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Abstract: Biomolecules are frequently chiral compounds, existing in enantiomeric forms. Amino
acids represent a meaningful example of chiral biological molecules. Both L- and D-amino acids play
key roles in the biochemical structure and metabolic processes of living organisms, from bacteria
to mammals. In this review, we explore the enantiospecific interaction between proteins and chiral
amino acids, introducing theoretical models and describing the molecular basis of the ability of
some of the most important enzymes involved in the metabolism of amino acids (i.e., amino acid
oxidases, dehydrogenases, and aminotransferases) to discriminate the opposite enantiomers. Our
analysis showcases the power of natural evolution in shaping biological processes. Accordingly, the
importance of amino acids spurred nature to evolve strictly enantioselective enzymes both through
divergent evolution, starting from a common ancestral protein, or through convergent evolution,
starting from different scaffolds: intriguingly, the active sites of these enzymes are frequently related
by a mirror symmetry.

Keywords: enantioselectivity; chirality; D-amino acids; aminotransferases; amino acid oxidases;
dehydrogenases; active site

1. Introduction

Chirality is a concept introduced by Louis Pasteur in 1848 through his seminal work
on tartaric acid [1,2]. As he stated in 1874: “The universe is asymmetric and I am persuaded
that life, as it is known to us, is a direct result of the asymmetry of the universe or of its indirect
consequences.”. Amino acids, carbohydrates, and several lipids are “chiral” compounds;
they exist as two identical molecules that use the space differently since, like our hands,
they are mirror images. These chiral compounds are the precursors of several polymers
containing chiral centres (i.e., proteins, DNA, RNA, and polysaccharides). In addition,
many cellular metabolites also contain chiral centres, and, in most cases, one specific
configuration is preferred.

In nature, there are about 500 amino acids, but only 20 are proteogenic (i.e., they can
be found in proteins). Amino acids represent a well-known example of chiral biological
molecules. A typical α-amino acid possesses a central carbon atom (αC, a carbon atom
with an sp3 hybridization) linked to four different substituents: (i) an α-amino (NH2) and
(ii) α-carboxylic group (COOH), which at physiological pH are positively and negatively
charged, respectively; (iii) an organic group named side chain (there are 20 different side
chains in proteogenic amino acids, each possessing a specific size, charge, and polarity);
(iv) a hydrogen atom (the αH) (Figure 1A). Of these α-amino acids, glycine is achiral and
the other 19 have a chiral carbon and thus exist as either of two possible stereoisomers
indicated as enantiomers. The enantiomers of a given compound have identical chemical
and physical properties, with the only exception of the mode of interaction with other
chiral compounds and with polarized light. For glyceraldehyde, the enantiomer that
rotates clockwise (to the right) the plane of polarized light is identified as dextrorotatory
(D), while the one that rotates counter-clockwise (to the left) the plane of polarized light is
laevorotatory (L). The absolute configurations of simple amino acids and sugars are thus
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specified by the L- and D-systems based on the absolute configuration proposed by Emil
Fischer for glyceraldehyde [3].
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Figure 1. Models for the stereoselective discrimination of enantiomers of amino acids. (A) Absolute 
configuration of an L- and D-amino acid. The αH (priority 4), which points away from the point of 
view, is hidden behind the αC. Groups attached to the αC are numbered accordingly to their prior-
ity. (B) The “3-contact point model”: the enantiomer on the right can form only two out of three 
correct interactions (the D-B� mismatch is indicated by a red X). (C) The “4-contact point model” 
(“mirror image model”): in this enantiomeric model, three interactions between the two enantio-
mers and the protein, are conserved, while the fourth “functional direction” (D) points toward op-
posite directions. This model is also named the “umbrella-like” model because the mirror image of 
the enantiomers is similar to a molecule that has been subjected to a Walden inversion. (D) The 
“enantiomer superposition model”: the chiral centre and the substituent groups A and B are copla-
nar; both enantiomers of the amino acid can interact with the protein groups A′, B′, and C′. Specifi-
cally, the flexibility of the side chain allows the conservation of the C-C′ interaction between the two 
enantiomers and the enzyme. 

The ubiquity of L-amino acids in proteins and of D-sugars in nucleic acids strongly 
suggests that these choices were fixed prior to the appearance of the last universal com-
mon ancestor (LUCA). On the other hand, the use of both enantiomers of chiral phospho-
lipids occurred post-LUCA since archaea and bacteria use opposite enantiomers [4]. 
Among the main outstanding questions about the origins of life [5] is the reason that led 
to the transition from racemic, abiotic chemistry to the homochirality observed in biology, 
and whether this transition was a biological invention or was started by abiotic processes. 
Although it is still elusive as to why and how only L-amino acids were selected for pep-
tide/protein synthesis during the prebiotic era, D-amino acids have been retained within 
the biological systems and are implicated in important biological processes. 

Figure 1. Models for the stereoselective discrimination of enantiomers of amino acids. (A) Abso-
lute configuration of an L- and D-amino acid. The αH (priority 4), which points away from the
point of view, is hidden behind the αC. Groups attached to the αC are numbered accordingly to
their priority. (B) The “3-contact point model”: the enantiomer on the right can form only two
out of three correct interactions (the D-B’ mismatch is indicated by a red X). (C) The “4-contact
point model” (“mirror image model”): in this enantiomeric model, three interactions between the
two enantiomers and the protein, are conserved, while the fourth “functional direction” (D) points
toward opposite directions. This model is also named the “umbrella-like” model because the mirror
image of the enantiomers is similar to a molecule that has been subjected to a Walden inversion.
(D) The “enantiomer superposition model”: the chiral centre and the substituent groups A and B
are coplanar; both enantiomers of the amino acid can interact with the protein groups A′, B′, and C′.
Specifically, the flexibility of the side chain allows the conservation of the C-C′ interaction between
the two enantiomers and the enzyme.

The ubiquity of L-amino acids in proteins and of D-sugars in nucleic acids strongly
suggests that these choices were fixed prior to the appearance of the last universal common
ancestor (LUCA). On the other hand, the use of both enantiomers of chiral phospholipids
occurred post-LUCA since archaea and bacteria use opposite enantiomers [4]. Among the
main outstanding questions about the origins of life [5] is the reason that led to the transition
from racemic, abiotic chemistry to the homochirality observed in biology, and whether this
transition was a biological invention or was started by abiotic processes. Although it is still
elusive as to why and how only L-amino acids were selected for peptide/protein synthesis
during the prebiotic era, D-amino acids have been retained within the biological systems
and are implicated in important biological processes.
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D-amino acids are the main component of the bacterial cell wall, as well as of several
antibiotics [6–9]. These compounds are also present at high concentrations in plants, in-
vertebrates, and mammals, where they fulfil specific and different biological functions. In
the mammalian brain, D-serine (D-Ser) acts as a co-agonist of the N-methyl-D-aspartate
(NMDA)-type glutamate receptors, responsible for learning and memory, and the alter-
ation of its level has been related to psychiatric and neurodegenerative disorders [10,11].
D-aspartate (D-Asp) is a main regulator of adult neurogenesis and plays an important role
in the development of endocrine functions [12]. Furthermore, foods also contain D-amino
acids, naturally originated or processing-induced [13].

