. Let

(ξ,=) ∈ Ξ = {ξS∗= : m(ξ,=) > 0, where m is Banach space },
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which implies that ξ � =. Since < is γ-closed, then γ(ξ) � γ(=),∣∣∣∣γ(ξ(α)) + γ(=(α))
2

∣∣∣∣ =

∣∣∣∣∣
∫ α

0 A(α, σ, ξ(σ))mσ + Ψ(α) +
∫ α

0 A(α, σ,=(σ))mσ + Ψ(α)

2

∣∣∣∣∣∣∣∣∣∣
∫ α

0 A(α, σ, ξ(σ))mσ + Ψ(α) +
∫ α

0 A(α, σ,=(σ))mσ + Ψ(α)

2

∣∣∣∣∣
≤

∫ α

0

∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ

≤
∫ α

0

∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ

≤
∫ α

0
max

α∈[0,1]

∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ

≤
∥∥∥∥ ξ +=

2

∥∥∥∥e
− 1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ

,

and so ∣∣∣∣γ(ξ(α)) + γ(=(α))
2

∣∣∣∣ ≤ ∥∥∥∥ ξ +=
2

∥∥∥∥e
− 1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ

.

Taking the supremum norm on both sides, we have

∥∥∥∥γ(ξ(α)) + γ(=(α))
2

∥∥∥∥ ≤ ∥∥∥∥ ξ +=
2

∥∥∥∥e
− 1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ

.

This implies that

ln
(∥∥∥∥γ(ξ(α)) + γ(=(α))

2

∥∥∥∥) ≤ ln

∥∥∥∥ ξ +=
2

∥∥∥∥e
− 1[

1+
∥∥∥∥ ξ+=

2

∥∥∥∥]−τ
,

then

ln
(∥∥∥∥γ(ξ(α)) + γ(=(α))

2

∥∥∥∥) = ln
(∥∥∥∥ ξ +=

2

∥∥∥∥)− 1[
1 +

∥∥∥ ξ+=
2

∥∥∥] − τ.

Consequently,

τ + Fm
<

(∥∥∥∥γ(ξ) + γ(=)
2

∥∥∥∥
tr

)
≤ η

(∥∥∥∥ ξ +=
2

∥∥∥∥
tr

)
.

Thus,
τ + Fm

< (m(γ(ξ), γ(=))) ≤ η(m(ξ,=)).

Therefore, γ is an
(

Fm
R ,η

)
-contraction and thus, Inequality (4) holds. Since

{
ξµ

}
is an

<-preserving sequence {ξn} in Z([0, 1]) such that ξn converges with respect to tm to ξ for
some ξ in Z([0, 1]), we obtain

ξ0(α) � ξ1(α) � ξ2(α) � . . . � ξn(α) � ξn+1(α) � . . . ,

for all α ∈ [0, 1]. Which implies,

ξn(α) � ξ(α) for all α ∈ [0, 1].
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Thus, ξ,= ∈ (γ)Fix. Then, ℵ = max{ξ,=} ∈ Z([0, 1]), and thus ξ � ℵ, = � ℵ, ξS∗ℵ
and =S∗ℵ. Hence, all axioms of Theorem 3 hold and the integral Equation (12) has a
solution.

Theorem 8. Consider Volterra-type integral Equation (12). Assume that A is non-decreasing in
the third variables; then, there is positive real number τ such that

∣∣∣∣A(α, σ, ξ) + A(α, σ,=)
2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−τ

,

for all α, σ in [0, 1] and ξ,= in δ. If (12) has an upper solution, then a solution exists for the integral
Equation (12).

Proof. Define a binary relation on Banach space as follows

(ξ,=) ∈ Ξ = {ξS∗= with α(ξ) � α(=) : m(ξ,=) > 0, where m is a Banach space}.

Now, due to the proof of the above Theorem, then all conditions of Theorem 8 and
integral Equation (12) have unique solutions.

Example 3. Assume that a function

ξ(α) =
α

2
, for all α in [0, 1]

is a solution of Equation (12)

ξ(α) =
3
2
(α)− (1 + α) ln(1 + α) +

∫ α

0
ln(1 + ξ(σ))mσ, for all α in [0, 1]. (14)

Proof. Let γ be a self operator from δ to δ, which is given by

γ(ξ(α)) =
3
2
(α)− (1 + α) ln(1 + α) +

∫ α

0
ln(1 + ξ(σ))mσ, for all α in [0, 1].

Now, we take τ ∈ [0.0091, ∞),

A(α, σ, ξ) = ln(1 + ξ(σ))

and
Ψ(α) =

3
2
(α)− (1 + α) ln(1 + α).

