Maintaining Symmetry in Optimal and Safe Control of the Ship to Avoid Collisions at Sea
Abstract
:1. Introduction
1.1. Related Works
1.2. Problem Statement
1.3. Contribution
- A static model, based on the speed triangle, used to determine a safe maneuver to change the ship’s course and/or speed;
- Kinematic model, based on the area of permissible maneuvers, allowing us to determine the safe kinematic trajectory of the ship;
- A dynamic model using equations of state dependent on the mathematical description of the ship’s hydrodynamics, enabling the determination of the ship’s dynamic safe trajectory;
- The game model as a matrix game of many participants that is the basis for determining the game safe trajectory of the ship.
1.4. Work Content
2. Safety
- First, the collision risk is reflected in the length of the ship’s domain, which depends both on the speed of the encountered vessel (Vj) and on the time (Ts) remaining to reach the safe distance (Ds), according to (4) ÷ (8) equations.
- Then, in the domains’ dimensions, navigator subjectivity in collision risk assessment is reflected, using a properly trained artificial neural network.
3. Optimality
- Determining the number of ways to cover a distance;
- Identifying the optimal strategy of a game;
- Takeaways.
4. Algorithm 1: Safe and Optimal Path
Algorithm 1: Safe and Optimal Path |
5. Computer Simulation Results
- 3.6 GHz CPU, Quad Core Intel Core i7;
- Graphic Radeon Pro 560 4 GB;
- RAM 32 GB, 2.4 GHz, DDR4;
- Mac OS Ventura version 13.3.1 software;
- Macintosh HD 1 TB storage;
- Retina display 4096 × 2304.
6. Discussion
7. Conclusions
- Improving the accuracy of the implementation of a safe and optimal path by introducing an appropriate non-linear dynamic ship model;
- Analysis of other possible optimization criteria and selection of the most adequate one;
- Development of game-acting ship models that would take into account non-compliance with COLREG rules leading to accidental ship collisions;
- Synthesis of ship control game algorithms;
- Increasing the accuracy of navigation information sources by testing the sensitivity of safe and optimal ship control to the inaccuracy of measuring devices.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, J.; Duan, G.; Cheng, S.; Cao, S.; Wang, G. Fixed-time time-varying output formation–containment control of heterogeneous general multi-agent systems. ISA Trans. 2023, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Liu, Y.; Shen, D.; Li, L.; Tan, J. Learning Control for Motion Coordination in Wafer Scanners: Toward Gain Adaptation. IEEE Trans. Ind. Electron. 2022, 69, 13428–13438. [Google Scholar] [CrossRef]
- Song, F.; Liu, Y.; Jin, W.; Tan, J.; He, W. Data-Driven Feedforward Learning With Force Ripple Compensation for Wafer Stages: A Variable-Gain Robust Approach. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1594–1608. [Google Scholar] [CrossRef]
- Li, B.; Tan, Y.; Wu, A.; Duan, G. A distributionally robust optimization based method for stochastic model predictive control. IEEE Trans. Autom. Control 2021, 67, 5762–5776. [Google Scholar] [CrossRef]
- Cao, K.; Wang, B.; Ding, H.; Lv, L.; Dong, R.; Cheng, T.; Gong, F. Improving Physical Layer Security of Uplink NOMA via Energy Harvesting Jammers. IEEE Trans. Inf. Forensics Secur. 2021, 16, 786–799. [Google Scholar] [CrossRef]
- Zanoli, S.M.; Pepe, C.; Astolfi, G.; Orlietti, L. Applications of Advanced Process Control Techniques to an Italian Water Distribution Network. IEEE Trans. Control Netw. Syst. 2022, 9, 1767–1779. [Google Scholar] [CrossRef]
- Zanoli, S.M.; Pepe, C.; Orlietti, L. Multi-Mode Model Predictive Control Approach for Steel Billets Reheating Furnaces. Sensors 2023, 23, 3966. [Google Scholar] [CrossRef]
- Guo, J.; Guo, H. Real-Time Risk Detection Method and Protection Strategy for Intelligent Ship Network Security Based on Cloud Computing. Symmetry 2023, 15, 988. [Google Scholar] [CrossRef]
- Flaßkamp, K.; Ober-Blöbaum, S.; Peitz, S. Symmetry in Optimal Control: A Multiobjective Model Predictive Control Approach. In Advances in Dynamics, Optimization and Computation; Junge, O., Schütze, O., Froyland, G., Ober-Blöbaum, S., Padberg-Gehle, K., Eds.; SON 2020; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2020; Volume 304. [Google Scholar] [CrossRef]