Chiral amino acids are also largely used in different industrial sectors, such as the
pharmaceutical, cosmetic, food, agricultural, and feedstuff industries [14–16]. The impres-
sive number of applications of chiral amino acids has stimulated a great deal of innovation
in synthetic methodologies for their preparation, especially employing stereospecific en-
zymes under mild conditions [17]. On this side, most protein binding sites are chiral
and able to preferentially bind a specific enantiomer of a chiral ligand. Several enzymes
show a strict enantiospecificity toward substrates both in the binding process (the physical
step of catalysis) and/or in the catalytic step (the chemical step of catalysis). This aspect
must be considered when designing specific pharmaceutical drugs. The different types of
stereoselective metabolism could bear important consequences on several aspects of their
pharmacokinetics and pharmacodynamics [18–20]. In recent years, the discovery that the
pharmacologically inactive stereoisomer in a racemate could be potentially toxic pushed
the major drug regulatory agencies to issue specific guidelines for the development and
use of chiral molecules as drugs [12].

In this review, we aim to rationalize the molecular arrangements employed by different
stereospecific enzymes able to distinguish between L- and D-amino acid enantiomers,
thus providing selected examples of enantioselectivity in oxidases, dehydrogenases, and
aminotransferases.

2. Models of Enantiospecificity in Protein-Ligand Interaction

The first model for the stereospecific discrimination of ligands was proposed by Easson
in 1933 [21]. This model was subsequently further refined to account for more complex
enantiospecific situations [22,23]. All the proposed models are based on the concept of
a point of interaction between a specific atom or chemical group of the ligand and a
corresponding atom or chemical group of the protein. These ligand–protein interactions
are called “attachment” or “contact” points. Additional factors that could play a key role in
the enantiospecificity of enzymes (e.g., protein conformational changes, enantioselective
access to the active site) will not be discussed in the present review because they represent
specific situations and have not yet been extensively investigated. The original model
(Easson–Stedman model) was based on three attachment points (“3-contact point model”,
Figure 1B). Three binding determinants of the ligand (A, B, and C) interact with three
corresponding groups on the enzyme (A′, B′, and C′), all laying on the same plane [21].
Therefore, provided that the substrate can usually bind to the attachment points from
a single direction, binding the “wrong” enantiomer would result in a single mismatch
(Figure 1B).

The ability of several enzymes (e.g., D-amino acid oxidases, DAAOs, or L-amino acid
oxidases, LAAOs) to bind both enantiomers of specific substrates, even if they retain the
ability to catalyse the chemical reaction of a single enantiomer, questioned this model. More
recently, a new model has been proposed [23,24]: similar to the previous one, the chiral
ligand interacts with the binding site through three planar contact points (A, B, and C and
A′, B′, and C′, for the ligand and the protein, respectively). In addition, in order for the
reaction to happen, the fourth substituent of the chiral centre of the ligand (D) should point
toward a specific position of the active site (D′). According to this model, in principle, the
protein should be able to bind both enantiomers of the substrate with the substituent (D)
pointing in opposite directions with respect to the chiral centre. An implicit consequence
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of this model is that there should be enough space at the opposite region of the active site
to accommodate the substituent (D) in the two potential orientations. Therefore, this kind
of enantiospecificity is usually observed when the (D) substituent is small; examples of
enzymes that show this model are amino acid oxidases (AAOs). This model is named
as the “4-contact point model” (Figure 1C) or the “mirror-image packing model” since
the three binding determinants (A′, B′, C′) define a symmetry plane of a pseudo-specular
symmetry [25].

A third model, proposed by Bentley and colleagues, is a variant of the “3-contact point
model”. This model has been observed in isocitrate dehydrogenase (EC 1.1.1.42), a key
enzyme in the tricarboxylic acid cycle that converts threo-DS-isocitrate to 2-oxoglutarate
and CO2 [26]. It requires that the attachment sites on the protein should not be coplanar
and that one of the substituents of the substrate chiral centre possesses a certain structural
”flexibility” (at least two degrees of freedom). This model can be applied to the binding of
substrates such as phenylalanine. The presence of a -CH2- group between the αC and the
benzene side chain allows the latter to interact with the same binding determinant at the
enzyme active site (i.e., C′ in Figure 1D) in both the L- and D-enantiomers. This model is
referred to as the “enantiomer superposition model”. One of the main differences between
the “mirror-image packing” and the “enantiomer superposition” models is the reciprocal
orientation of the fourth substituent (D), usually a H atom between the two enantiomers.
The (D) substituent is oriented in opposite directions in the “mirror-image packing model”,
whereas, in the “enantiomer superposition model”, it will show an angle of ~109◦ (i.e., the
bond angle observed in sp3 hybridization) with respect to the position observed in the
other enantiomer.

Recently, enzyme enantiospecificity has been also studied using bioinformatic ap-
proaches, such as quantum chemical simulations which are based on transition state
modelling and density functional theory and correlate the enzyme enantiospecificity to the
predicted transition state energies of the reaction steps. These approaches highlighted that
the enantiospecificity of enzymes does not necessarily correlate with the enzyme–substrate
or enzyme–intermediate complex formation, as stated in the canonical models discussed
above. Indeed, the enantiospecificity-determining transition state(s) can be located in a
part of the reaction different from the binding step. Thus, in order to correctly identify
these steps, the entire reaction mechanism should be explored [27]. The quantum chemical
methods also allow the correlation of the altered enantiospecificity in mutated enzymatic
pathways to cancer biology. This approach was used to identify the rationale of the altered
enantiospecificity of a mutated isocitrate dehydrogenase: in specific cancer cell lines, the
variant enzyme produced only D-2-hydroxyglutarate instead of the L- enantiomer [28].