Observe that given function A(α, σ, ξ) = ln(1 + ξ(σ)) in the third variable is non-
decreasing and that α

2 ≤
3
2 (α) − (1 + α) ln(1 + α) +

∫ σ
0 ln(1 + ξ(σ))mσ for all α in [0, 1]

such that ξ(α) = α
2 is a lower solution of (16), then the following below inequality holds,

∣∣∣∣A(α, σ, ξ) + A(α, σ,=)
2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−τ

. (15)

Now, from the non-decreasing function α 7→ e
− 1

[1+| α2 |]
−0.091

, we have

∣∣∣∣ ln(1 + ξ) + ln(1 +=)
2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−0.091

.

Hence, all conditions of Theorem 7 hold and the integral Equation (12) has a unique
solution ξ(α) = α

2 for all α in [0, 1].
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Example 4. Assume that a function

ξ(α) = α, for all α ∈ [0, 1]

is a solution of Equation (12):

ξ(σ) = α− (1− α) ln(2− α)− ln(2) +
∫ α

0
ln(2− ξ(σ))mσ, for all α in [0, 1]. (16)

Proof. In view of the above example, the following below inequality holds for all ξ,= in
[0, 1] and τ = 0.091

∣∣∣∣ ln(2− ξ) + ln(2−=)
2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−τ

.

Using the arguments of the above example, we can say that the all conditions of
Theorem 8 hold. Hence, the integral Equation (12) has a unique solution ξ(α) = α for all α
in [0, 1].

Finally, we give an example different to the above example and others given in the
literature [38] which satisfies all conditions of Theorem 15.

Example 5. Assume that a function

ξ(α) =
1
3

α, for all α in [0, 1]

is a solution of Equation (12):

ξ(α) =
5
3

α− α

1 + α
+
∫ α

0

(
ξ(σ)

1 + ξ(σ)

)
mσ, for all α in [0, 1]. (17)

Proof. Let γ be a self operator from δ to δ, which is given by

γ(ξ(α)) =
5
3

α− α

1 + α
+
∫ α

0

(
ξ(σ)

1 + ξ(σ)

)
mσ, for all α in [0, 1].

Now, we take τ ∈ [0.091, ∞),

A(α, σ, ξ) =
ξ(σ)

1 + ξ(σ)

and
Ψ(α) =

5
3

α− α

1 + α
.

Observe that given the function A(α, σ, ξ) = ξ(σ)
1+ξ(σ)

in the third variable is non-

decreasing and that 1
3 α ≤ 5

3 α− α
1+α +

∫ α
0

(
ξ(σ)

1+ξ(σ)

)
mσ for all α in [0, 1] such that ξ(α) = 1

3 α

is a lower solution of (16), then the following below inequality holds:

∣∣∣∣A(α, σ, ξ) + A(α, σ,=)
2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−τ

. (18)
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Now, from the non-decreasing function α 7→ e
− 1

[1+| α2 |]
−0.9

, we have∣∣∣∣∣∣
ξ

1+ξ + =
1+=

2

∣∣∣∣∣∣ ≤
∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−0.9

.

Hence, all axioms of Theorem 7 hold and the integral Equation (12) has a unique
solution ξ(α) = α

3 for all α in [0, 1].

Example 6. Assume that a function

ξ(α) =
3
5

α +
1
3

, for all α ∈ [0, 1]

is a solution of Equation (12):

ξ(σ) =
3
5

α +
1
3
− (1− α)(2− α) + 2 +

∫ α

0
(1 + ξ(σ))mσ, for all α in [0, 1]. (19)

Proof. In view of the above example, the following below inequality holds for all ξ,= in
[0, 1] and τ = 0.9 ∣∣∣∣1 + ξ + 1 +=

2

∣∣∣∣ ≤ ∣∣∣∣ ξ +=2

∣∣∣∣e−
1[

1+
∣∣∣∣ ξ+=

2

∣∣∣∣]−τ

.

Using the arguments of the above example, we can say that the all conditions of
Theorem 7 hold. Hence, the integral Equation (12) has a unique solution ξ(α) = 3

5 α + 1
3 for

all α in [0, 1].

5. Conclusions

In this article, we have introduced the notion of weak
(

Fm
< , η

)
-contractions and proved

related fixed point theorems in relation theoretic m-metric space endowed with a relation
< using a control function η. Examples and applications to Volterra-type integral equations
are given to validate our main results. Analogously, such results can be extended to
generalized distance spaces (such as symmetric spaces, mbm-spaces, rmm-spaces, rmbm-
spaces, pm-spaces and pbm-spaces) endowed with relations.
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