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Abstract: The impact of Stratonovich integrals on the solutions of the Heisenberg ferromagnetic
spin chain equation using the unified solver approach is examined in this study. In particular, using
arbitrary parameters, the traveling wave arrangements of rational, trigonometric, and hyperbolic
functions are developed. The detailed arrangements are exceptionally critical for clarifying diverse
complex wonders in plasma material science, optical fiber, quantum mechanics, super liquids and
so on. Here, the Itô stochastic calculus and the Stratonovich stochastic calculus are considered.
To describe the dynamic behaviour of random solutions, some graphical representations for these
solutions are described with appropriate parameters.
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1. Introduction

Understanding the dynamical wave patterns for nonlinear partial differential
equations (NPDEs) is crucial for understanding the underlying workings of complex
phenomena [1–6]. In mathematical physics, the NPDEs and symmetry are closely related
concepts. Particularly, symmetry plays a significant role in the study of NPDEs. Fur-
thermore, symmetry approaches have recently been developed to get unique reduced
solutions for NPDEs [7]. Vinogradov proposed four distinct strategies for studying NPDE
symmetries [8]. The waves generated numerous nonlinear scientific phenomena that have
applications in many domains, including chemical physics, molecular biology, fluid mechan-
ics, engineering, solid-state physics, ecology, nuclear physics, quantum mechanics [9–14].
Numerous scholars used NPDEs to develop voyaging wave arrangements by employing a
few methods [15–17]. There is not a single method to solve all of these equations due to the
complexity of nonlinear waves. The random impact on the soliton solutions’ spread has
received an increasing amount of consideration recently. This effect is crucial in explaining
many complicated issues.

Stochastic calculus is an area of mathematics that deals with stochastic processes,
allowing the modeling of random systems [18,19]. The foundation of many stochastic
processes is a continuous function that is not differentiable. Because differential equations
requiring the use of derivative terms cannot be defined on non-smooth functions, they are
excluded. Where integral equations do not require the direct definition of derivative terms,
a theory of integration is required. The theory is known as Itô calculus and Stratonovich
calculus in quantitative finance [20].
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The Black–Scholes model, which models the random movement of an asset price, is the
main application of stochastic calculus in finance. The Weiner process employs the physical
process of Brownian motion (specifically, a geometric Brownian motion) as a model of asset
prices. This process is represented by a stochastic differential equation, which is actually an
integral equation despite its name [21,22].

A system is made up of multiple elements working in concert to accomplish a specific
goal. It is referred to as a dynamical system if the output time-varying variables of this
system depend on the initial conditions and some input variables. Modeling is the pro-
cess of creating suitable mathematical equations that adequately describe the dynamical
system. If the differential equations can be easily derived from engineering and physical
circumstances, it is desirable to understand the solution behaviour [23,24]. Environmental
and stochastic influences can affect nonlinear systems. Therefore, rather than studying
these systems deterministically, it is best to do so stochastically. Additionally, it should
be mentioned that each perturbation that occurs in these systems should be considered,
because neglecting this perturbation could have negative consequences.

Heisenberg ferromagnet models are crucial in the modern magnet theory [25]. It
describes the nonlinear dynamics of magnets. One of the intriguing types of nonlinear
excitations that depict spin dynamics in semiclassical continuous Heisenberg systems is the
magnetic soliton. The study of soliton propagation and interaction may aid in the analysis
of magnetic materials’ nonlinear properties. Soliton is a wave that maintains its speed
and shape as it travels. That is the main reason why it piques the interest of engineers,
mathematicians and physicists. Besides the deterministic type perturbations, the stochastic
type perturbations do have to be taken into account from practical considerations. All these
features served as strong motivation for our new approach.