3. Enantiospecificity in Amino Acid Oxidases and Dehydrogenases

Amino acid oxidases and dehydrogenases (AAOs and AADHs) catalyse the strictly
stereospecific oxidative deamination of the L- or D-enantiomers of amino acids. During
the reaction, the substrate amino acid is oxidized with the production of the correspond-
ing imino acid which, in aqueous solution, spontaneously deaminates producing the
corresponding α-keto acid and ammonia. In AAOs, the reduced cofactor (flavin ade-
nine mono or dinucleotide, FMNH2 or FADH2, respectively) is reoxidized by a molecular
oxygen molecule producing hydrogen peroxide (Figure 2A,B). On the other hand, in
AADHs, the electrons deriving from the amino acid oxidation are transferred through the
reduced cofactors FADH2 or nicotinamide adenine dinucleotide (phosphate), NAD(P)H, to
a membrane-associated electron acceptor (usually a molecule belonging to the coenzyme Q
family) [29,30]. This electron transfer/reoxidation system allows AADHs to perform the
oxidative deamination of amino acids even under anaerobic conditions.
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(e.g., LAAO from the bacterium Rhodococcus opacus and LAAOs from vertebrates) and en-
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homologous GoxA, active on glycine, produced by the marine bacterium Marinomonas 
mediterranea also belong to this group [32,33]. This latter enzyme possesses the peculiar 
cysteine tryptophylquinone cofactor (CTQ), a type of quinone cofactor generated by the 
post-translational modification of two residues belonging to the same protein chain. Fi-
nally, this group also includes bacterial L-amino acid dehydrogenases (LAADHs, EC 
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The other side of the AAOs and AADHs mirror is occupied by enzymes active on the 
D-enantiomer of amino acids: the most important group is formed by D-amino acid oxi-
dases (DAAOs, EC 1.4.3.3), ubiquitous flavoproteins present in almost all eukaryotes 
(with the exception of plants). The DAAO from pig kidney was the first described AAO 
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Figure 2. Symmetric arrangement of the active site of DAAO and LAAO. (A) Reaction catalysed by
LAAO and (B) by DAAO. (C) Scheme of the active site of Calloselasma rhodostoma LAAO (CrLAAO)
in complex with L-Phe (PDB code 2IID). (D) Superimposition of the structure of CrLAAO (green) and
human DAAO (hDAAO, blue) with bound L-Phe (the benzene ring of the side chain is not shown)
and D-alanine (modelled based on the structure of hDAAO in complex with iminoserine, PDB code
2E49), respectively. The vertical grey line represents the symmetry axis perpendicular to the FAD
isoalloxazine ring. (E) Scheme of the active site of hDAAO in complex with D-alanine. Only the
residues responsible for the main substrate-protein interactions are represented.

According to their strict enantiospecificity, AAOs and AADHs can be divided into two
main groups. The first group is composed of enzymes active on L-amino acids. L-amino acid
oxidases (EC 1.4.3.2, LAAOs) are the most abundant components of this group. LAAOs can
be in turn divided into enzymes possessing a wide substrate specificity (e.g., LAAO from the
bacterium Rhodococcus opacus and LAAOs from vertebrates) and enzymes showing a narrow
substrate preference (e.g., L-aspartate oxidase, L-glutamate oxidase, L-lysine oxidase) [31].
Interestingly, L-lysine ε-oxidase (LodA, EC 1.4.3.20) and its homologous GoxA, active
on glycine, produced by the marine bacterium Marinomonas mediterranea also belong to
this group [32,33]. This latter enzyme possesses the peculiar cysteine tryptophylquinone
cofactor (CTQ), a type of quinone cofactor generated by the post-translational modification
of two residues belonging to the same protein chain. Finally, this group also includes
bacterial L-amino acid dehydrogenases (LAADHs, EC 1.4.1.5) [34].

The other side of the AAOs and AADHs mirror is occupied by enzymes active on
the D-enantiomer of amino acids: the most important group is formed by D-amino acid
oxidases (DAAOs, EC 1.4.3.3), ubiquitous flavoproteins present in almost all eukaryotes
(with the exception of plants). The DAAO from pig kidney was the first described AAO
in 1935 [35] and represents the prototype of the FAD-dependent oxidase family [36,37].
Additionally, D-aspartate oxidase (DASPO or DDO, EC 1.4.3.1) and bacterial D-amino acid



Symmetry 2023, 15, 1017 6 of 21

dehydrogenases (DAADHs, EC 1.4.99.1) belong to this second group. Interestingly, the
non-enantiomeric enzyme glycine oxidase from Bacillus subtilis, which is mainly active on
the non-chiral amino acid glycine, can be classified in this group because of its low, but not
marginal, activity on D-amino acids (e.g., D-alanine, D-Ala, and D-proline, D-Pro) [33,38,39]
and large structural similarity with DAAO [40,41].

3.1. Comparison between D- and L-Amino Acid Oxidases

LAAOs and DAAOs are FAD-containing flavoenzymes whose catalytic mechanism
proceeds through the partial superimposition of the molecular orbitals of the atoms in-
volved in the reaction, which is the highest occupied molecular orbital (HOMO) of the
substrate αH and the lowest unoccupied molecular orbital (LUMO) of the FAD cofactor
N(5) (the so-called orbital steering mechanism). Interestingly, the amino acid functional
groups of the active site are not involved in the chemical step of catalysis, but they play a
fundamental role in the recognition, binding, and orientation of the substrate [42–44].

The LAAO activity is widely distributed in nature, from bacteria [45,46] to mammals,
which express LAAO in several tissues (e.g., in liver, kidney, brain, mammary gland, and
polymorphonuclear leukocytes). In particular, snake venom represents the source of the
best-characterized LAAOs [47,48]. Despite the low sequence identity between different
LAAOs (e.g., the LAAO from the snake Crotalus adamanteus, CrLAAO, shares less than
23% sequence identity with the one from the bacterium Rhodococcus opacus), their overall
fold is very similar, with a root mean squared deviation (RMSD) of ~1.0–1.2 Å when
superimposed [31,47]. Indeed, most of the differences are gathered in protein regions that
are either removed during maturation or form surface loops; only marginal alterations
have been observed in regions close to the substrate binding site. The high similarity of the
overall three-dimensional fold and the very similar active site geometry support a strong
evolutionary relationship among these enzymes [31]. The physiological role of LAAOs is
often connected to their ability to generate hydrogen peroxide [48], a potent antimicrobial
agent that can play an important role in microbial competition processes [49], biofilms
dynamics [50], the protection of the fish skin from bacterial infections [51], and human
immune system response [52,53]. Finally, LAAOs are also interesting for their potential
biocatalytic applications [31].