- Danielson, C.R.; Borrelli, F. Symmetric Constrained Optimal Control. IFAC-PapersOnLine 2015, 48, 366–371. [Google Scholar] [CrossRef]
- León, M.; Cortés, J.; Diego, D.M.; Martínez, S. General symmetries in optimal control. Rep. Math. Phys. 2004, 53, 55–78. [Google Scholar] [CrossRef]
- Stratoglou, E.; Simoes, A.A.; Colombo, L.J. Reduction in optimal control with broken symmetry for collision and obstacle avoidance of multi-agent system on Lie groups. Optim. Control 2022, 1, 1–20. [Google Scholar] [CrossRef]
- Maidens, J.; Barrau, A.; Bonnabel, S.; Arcak, M. Symmetry reduction for dynamic programming. Automatica 2018, 97, 367–375. [Google Scholar] [CrossRef]
- Szlapczynski, R.; Ghaemi, H. Framework of an evolutionary multi-objective optimisation method for planning a safe trajectory for a marine autonomous surface ship. Pol. Marit. Res. 2019, 26, 69–79. [Google Scholar] [CrossRef]
- Li, N. Research on Ship Collision Avoidance Path Optimization Based on Particle Swarm Optimization and Genetic Algorithm. Am. J. Math. Comput. Model 2021, 6, 81–87. [Google Scholar] [CrossRef]
- Lazarowska, A. Safe Trajectory Planning for Maritime Surface Ships; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13, pp. 1–185. [Google Scholar] [CrossRef]
- Melhaoui, Y.; Kamil, A.; Riouali, M.; Mansouri, K.; Rachik, M. Optimal control of ship collision avoidance problem. J. Math. Comput. Sci. 2022, 12, 1–19. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Negenborn, R.R.; Ma, F. Optimizing the joint collision avoidance operations of multiple ships from an overall perspective. Ocean. Eng. 2019, 191, 106511. [Google Scholar] [CrossRef]
- Bai, X.; Yi, J.; Zhao, D. Approximate Dynamic Programming for Ship Course Control. In Advances in Neural Networks, Lecture Notes in Computer Science; Liu, D., Fei, S., Hou, Z.G., Zhang, H., Sun, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4491. [Google Scholar] [CrossRef]
- Xie, Q.; Luo, B.; Tan, F. Optimal tracking control for ship course using approximate dynamic programming method. In Proceedings of the 32nd Chinese Control Conference, Xi’an, China, 26–28 July 2013; pp. 2911–2916, ISBN 978-9-8815-6383-5. [Google Scholar]
- Bijlsma, S.J. On the Applications of Optimal Control Theory and Dynamic Programming in Ship Routing. Navigation 2002, 49, 71–80. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, P. Development of a 3D Dynamic Programming Method for Weather Routing. TRANSNAV Int. J. Mar. Navig. Saf. Sea Transp. 2012, 6, 79–85. [Google Scholar]
- Lindberg, M. Optimizing Yacht Routes using Dynamic Programming; Lund Institute of Technology: Lund, Sweden, 2004; pp. 1–36. ISSN 0280-5316. [Google Scholar]
- Esfahani, H.N.; Szłapczyński, R. Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm. J. Mar. Sci. Technol. 2021, 26, 1262–1279. [Google Scholar] [CrossRef]
- Geng, X.; Wang, Y.; Wang, P.; Zhang, B. Motion Plan of Maritime Autonomous Surface Ships by Dynamic Programming for Collision Avoidance and Speed Optimization. Sensors 2018, 19, 434. [Google Scholar] [CrossRef]
- Nicholson, T.A.J.; Pullen, R.D. Dynamic Programming Applied to Ship Fleet Management. J. Oper. Res. Soc. 1971, 22, 211–220. [Google Scholar] [CrossRef]
- Zhen, L.; Wang, S.; Zhuge, D. Dynamic programming for optimal ship refueling decision. Transp. Res. Part E Logist. Transp. Rev. 2017, 100, 63–74. [Google Scholar] [CrossRef]
- Liu, Q.; Li, T.; Shan, Q.; Yu, R.; Gao, X. Virtual guide automatic berthing control of marine ships based on heuristic dynamic programming iteration method. Neurocomputing 2021, 437, 289–299. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, Q.D. Optimal Control for Ship Fin Stabilizer System Based on Action Dependent Heuristic Dynamic Programming. J. Mech. Eng. Res. Dev. 2021, 44, 102–112. [Google Scholar]
- Yuan, Y.; Chen, M.; Wang, J.; Yu, W.; Shen, B. A novel hybrid energy management strategy of a diesel-electric hybrid ship based on dynamic programing and model predictive control. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2022, 236, 644–657. [Google Scholar] [CrossRef]
- Mousavi, K.; Bodur, M.; Cevik, M.; Roorda, M.J. Approximate Dynamic Programming for Crowd-Shipping with In-Store Customers; University of Wisconsin-Madison: Madison, WI, USA, 2021; pp. 1–47. Available online: https://optimization-online.org/?p=17537 (accessed on 20 April 2023).