A branch of mathematics called stochastic calculus works with stochastic processes. It
enables the definition of an integration theory that is consistent for integrals of stochastic
processes relative to stochastic processes. A new integrable nonlinear Schrodinger equation
(NLSE) in the dimension of the form (2 + 1) was recently discovered to regulate the nonlinear
spin dynamics of the Heisenberg ferromagnetic spin chain (HFSC) equation [25–28]

iΞt + µ1 Ξxx + µ2 Ξyy + µ3 Ξxy − µ4 | Ξ |2 Ξ + iσΞ ◦ Bt = 0 , i =
√
−1, (1)

where µ1 = γ4(υ + υ2), µ2 = γ4(υ1 + υ2), µ3 = 2γ4 υ2, µ4 = 2γ4 A. Here, the complex-
valued function Ξ(x, y, t) denotes the wave propagation, γ is a lattice parameter, υ and
υ1 are the coefficients of bilinear exchange interactions along the x- and y-directions. The
neighboring interaction on the diagonal is represented by υ2, whereas A denoted the
uniaxial crystal field anisotropy parameter [25]. The noise Bt is the time derivative of a
standard Wiener process B(t). The standard Wiener process is also known as Brownian
motion. The parameter υ2 denotes the random neighboring interaction along the diagonal.
The parameter A represents the uniaxial crystal field anisotropy.

In this paper, we present some new stochastic solutions for Equation (1) via a
Stratonovich sense, using the unified solver technique [29] based on He’s variations tech-
nique [30–32]. This technique provides some types of wave solutions based on the physical
parameters. These solutions enable critical applications in modern magnet theory [25]. The
proposed technique can be used as a box-solver for a number of natural science systems.
It eliminates time-consuming computations and offers critical solutions in an explicit for-
mat. This solver is straightforward, robust, functional, and convenient. To the best of our
knowledge, no one has ever used the proposed method to solve Equation (1) through a
Stratonovich sense.

The remainder of the article is structured as follows. Section 2 introduces the some
notes about stochastic calculus. In Section 3, random solutions for the nonlinear spin
dynamics of (2 + 1)-dimensional HFSC are shown. In Section 4, we discuss the obtained
results. Finally, concluding remarks are reported in Section 5.
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2. On the Interpretation of Stochastic Calculus
2.1. Itô Integral

Since almost all sample functions of Bt are of unbounded variation, we cannot, in
general, interpret the integral: ∫ b

a
G(s)dB(s)

as an ordinary Riemann–Stieltjes integral.
The task is now to define the stochastic integral:

Definition 1 ([33]). For every G ∈ L2[a, b], the stochastic integral (or Itô’s integral) of G with
respect to the Wiener process B(t) over the interval [a, b] with mean square limits is defined as:

∫ b

a
G(s)dB(s) = lim

n→∞

∫ b

a
GndB,

where Gn is a sequence of step functions in L2[a, b] that approximate in the sense of:

lim
n→∞

∫ b

a
|G(s)− Gn(s)|

2
ds = 0.

Definition 2 ([33]). If limn→∞ Yn = Y exist, then the r.v. Y is called the Itô stochastic integral, or
Itô integral for short, of X(t) with respect to B(t) over the interval T. It is denoted by:

∫ b

a
X(t)dB(t) = lim

n→∞
Yn.

2.2. Stratonovich Integral

The Itô integral’s most popular substitute is the Stratonovich. The Stratonovich integral
is commonly employed in physics, despite the Itô integral typically being the preferred
option in practical mathematics. The crucial characteristic of the Itô integral, which does
not “see into the future”, is absent from the Stratonovich integral. Since past events are the
sole information available in various real-world applications, like stock price modelling,
the Itô interpretation makes more sense [20]. Typically, the Itô interpretation is applied
in financial mathematics. Similar to the Riemann integral, which is defined as a limit of
Riemann sums, the Stratonovich integral can be defined as follows:

∫ b

a
X(t)dB(t) = lim

n→∞

X(ti+1) + X(ti)

2
(B(ti+1)− B(ti)).

The Stratonovich and Itô variants of the stochastic integral are two commonly used
variants. The modelling problem primarily determines which form is appropriate; however,
once that form is selected, an equivalent equation of the other type can be created utilizing
the same solutions. In many sources, such as Refs. [20,21], the following relationship is
utilized to switch between Stratonovich (represented by

∫ t
0 Φ ◦ dη) and Itô (represented by∫ t

0 Φdη):

∫ t

0
Φ(τ, Zτ)dη(τ) =

∫ t

0
Φ(τ, Zτ) ◦ dη(τ)− 1

2

∫ t

0
Φ(τ, Zτ)

∂Φ(τ, Zτ)

∂τ
dτ, (2)

where Φ is considered to be sufficiently regular and {Zt, t ≥ 0} is a stochastic process.
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3. The Stochastic Solutions

Let the following complex wave transformation be [25]:

Ξ(x, y, t) = ei(qx+py−wt)−σ2t−σB(t)u(ζ), ζ = α1 x + α2 y− ν t. (3)

Here, u(ζ) denotes the amplitude function to be determined. The parameters q and
p denote, respectively, the wave numbers in the x- and y-directions, w is frequency of the
pulse and ν is the group velocity of the wave packet.