Bacterial and eukaryotic LAAOs share the same mode of substrate binding; the sub-
strate is bound at the active site on the re-face of the isoalloxazine moiety of FAD. The
ability of LAAOs to discriminate between the two enantiomers of the amino acids can be
explained based on the “4-contact point model” (Figure 1C). In agreement with this model,
the architecture of the enzyme active site is arranged so that three directional binding
interactions (attachment sites) and one “functional direction” between the substrate and
the active site can be identified [23]. The major anchor point (A-A’) is represented by a salt
bridge interaction between the α-carboxylic group of the amino acid (negatively charged)
and the positively charged guanidinium group of arginine of the active site (Arg90 in
CrLAAO), which is located close to the pyrimidine side of the isoalloxazine (Figure 2D).
This interaction is strengthened by additional hydrogen bonds between the oxygen atoms
of the α-carboxylate and the hydroxyl of Tyr372, the N(5) atom of the flavin, and an active
site water molecule. This latter molecule plays an important role during catalysis since
it can act as a H+ donor for the activation of O2 during the re-oxidation of FADH2 [54].
The second anchor point (B-B’) is a hydrogen bond between the α-amino group of the
substrate and the main chain C=O of Gly464 and to a second active site water molecule.
The third anchor point (C-C’) is represented by the upper region of the active site which
accommodates the substrate side chain and is central for the determination of the substrate
scope in LAAOs. Most of the active site differences among members of this family cluster in
this region. The “functional” direction (D-D’) is represented by the αH that points towards
the flavin N(5) allowing an efficient hydride transfer during catalysis.

Additionally, in DAAOs, the substrate D-amino acid is bound at the re-face of the
isoalloxazine moiety [42,55]. The residue that mainly contributes to the binding energy
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of the substrate (interaction A-A′) is Arg283 (residue numbering refers to the human
enzyme, hDAAO), which forms an electrostatic interaction with the negatively charged
α-carboxyl group of the amino acid [56]. The same group is bound through a H-bond to
the hydroxyl side chain of Tyr228. Due to the relevant contribution to substrate binding,
these two residues are conserved in all DAAOs and DASPOs. The α-amino group of the
substrate forms two H-bonds with the main chain oxygen of Gly313 and with the oxygen
of the C(4)=O group of FAD (interaction B-B′) [57]. In yeast DAAO, the α-amino group is
also H-bonded to an active site water molecule [42]. As in LAAOs, the third attachment
point (C-C’) in DAAOs is also formed by various interactions between the substrate side
chain and the residues lining a hydrophobic cavity in the upper part of the active site.
In hDAAO, this substrate specificity pocket is formed by residues Leu51, Gln53, Leu215,
and Ile230. In addition, when aromatic ligands are bound at the active site, they form a
stacking interaction with Tyr224 (belonging to the flexible active site loop) [57]. Finally, the
“functional direction” (D-D′) is also represented by the orientation of the αH in DAAOs
(Figure 2E).

The relevance of the interaction formed by the αNH2 group of the substrate (B-B’) in
the enantiospecificity of DAAOs has been demonstrated by [58]. When the D-Ala oxidation
is performed at pH 9.8, the amino group of the substrate is deprotonated and it becomes an
isostere of the side chain CH3 group; this decreases the strength of the (B-B’) interaction and,
at the same time, allows to locate the neutral amino group in the hydrophobic substrate
specificity pocket (site C). As a consequence, under these conditions, L-alanine (L-Ala) can
bind and become a substrate of DAAO. A similar occurrence is also evident with proline,
where the groups –CH2- and –NH- of the pyrrole ring (substituents of the αC) are isosteres,
and, as a consequence, both enantiomers of proline can fit the B’ and C’ sites of the active
site of DAAO [58].

The superimposition of the hDAAO structure (PDB code 2E49) to the CrLAAO struc-
ture (PDB code 2IID) reveals the mechanism of strict enantioselectivity of these two enzymes
acting on “mirror” substrates. Overall, the binding mode observed in LAAOs is similar
to the one of DAAOs [36,42,59] with the substrates bounded at the same side of the FAD
(re-face) and occupying the same region of the active site. On the other hand, because of the
opposed enantiospecificity, the arginine (attachment point A) and the specificity binding
pocket (attachment point C) appear mirrored (i.e., they are switched). The (B-B’) interaction
is conserved (Gly313 is superimposed to Gly464) and, in addition, the H-bond between
one oxygen of the carbonyl group and the active site tyrosine is also conserved; in the two
superimposed enzymes, the hDAAO Tyr228-OH group is at a distance of 1.5 Å from the
LAAO Tyr372-OH group. Additionally, the “functional direction” is conserved since the αH
of the amino acid points to the N(5) of the flavin at ~3.2–3.4 Å. As a result, the active sites of
DAAOs and LAAOs are a mirror of each other with the symmetry plane perpendicular to
the plane of the isoalloxazine ring of the cofactor (Figure 2D). It is interesting to highlight
that, from an evolutionary point of view, the homologous DAAOs and LAAOs acquired
a strict enantiospecificity through limited changes at the active site, among which, the
most important one has been the switch of the position of the Arg required for binding the
α-carboxyl group of the substrate.

From a functional point of view, the following situations can be envisaged when an
L-amino acid substrate is modelled at the active site of DAAO. As we assume that the
main interaction (A-A’, i.e., the salt bridge between the α-carboxylic group and the argi-
nine) is conserved, only three alternative potential conformations are possible (Figure 3).
Each conformation would simultaneously satisfy two out of four anchor points, while
the remaining two will be switched (Figure 3, conformations D,E,F). This will inevitably
result in steric hindrance issues and/or the loss of stabilizing interactions, that, in turn,
will result in a decrease in the binding energy and the probability of the formation of the
complex. Indeed, conformation C (Figure 3C) will satisfy the three directions (allowing
similar binding energy between the two enantiomers): this conformation entails a slight
displacement of the αC and, importantly, a switch of the direction of the αH that points
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in the “wrong” direction (i.e., opposite to the FAD cofactor). This prevents the transfer of
the hydride ion to FAD during catalysis. Consequently, even if the L-enantiomer of the
substrate could bind to the active site, it will not be oxidized by the enzyme. L-lactate
(a compound possessing a chemical structure very similar to L-Ala) binds in a not-catalytically
competent orientation (Figure 3B) [42], also named the “umbrella-like model” (Figure 1C).
In this conformation, the binding energy for the two enantiomers is close (because only one
mismatch between the substituents and the binding sites is created). This binding model
might explain why several enzymes are active, even if to a different extent, on both the
enantiomers of a substrate; in these cases, the two enantiomers are defined as the slow- and
fast-reacting enantiomers.
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Figure 3. D- and L-enantiomers of alanine and L-lactate bound at the active site of DAAO. (A) D-Ala
modelled in the active site of hDAAO (based on the structure of hDAAO in complex with iminoserine,
PDB code 2E49). (B) L-lactate in complex with yeast DAAO (PDB code 1C0K). (C) L-Ala modelled at
the active site of hDAAO accordingly to the “inverted umbrella model”. (D–F) L-Ala modelled at the
active site of hDAAO. The αH, side chain, and α-amino groups are represented as grey, teal, and deep
purple spheres, respectively. In all panels, the αCOOH (depicted in salmon) is superimposed to the
one of D-Ala. The FAD cofactor is shown in orange sticks. Labelled arrows represent the interaction
accordingly to the “4-contact point model” (the interaction A between the active site arginine and the
carboxylic group of the ligand is not shown); red arrows represent “wrong” interactions.