- Bai, X.; Cheng, L.; Iris, C. Data-driven financial and operational risk management: Empirical evidence from the global tramp shipping industry. Transp. Res. Part E Logist. Transp. Rev. 2022, 158, 1366–5545. [Google Scholar] [CrossRef]
- Venturini, G.; Iris, C.; Kontovas, C.A.; Larsen, A. The multi-port berth allocation problem with speed optimization and emission considerations. Transp. Res. Part D Transp. Environ. 2017, 54, 142–159. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Wang, E.; Wu, X.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Guo, Q.; Zhong, J. The effect of urban innovation performance of smart city construction policies: Evaluate by using a multiple period difference-in-differences model. Technol. Forecast. Soc. Chang. 2022, 184, 122003. [Google Scholar] [CrossRef]
- Li, Q.-K.; Lin, H.; Tan, X.; Du, S. H∞ Consensus for Multiagent-Based Supply Chain Systems Under Switching Topology and Uncertain Demands. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 4905–4918. [Google Scholar] [CrossRef]
- Jung, C.-Y.; Yoo, S.-L. Optimal Rescue Ship Locations Using Image Processing and Clustering. Symmetry 2019, 11, 32. [Google Scholar] [CrossRef]
- Chen, C.-W.; Chen, Y.; Cai, Q.-W. Hydrodynamic-Interaction Analysis of an Autonomous Underwater Hovering Vehicle and Ship with Wave Effects. Symmetry 2019, 11, 1213. [Google Scholar] [CrossRef]
- Miller, A.; Walczak, S. Maritime Autonomous Surface Ship’s Path Approximation Using Bézier Curves. Symmetry 2020, 12, 1704. [Google Scholar] [CrossRef]
- Jie, Y.; Leonidas, L.; Mumtaz, F.; Ali, M. Ship Detection and Tracking in Inland Waterways Using Improved YOLOv3 and Deep SORT. Symmetry 2021, 13, 308. [Google Scholar] [CrossRef]
- Chen, G.; Wang, W.; Xue, Y. Identification of Ship Dynamics Model Based on Sparse Gaussian Process Regression with Similarity. Symmetry 2021, 13, 1956. [Google Scholar] [CrossRef]
- Sawada, R.; Sato, K.; Majima, T. Automatic ship collision avoidance using deep reinforcement learning with LSTM in continuous action spaces. J. Mar. Sci. Technol. 2021, 26, 509–524. [Google Scholar] [CrossRef]
- Lisowski, J. Game strategies of ship in the collision situations. TransNav—Int. J. Mar. Navig. Saf. Sea Transp. 2014, 8, 69–77. [Google Scholar] [CrossRef]
- Sniedovich, M. Dynamic Programming: Foundations and Principles; Taylor & Francis: Milton Park, UK, 2010; ISBN 978-0-8247-4099-3. [Google Scholar]
- Lisowski, J. Synthesis of a Path-Planning Algorithm for Autonomous Robots Moving in a Game Environment during Collision Avoidance. Electronics 2021, 10, 675. [Google Scholar] [CrossRef]
- Rahmanian, H.; Warmuth, M.K. Online Dynamic Programming. 2017. Available online: https://arhiv.org/abs/1706.00834v3 (accessed on 22 April 2023).