From the wave transformation (3) we find that Ξxx, Ξxx and Ξxx take the form:

Ξxx = [α2
1u′′ − q2u + 2iα1qu′]ei(qx+py−w)−σ2t−σB(t)

Ξyy = [α2
2u′′ − p2u + 2iα1 pu′]ei(qx+py−w)−σ2t−σB(t)

Ξxy = [α1α2u′′ − pqu + i(α1 p + α2q)u′]ei(qx+py−w)−σ2t−σB(t).
(4)

For Ξt, we find that:

Ξt = [−νu′ − iwu + 1
2 σ2u− σ2u− σBtu]ei(qx+py−wt)−σ2t−σB(t), (5)

where 1
2 σ2u is the correction term. Thus,

Ξt = [−(νu′ + iwu)− σu(Bt +
1
2

σ)]ei(qx+py−w)−σ2t−σB(t). (6)

Using the relation to swab from Itô to Stratonovich (2) the above equation will be

Ξt = −[(νu′ + iwu) + σu ◦ Bt]ei(qx+py−wt)−σ2t−σB(t)

= −(νu′ + iwu)ei(qx+py−wt)−σ2t−σB(t) − σΞ ◦ Bt.
(7)

Inserting Equations (3) and (4) into Equation (1) and then decomposing the result into
real and imaginary parts, gives:

Lu′′ + Mu3 + Nu + i[ν− (2α1µ1 + α2µ3)q− (2α2µ2 + α1µ3)p]= 0, (8)

where

L = µ1α2
1 + µ2α2

2 + α1α2µ3, M = −µ4, N = w− (µ1q2 + µ2 p2 + µ1µ2 pq). (9)

The real part is displayed as:

Lu′′ + Mu3 + Nu = 0, (10)

and the imaginary part is written as

ν− (2α1µ1 + α2µ3)q− (2α2µ2 + α1µ3)p = 0. (11)

In view of the unified solver method [29], the random solutions of Equation (1) are:
Family I:

u1,2(x, y, t) = ±
√
−2N

M
sech

(
±
√
−N

L
(α1 x + α2 y− ν t)

)

= ±

√
2w−2(µ1q2+µ2 p2+µ1µ2 pq)

µ4

sech

(
±
√

(µ1q2+µ2 p2+µ1µ2 pq)−w
µ1α2

1 + µ2α2
2 + α1α2µ3

(α1 x+α2 y−ν t)

)
. (12)
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Therefore, the solutions for Equation (1) are

Ξ1,2(x, y, t) = ±

√
2w− 2(µ1q2 + µ2 p2 + µ1µ2 pq)

µ4
ei(qx+py−wt)−σ2t−σB(t)

sech

(
±
√

(µ1q2 + µ2 p2 + µ1µ2 pq)− w
µ1α2

1 + µ2α2
2 + α1α2µ3

(α1 x + α2 y− ν t)

)
. (13)

Family II:

u3,4(x, y, t) = ±
√
−35 N
18 M

sech2

(
±
√
− 5 N

12 L
(α1 x + α2 y− ν t)

)

= ±

√
35w−35(µ1q2+µ2 p2+µ1µ2 pq)

18µ4

sech2

(
±
√

5(µ1q2+µ2 p2+µ1µ2 pq)−5w
12(µ1α2

1+µ2α2
2+α1α2µ3)

(α1x+α2y−ν t)

)
. (14)

Therefore, the solutions for Equation (1) are

Ξ3,4(x, y, t) = ±

√
35w− 35(µ1q2 + µ2 p2 + µ1µ2 pq)

18 µ4
ei(qx+py−wt)−σ2t−σB(t)

sech2

(
±
√

5(µ1q2+µ2 p2+µ1µ2 pq)−5w
12 (µ1α2

1+µ2α2
2+α1α2µ3)

(α1 x+α2 y−ν t)

)
. (15)