D-aspartate oxidase (DASPO, EC 1.4.3.1) is a close paralogue of DAAO, with which it
shares a high sequence similarity [60,61]. It is able to oxidize D-Asp and, to a lesser extent,
D-glutamate (D-Glu), therefore playing a crucial role in the utilization, elimination, and
intracellular level regulation of acidic D-amino acids in organisms ranging from bacteria
to mammals. In the yeast Candida humicola, DASPO allows the microorganism to use
D-Asp as a carbon and nitrogen source [62]. In the nematode C. elegans (which expresses
three different DASPOs), DASPO activities participate in the modulation of the nematode
fertility, growth, and lifespan [63]. Importantly, in mammals, this enzyme is a key player
in the regulation of the neuromodulator D-Asp in the brain and in the neuroendocrine
system [64–66]. The active site of DASPO resembles the one of hDAAO: the main difference
concerns the substrate specificity pocket (site D’) which, in DASPO, is positively charged
due to the presence of two additional arginines (Arg216 and Arg237) in comparison to
hDAAO [64].

While DASPO is a catabolic enzyme, L-aspartate oxidase (LASPO, EC 1.4.3.16), the
amino acid oxidase active on L-Asp, is a prokaryotic anabolic enzyme since it catalyses the
first step of the de novo synthesis of NAD+ from L-Asp and dihydroxyacetone phosphate
as precursors [67]. In the reaction catalysed by LASPO, the electrons deriving from L-
Asp oxidation are transferred to molecular oxygen (as in DAAO) or to fumarate, which
is reduced to succinate. This latter reaction is used to foster the tricarboxylic acid cycle
in cyanobacteria.
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Interestingly, L- and D-aspartate oxidase structures cannot be superimposed since
these enzymes are not evolutionary related and belong to different structural families; in
agreement with PFAM classification, LASPO domains belong to PF00890—FAD-binding
domain—and to PF02910—fumarate reductase flavoprotein C-term—while DASPO, such
as DAAO, belongs to PF01266—FAD-dependent oxidoreductase. Indeed, a close inspection
of the structure shows that in LASPO, L-Asp is bound in a very peculiar way, i.e., with
an orientation that is rotated by 90◦ in comparison with the one observed in DASPO and
DAAO and, also, in comparison with L-amino acids in LAAO and LAAD.

3.2. Comparison between D-Amino Acid Oxidases and L-Amino Acid Deaminases

L-Amino acid deaminase (LAAD) catalyses a reaction similar to LAAO (i.e., the
oxidative deamination of L-amino acids). The main difference resides in the FAD cofactor
reoxidation step: in LAADs, electrons deriving from the substrate are transferred to a
membrane-associated electron acceptor, most likely a cytochrome b, with no production of
hydrogen peroxide (Figure 4A) [68].
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DAAO, optimized to perform an efficient hydride transfer from the substrate to the flavin 
(Figure 5) [81]. As in DAAO, in FCB, the substrate is bound close to the cofactor by a two-
point electrostatic interaction with an arginine residue (Arg376) but on the opposite side 
of the flavin isoalloxazine ring (i.e., on the si-face, Figure 5B,C). As a consequence, despite 
the similar architecture, the active site residues of the two enzymes cannot be superim-
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interacting atoms or chemical groups show an RMSD of ~0.9 Å (namely, Ala49/198, 

Figure 4. Symmetric arrangement of the active site of LAAD and DAAO (PDB code 2E4A).
(A) Reaction catalysed by LAAD. (B) Scheme of the active site of PmaLAAD in complex with
L-Phe (green) and D-Phe (grey, transparent). The ligands were modelled based on the structure of
PmaLAAD in complex with aminobenzoate (PDB code 5FJN). The side chain of L-Phe is accom-
modated in the substrate specificity pocket thanks to the flexibility of Phe318. On the other hand,
the side chain of D-Phe cannot be accommodated in the same region due to potential steric clash
with Val412 and Val438 side chains. (C) Schematic representation of the interactions at the active
site of PmaLAAD according to the 4-point binding model. (D) Superimposition of the structure of
PmaLAAD (green, solid) and hDAAO (blue, transparent) in complex with the ligand aminobenzoate;
only the FAD cofactor (yellow) of PmaLAAD is shown. The vertical grey line represents the symmetry
axis perpendicular to the FAD isoalloxazine ring. (E) Same representation as in panel D, with hDAAO
solid (blue) and PmaLAAD transparent (green).
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LAAD is only expressed by microorganisms belonging to the genus Proteus. This
microorganism produces two different types of this membrane enzyme (type-I and type-II
LAADs), which differ in substrate specificity; type-I LAADs are mainly active on bulky
hydrophobic amino acids, while type-II LAADs are active on basic amino acids [69,70].
LAADs share only a marginal sequence similarity with L- or D-amino acid oxidases (13.9
and 16.4%, respectively) [68]. LAADs represent the most promising alternative to LAAOs
for biotechnological applications since the latter enzyme cannot be efficiently expressed
in a recombinant form. For example, LAADs have been proposed as biocatalysts for the
production of optically pure D-amino acids through the resolution of D,L-racemic mixtures,
as biological components in biosensors for the analytical determination of the concentration
of L-amino acids [48,71–77] and even as diagnostic or therapeutic agents [78–80].