- Zhang, H.; Liu, D.; Luo, Y.; Wang, D. Adaptive Dynamic Programming for Control; Springer: London, UK, 2013; ISBN 978-1-4471-5881-3. [Google Scholar]
- Lisowski, J. Optimization Methods in Maritime Transport and Logistics. Pol. Marit. Res. 2018, 25, 30–38. [Google Scholar] [CrossRef]
- Lisowski, J. Game Control Methods Comparison when Avoiding Collisions with Multiple Objects Using Radar Remote Sensing. Remote Sens. 2020, 12, 1573. [Google Scholar] [CrossRef]
- Eslami, M. Theory of Sensitivity in Dynamic Systems; Springer: Berlin/Heidelberg, Germany, 1994; ebook. [Google Scholar] [CrossRef]
- Rosenwasser, E.; Yusupov, R. Sensitivity of Automatic Control Systems; CRC Press: Boca Raton, FL, USA, 2019; ebook. [Google Scholar] [CrossRef]
Ship j | Speed Vj (kN) | Course ψj (°) | Distance Dj (nm) | Bearing Nj (°) |
---|---|---|---|---|
0 | 15.0 | 0 | 0 | 0 |
1 | 14.4 | 91 | 8.7 | 325 |
2 | 16.3 | 181 | 11.2 | 8 |
3 | 16.0 | 201 | 7.4 | 12 |
4 | 15.0 | 85 | 6.0 | 300 |
5 | 0 | 0 | −3.0 | 280 |
Ds | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δx | ||||||||||||||||
0.2 | 3.8 | 3.6 | 3.4 | 3.2 | 2.6 | 1.8 | 1.4 | 1.2 | 0.2 | 1.8 | 3.4 | 7.8 | 12.2 | 14.6 | 14.4 | |
0.3 | 4.0 | 3.8 | 4.2 | 3.2 | 3.0 | 2.2 | 1.0 | 1.0 | 1.4 | 4.2 | 9.4 | 13.0 | 14.0 | 15.6 | 15.8 | |
0.4 | 4.0 | 3.8 | 3.8 | 3.8 | 2.4 | 2.4 | 2.4 | 1.0 | 1.2 | 8.6 | 9.0 | 14.2 | 13.8 | 14.0 | 14.2 | |
0.5 | 4.2 | 4.0 | 3.0 | 2.8 | 2.2 | 1.8 | 1.2 | 1.2 | 2.8 | 8.6 | 11.8 | 10.6 | 11.0 | 13.8 | 13.4 | |
0.6 | 4.2 | 4.0 | 2.0 | 1.8 | 1.8 | 0.4 | 0 | 1.6 | 8.4 | 9.2 | 10.2 | 10.2 | 12.2 | 9.2 | 13.0 | |
0.7 | 4.4 | 3.2 | 0.8 | 1.6 | 1.6 | 1.4 | 1.4 | 2.2 | 6.8 | 10.8 | 10.6 | 11.4 | 12.4 | 12.4 | 12.4 | |
0.8 | 4.2 | 4.0 | 0.3 | 0.6 | 0.4 | 0.2 | 2.2 | 2.2 | 4.0 | 10.0 | 10.0 | 10.0 | 13.0 | 13.0 | 11.8 | |
0.9 | 4.2 | 4.0 | 1.5 | 1.2 | 0.2 | 1.2 | 2.8 | 1.4 | 3.6 | 4.8 | 7.6 | 7.6 | 8.0 | 11.0 | 11.0 | |
1.0 | 4.2 | 4.0 | 1.5 | 1.8 | 0.6 | 0.2 | 0.8 | 1.4 | 2.2 | 4 | 4.9 | 6.2 | 6.8 | 4.3 | 11.6 |
Ds | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.2 | 2.4 | 2.6 | 2.8 | 3.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
δx | ||||||||||||
1.0 | 9.2 | 8.6 | 8.0 | 6.6 | 7.0 | 7.4 | 10.2 | 11.4 | 13.4 | 16.0 | 19.4 | |
1.2 | 10.0 | 8.6 | 5.0 | 4.4 | 2.8 | 4.6 | 7.0 | 11.4 | 12.8 | 14.0 | 14.4 | |
1.4 | 12.0 | 8.6 | 5.0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.8 | 9.4 | |
1.6 | 12.8 | 10.0 | 4.9 | 0.6 | 0.6 | 0.6 | 2.4 | 1.8 | 1.8 | 2.6 | 4.0 | |
1.8 | 14.6 | 12.6 | 8.6 | 2.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 3.4 | 3.4 | |
2.0 | 19.8 | 16.0 | 14.6 | 12.6 | 4.9 | 3.6 | 2.8 | 1.0 | 2.6 | 3.4 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowski, J. Maintaining Symmetry in Optimal and Safe Control of the Ship to Avoid Collisions at Sea. Symmetry 2023, 15, 1016. https://doi.org/10.3390/sym15051016
Lisowski J. Maintaining Symmetry in Optimal and Safe Control of the Ship to Avoid Collisions at Sea. Symmetry. 2023; 15(5):1016. https://doi.org/10.3390/sym15051016
Chicago/Turabian StyleLisowski, Józef. 2023. "Maintaining Symmetry in Optimal and Safe Control of the Ship to Avoid Collisions at Sea" Symmetry 15, no. 5: 1016. https://doi.org/10.3390/sym15051016
APA StyleLisowski, J. (2023). Maintaining Symmetry in Optimal and Safe Control of the Ship to Avoid Collisions at Sea. Symmetry, 15(5), 1016. https://doi.org/10.3390/sym15051016