Family III:

u5,6(x, y, t) = ±
√
−N
M

tanh

(
±
√

N
2L

(α1 x + α2 y− ν t)

)

= ±

√
w−(µ1q2+µ2 p2+µ1µ2 pq)

µ4

tanh

(
±
√

w−(µ1q2+µ2 p2+µ1µ2 pq)
2(µ1α2

1+µ2α2
2+α1α2µ3)

(α1 x+α2 y−ν t)

)
. (16)

Therefore, the solutions for Equation (1) are

Ξ5,6(x, y, t) = ±

√
w− (µ1q2 + µ2 p2 + µ1µ2 pq)

µ4
ei(qx+py−wt)−σ2t−σB(t)

tanh

(
±
√

w− (µ1q2 + µ2 p2 + µ1µ2 pq)
2(µ1α2

1 + µ2α2
2 + α1α2µ3)

(α1 x + α2 y− ν t)

)
. (17)
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4. Results and Discussion

The (2 + 1)-dimensional HFSC equation having a noise term with Brownian function
B(t) is inspected. Many real random phenomena are better suited to Brownian motion
than other processes. This stochastic HFSC model is converted to nonlinear ordinary
differential equations via B(t) function. We extracted some vital stochastic solutions for
the (2 + 1)-dimensional HFSC equation via a Stratonovich sense. These solutions based on
Brownian motion processes produce vital applications in the modern theory of magnets
and eternal inflation in physical cosmology.

We describe the effects of the rigorous randomness factor on the structure, band width
and amplitude of the provided solitary waves. When σ increases, we noticed that for the
width, the wave’s amplitude shrink and the wave starts to collapse, which is completed at
σ = 2, as illustrated in Figure 1. In a stochastic case, the Brownian motion function B(t)
is given in more detail in [34]. The ability of the abrupt wave collapse which depends in
the main on the influence of randomness is grow with increasing time t, as depicted in
Figures 2–5. Furthermore, the dark solution (17), that represents the dissipative graph,
was identified to be affected by time t and the noise term σ, as illustrated in Figures 4–6.
Furthermore, as shown in Figure 6, the parameter σ causes the wave to compress and
transform into a super waveform with a limited amplitude. On the other hand, we provide
some 3D graphs of solution (17) in Figures 7–10 for more illustration about the collapsing of
the amplitude for the waves. Namely, by increasing the value of the noise term σ, the waves’
amplitude are more collapsed.

Substantially, the examined model’s stochastic nonlinear solitonic structure with
stochastic noise term caused the dynamical advantages of the isolated envelopes and
dissipative–dispersive waves that were produced.

Figure 1. Plot of Ξ1(x, y, t) with x, σ = 0, 0.5, 1, 1.5, 2.
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Figure 2. Trajectory of Ξ1(x, y, t), σ = 0 for t = 0, 0.5, 1, 1.5.

Figure 3. Trajectory of Ξ1(x, y, t), σ = 0.5 for t = 0, 0.5, 1, 1.5.
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Figure 4. Trajectory of Ξ5(x, y, t), σ = 0 for t = 0, 0.5, 1, 1.5.

Figure 5. Trajectory of Ξ5(x, y, t), σ = 0.2 for t = 0, 0.5, 1, 1.5.
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Figure 6. Plot of Ξ5(x, y, t) with x, σ = 0, 0.5, 1, 1.5, 2.

Figure 7. 3D plot of Ξ5(x, y, t) for σ = 0.
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Figure 8. 3D plot of Ξ5(x, y, t) for σ = 0.2.

Figure 9. 3D plot of Ξ5(x, y, t) for σ = 0.6.
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Figure 10. 3D plot of Ξ5(x, y, t) for σ = 1.

5. Conclusions

We have investigated the (2 + 1)-dimensional HFSC equation via a Stratonovich sense,
using a unified technique. The proposed approach has a number of benefits, including
avoiding complexity and time-consuming computations and obtaining accurate answers
via physical parameters. We produced some new stochastic solutions, which play an
important role in modern magnet theory. We also considered the influence of the noise term
on the behaviour of solutions. It has been claimed that some modulations in collapsing
dissipative and dispersive explosive formations can be shown by random stimuli. Finally,
the proposed approach can be applied to other complex models, thus we will use it in our
upcoming studies.
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