As in AAOs, the absolute enantiospecificity of LAADs depends on the specific archi-
tecture of their active site which, in analogy with AAOs, can be explained accordingly to
the four-location model [23]. Amongthe three binding interactions and the “functional
direction” (Figure 4B,C), the electrostatic interaction between the substrate carboxyl group
and the guanidine moiety of the side chain of Arg316 (numbering refers to PmaLAAD)
(A-A′) provides the main energetic contribution. In addition, one of the oxygen atoms of
the carboxylic group of the substrate is also H-bonded to the side chain of Gln100 and to
the C=O(4) atom of the FAD isoalloxazine ring. The amino group of the substrate forms a
H-bond with the main-chain C=O of Val438 (B-B’) and with an active site water molecule.
The substrate side chain forms several van der Waals interactions with large hydrophobic
residues (Leu279, Phe318, Val412, Val438, and Trp439) that form a hydrophobic pocket and
determine the substrate scope of the enzyme (C-C’). Interestingly, despite the significant
difference in substrate specificity between type-I and type-II LAADs, the volume and polar-
ity of the substrate-specificity pocket are conserved (Figure 4B). The functional “direction”
(D-D’) is represented by the αH pointing toward the FAD N(5) atom at a distance <4 Å,
allowing an efficient hydride transfer during catalysis.

In comparison with DAAO, the main residues involved in substrate binding in the
LAAD active site are mirrored through a plane perpendicular to the isoalloxazine ring of
FAD which encompasses the C(2) and C(4) atoms of the cofactor, a setup resembling the
DAAO/LAAO pair [44]. Accordingly, the binding of a D-amino acid (e.g., D-Phe) at the
active site of LAAD would result in a steric clash between its aromatic side chain and the
FAD isoalloxazine moiety and in the positioning of the positively charged amino group
into the apolar substrate specificity pocket [68] (Figure 4B).

3.3. Comparison between D-Amino Acid Oxidases and L-Lactate Cytochrome c Oxidoreductase

The superimposition of the structure of the DAAO from pig kidney (pkDAAO) [36]
to the structure of L-lactate cytochrome c oxidoreductase (FCB, EC 1.1.2.3) exemplifies
a different way to achieve mirror enantioselectivity between the two enzymes. FCB is a
flavin adenine mononucleotide (FMN) containing flavoprotein which oxidizes L-lactate
to pyruvate with the transfer of the electrons to the acceptor heme b2. The substrate
L-lactate is similar to L-Ala (apart from the positive charge on the amino group in the
latter). The convergent evolution process generated an active site geometry very similar to
the one of DAAO, optimized to perform an efficient hydride transfer from the substrate
to the flavin (Figure 5) [81]. As in DAAO, in FCB, the substrate is bound close to the
cofactor by a two-point electrostatic interaction with an arginine residue (Arg376) but on
the opposite side of the flavin isoalloxazine ring (i.e., on the si-face, Figure 5B,C). As a
consequence, despite the similar architecture, the active site residues of the two enzymes
cannot be superimposed unless a mirror symmetry operation was performed using a
mirror plane coincident with the flavin isoalloxazine ring. Following this operation, the
corresponding couples of interacting atoms or chemical groups show an RMSD of ~0.9 Å
(namely, Ala49/198, Tyr228/143, Arg283/376, Gly313/His373, active site water/Tyr254, in
pkDAAO and FCB, respectively), Figure 5D. The distance between the reactive atom (αC)
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of both substrates and the FAD/FMN N(5) is also similar: 3.3 Å and 3.7 Å for pkDAAO
and FCB, respectively.
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Figure 5. Symmetrical arrangement of the active site of FCB (PDB code 1FCB) and DAAO (PDB
code 2E4A). (A) Reaction catalysed by FCB. (B) Active site of FCB in complex with L-lactate (green).
(C) Schematic representation of the interactions at the active site of FCB accordingly to the 4-contact
point model. (D) Superimposition of the structure of FCB in complex with L-lactate (green) and
hDAAO (blue) in complex with D-Ala (blue, modelled based on iminoserine in structure 2E49); only
the cofactor FMN (orange) of FCB is shown. The horizontal grey line represents the symmetry axis
coincident with the FAD isoalloxazine ring.

The mirror symmetry arrangement of the substrates in the two enzymes follows a
precise functional requirement allowing the use of the same mode of binding and catalysis
on enantiomerically opposite substrates. The opposite enantiospecificity has been achieved
by placing the substrate on the opposite side of the cofactor: D-amino acid is on the re-
face of the flavin while L-lactate is bound on the si-face in DAAO and FBC, respectively
(Figure 5). This results in active sites that can be described as mirror images of each other.
Thus, the evolutionary unrelated DAAO and FCB represent a remarkable example of a
convergent molecular evolution toward common and enantiomeric active site architecture
well suited to efficiently catalyse the same reaction (oxidation of an α-amino acid or of an
α-hydroxy acid) on substrates with opposite chirality.

3.4. Comparison between D- and L-Amino Acid Dehydrogenases

L-amino acid dehydrogenases (LAADH, EC 1.4.1.X) are membrane-bound bacterial
enzymes. The LAADH superfamily contains glutamate (GluDH), valine (ValDH), leucine
(LeuDH), phenylalanine (PheDH), and tryptophan dehydrogenase (TrpDH) [82–84]. Al-
though the reaction catalysed by these enzymes is similar to the one of LAAD, the equi-
librium of the reactions is shifted toward the reductive amination [85]. LAADHs are very
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attractive for the synthesis of chiral compounds such as amines, amino acids, and amino
alcohols [86]. As most NADP-dependent dehydrogenases, these enzymes consist of a
cofactor-binding domain and a substrate-binding domain, connected through a hinge se-
quence. The active site is placed in a deep cleft between the two domains [87]. GluDH plays
a role in ammonia anabolism catalysing the conversion of 2-oxoglutarate (2-OG) to Glu in
a multistep reaction that involves the nucleophilic attack of ammonium to the α-carbon
of 2-OG, the elimination of the hydroxyl group from the same carbon and, eventually,
the reduction (NAPDH dependent) of the iminoglutarate to L-Glu [88]. In this enzyme,
the substrate is bound at the active site through two Lys residues (Lys92 and Lys116)
which interact with the γ- and α-carboxylate, respectively, of the 2-OG or L-Glu ligands,
as per Figure 6C. During catalysis, residues Lys128 and Asp168 act as an acid and base,
respectively, promoting the nucleophilic attack of the ammonium ion to the α-carbon of
2-OG. The same residues switch their role in the second half of the catalytic cycle (i.e., the
oxidation of iminoglutarate) [86].
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groups named fold type I–VII [95], which encompass the original five fold types [97,98] 
with the addition of a fold type VI cluster (containing D-lysine-5,6-aminomutase) and a 
fold type VII cluster (including lysine-2,3-aminomutase) [95]. Only cluster V does not con-
tain enzymes involved in amino acid metabolism [99]. Enzymes belonging to different 
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pong mechanism. 

Figure 6. Symmetric arrangement of the active site of LAADHs (PDB code 5GUD) and DAADHs
(PDB code 3NYE). (A) Reaction catalysed by glutamate dehydrogenase (GluDH) and by (B) the
DauA/DauB pair. (C) Schematic representation of the interactions at the active site of GluDH in
complex with glutamate (based on the structure 5GUD) accordingly to the “4-contact point model”.
(D) Schematic representation of the interactions at the active site of D-arginine dehydrogenase (DauA
or DADH) in complex with L-Arg (based on the structure of PDB code 3NYE). (E) Superimposition
of the structure of GluDH (green) and DADH (blue). The nicotinamide ring of NADP+ of GluDH has
been superimposed on the isoalloxazine ring of FAD (orange) of DADH. The grey horizontal line
represents the symmetry axis coincident with the FAD isoalloxazine ring.

D-amino acid dehydrogenases (DAADHs, DADH or DADs, EC 1.4.99.1) are enzymes
mainly involved in the metabolization (even under anaerobic conditions) of D-amino
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acids [89,90]. For example, a DAADH had been recently identified in P. mirabilis [91], a
microorganism already known to produce two LAADs [70]. This enzyme allows bacteria
to grow on D-amino acids as the sole nutrient source. In addition, it prevents the local
over-accumulation of D-amino acids, which generate specific inhibitory effects on bacterial
growth [43]. In Pseudomonas aeruginosa, a D-Arg dehydrogenase (DauA or DADH) is a com-
ponent of a dual-enzyme system (DauA/DuaB) that catalyses the two-step stereoinversion
of D-Arg to L-Arg through the formation of the 2-ketoarginine intermediate (Figure 6B).
Thus, the DauA/DauB system allows P. aeruginosa to use D-Arg through the bacterial
L-arginine catabolic pathways [30]. The first component (DADH) is a flavoprotein which
shows the general fold of DAAOs/LAAOs while the second component (DauB) can use
both NADPH and NADH as reducing agents [30]. The mode of substrate binding in
DADH is very similar to the one of DAAO, Figure 6D: D-Arg is bound next to the FAD
re-face with the α-carboxylate involved in ionic interactions with two arginines (Arg222
and Arg305, corresponding to Arg283 in hDAAO) and in a H-bond with Tyr53 and Tyr249
(Tyr224 and Tyr228 in hDAAO) (interaction A-A’). The α-amino group is bound to Gly332
(Gly313 in hDAAO) (interaction B-B’). The main difference is the ionic interaction between
the positive guanidinium group of the substrate and a glutamate side chain (Glu87) [55]
(interaction C-C’) since in the corresponding position, the hydrophobic Leu215 is present
in hDAAO [57]. As in mammalian DAAO [92], a flexible loop at the active site of DADH is
fundamental for the correct binding of the substrate [93].

In E. coli, D-alanine dehydrogenase is associated with the cellular membrane and
allows the conversion of D-Ala to pyruvate for the production of energy and carbon atoms.
Indeed, the electrons produced in this oxidative reaction are transferred through FAD and
an iron–sulfur centre to the respiratory chain. The possible acceptor should be a coenzyme
Q molecule and, eventually, a cytochrome b1 [90].

Given the high evolutionary, structural, and functional heterogeneity among LAADHs
and DAADHs, a direct comparison between their active site is not obvious. Moreover, at
a closer inspection, their enantiospecificity can be explained according to the “3-contact
point model” (as in the DAAO/FCB pair), i.e., by a mirror-symmetric arrangement of the
substrates in the active site of the two enzymes with the mirror plane coincident with the
planar ring(s) of the cofactors. In LAADH, the L-amino acid is located on the si-face of the
nicotinamide ring of NADP+, at a distance and orientation ideal for the hydride transfer of
the αH of the substrate to the position (4) of the cofactor ring. In DAADH, the substrate is
on the re-face of the flavin (Figure 6E) resulting in a mirror image of the LAADH active site.
Thus, again, the geometry of the LAADH and DAADH active sites represents an example
of convergent molecular evolution for the optimization of a similar catalytic strategy.

4. Aminotransferases

Aminotransferases (ATs, EC 2.6.1.X) are pyridoxal 5′-phosphate (PLP)-dependent
enzymes, a class representing about 4% of all enzyme activities [94]. PLP is a cofactor
derived from vitamin B6, involved in a wide variety of enzymatic reactions, such as
decarboxylation, deamination, racemization, and transamination [95,96]. PLP-dependent
enzymes are involved in crucial metabolic pathways, especially related to amino acid
metabolism, in almost all living organisms. Interestingly, all ATs show a conserved lysine
residue in the active site involved in PLP binding; see below.

Based on their fold, PLP-dependent enzymes have been classified into seven different
groups named fold type I–VII [95], which encompass the original five fold types [97,98]
with the addition of a fold type VI cluster (containing D-lysine-5,6-aminomutase) and a
fold type VII cluster (including lysine-2,3-aminomutase) [95]. Only cluster V does not
contain enzymes involved in amino acid metabolism [99]. Enzymes belonging to differ-
ent fold groups differ in the spatial organization of the active site and cofactor orienta-
tion. ATs represent the most abundant cluster of PLP-dependent enzymes, catalysing
the reversible transfer of an amino group from an amino acid to an α-ketoacid through a
ping-pong mechanism.
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Concerning the reaction mechanism, a Schiff base, referred to as aldimine, is formed
between the ε-amino group of the lysine residue and the aldehyde group of PLP. After
substrate binding, the following reaction involves the breakup of the internal aldimine, and
a new Schiff base (external aldimine) is formed via a gem-diamine unstable intermediate
between the aldehyde group of PLP and the amino group of the substrate via a reaction
commonly named transaldimination [96] (Figure 7A). The subsequent reaction mechanism
is dictated by the active site conformation and by the biochemical properties of the active
site residues interacting with the external aldimine. Actually, after external aldimine
formation, the following reaction is a stereospecific 1,3-proton transfer catalysed by the
ε-amino group of the lysine residue by a common-base catalysis mechanism. The proton
transfer is a two-step reaction: the deprotonation at αC leads to a carbanionic intermediate
(one of its resonance forms is called “quinonoid intermediate”) [100,101]. Then, the proton
is transferred from the ε-amino group of the lysine residue to the C4′ atom of PLP, leading
to a ketimine intermediate, and one water molecule is added at the C=N double bond
with the formation of the carbinolamine, followed by the release of the ketoacid and of
the pyridoxamine-5′-phosphate (PMP) form of the cofactor. The following half-reaction
proceeds in reverse order via the formation of the new amino acid and the regeneration
of PLP (Figure 7A). In this commonly accepted reaction mechanism, the proton transfer
was suggested to be promoted by the conserved lysine residue involved in the formation
of internal aldimine.

Amino acid transferases (AATs) are members of the fold types I (i.e., L-aspartate
aminotransferase superfamily, L-Asp-ATs, EC 2.6.1.1) and IV (i.e., D-amino acid amino-
transferases, D-AATs, EC 2.6.1.21, and branched-chain amino acid ATs, BCATs, EC 2.6.1.42),
acting on both L- and D-amino acids [102]. L-AATs are widely exploited in the synthesis
of optically pure amines and unnatural amino acids, and in the stereoselective amination
of organic compounds [103,104]. D-AATs are less investigated, but their crucial role in
the metabolism of D-amino acids has recently attracted attention. In bacteria, D-amino
acids are involved in peptidoglycan metabolism and biofilm formation/stability as an
adaptive mechanism to various environments [105–107]. Free D-amino acids also affect
sporulation, bacterial communities, and gene expression [108–110]. Recent studies have
demonstrated that bacterial D-amino acids including D-Trp, D-Leu, D-Phe, and D-Ser
impact host–bacteria interactions [111–113]. Some bacteria such as Bacillus sp. YM-1,
Bacillus sphaericus, Rhodobacter sp. 140A, and Thermotoga maritima express a D-AAT, which
catalyses a transamination reaction for D-amino acid production [114]. D-AAT is the only
AT active on D-amino acids and is fundamental to producing D-Ala and D-Glu for the
bacterial cell wall.

Transamination is a stereoselective process: interestingly, D-AAT binds the D-amino
acid to form an external aldimine with the same orientation of the α-amino and α-carboxyl
groups relative to the orientation of the PLP ring observed in the complex between L-Asp-
ATs and L-amino acids, while the side-chain orientation is different due to the inversion of
chirality at the αC of the substrate. This difference, as well as the side chain direction of the
catalytic lysine (Lys145 in D-AAT and Lys258 in L-Asp-ATs), would directly determine the
strict discrimination of L- vs. D-amino acids as substrates [115].

In the reaction mechanism, the Cα-H bond of the amino acid is oriented perpendicular
to the π-electron plane of the PLP cofactor, either on a re-face or on a si-face of the substrate–
cofactor complex (Figure 7B) [116]. Therefore, the abstraction and transfer of protons
can occur stereospecifically. In particular, in the fold type I (S)-selective AATs, the proton
transfer occurs on the si-face of the cofactor, while in class IV (including D-AATs and BCATs)
it occurs on the re-face of the cofactor [117] (Figure 7B): the stereochemistry of the hydrogen
transfer reaction is determined by the spatial arrangement of the catalytic lysine residue
and the PLP cofactor [118]. In the reaction catalysed by L-Asp-ATs, Lys258 faces the side of
the substrate where the αH is located, so an L-amino acid results when the reaction goes in
the reverse direction (Figure 7B). Of note, BCATs are the only AATs exhibiting (S)-selectivity,
with a proton transfer mechanism specific for the re-face-. D-AATs and BCATs share 28%
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of identity, showing the conservation of key residues for the interaction with the cofactor
(i.e., Lys145, Glu177 interacting with the pyridoxal nitrogen, Ile204, Thr205, Thr241, and
Arg50 interacting with the phosphate group; the amino acidic numbering refers to D-AATs),
in agreement with the large evolutionary conservation of the mode of PLP binding. For
this reason, the selection between substrates of D- and L- configuration is performed at
the substrate level: an L-amino acid must interact with BCAT in the opposite orientation
compared to the interaction between a D-amino acid and D-AAT. The unique feature of
BCATs is represented by a different α-carboxylate recognition site: the α-COOH group
of the substrate is bound on the phosphate site of the active site, while in L-Asp-ATs and
D-AATs (i.e., fold type I and IV members, respectively), the phosphate group of PLP and
the α-COOH group of the substrate are separated in the active site [119,120]. Indeed, the
R98 residue of D-AAT which interacts with the D-Ala carboxylic group is a methionine
in BCAT.
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Figure 7. Symmetric arrangement of the active site of L-aspartate aminotransferase from Gallus gallus
(variant K258H, PDB code 1AKC) and D-amino acid aminotransferase from Bacillus sp. (PDB code
2DAA). (A) First half of the reaction catalysed by ATs. (B) Superimposition of the structure of L-
aspartate aminotransferase (green) and D-amino acid aminotransferase (blue). The PLP is depicted in
yellow. The grey horizontal line represents the symmetry axis coincident with the PLP aromatic ring.
Lys258 of L-aspartate aminotransferase (modelled based on His258 in the structure 1AKC) prevents
the binding of D-amino acids while, similarly, Lys145 of D-amino acid aminotransferase prevents the
binding of L-amino acids due to potential steric clashes with the amino acid side chains.
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5. Conclusions

The key roles played by amino acids as energy sources, protein components, biological
building blocks, and neuromodulators (in mammals) drove nature to evolve enzymes
able to distinguish between L- and D-amino acids. The efficient oxidation/deamination/
transamination of amino acids is frequently achieved through the transfer of a hydrogen
atom (as a hydride ion or a proton). This catalytic strategy implies very strict geometrical
requirements of the active site geometry to allow the correct interaction with the cofac-
tors involved in the catalysis (e.g., FAD/FMN, NADP+, PLP). The ability to distinguish
enantiomers of amino acids while retaining very efficient catalysis has been accomplished
through: i) the insertion of a limited number of substitutions on a shared scaffold (e.g.,
LAAOs vs. DAAOs), i.e., starting from a common ancestral protein by divergent evolution
(Figure 8A), or ii) the generation of similar active sites starting from different scaffolds by
convergent evolution (Figure 8B). These processes can be considered as a remarkable exam-
ple of the power of natural evolution/selection to shape the course of biological functions
and processes, and in both cases, the result was the evolution of active site architectures of
enzymes active on different enantiomers representing mirror images (Figure 8C).
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Figure 8. Schematic representation of the evolution of AAOs/AADHs. (A) Divergent evolution of
AAOs/AADHs from a common ancestral protein. Blue boxes identify the acquisition of inverse
enantiospecificity. (B) Convergent evolution of AAOs/AADHs toward enzymes showing a strict
enantiospecificity for L-amino acids. Yellow boxes identify enzymes deriving from a common ancestor
through divergent evolution (see panel A). (C) Active sites of enzymes linked by mirror symmetry.
Green boxes identify mirror symmetry between enzyme pairs with the mirror plane perpendicular to
the FAD cofactor; blue boxes identify mirror symmetry between enzyme pairs with the mirror plane
coplanar the FAD/NADP+ cofactor.
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