
Citation: Naz, I.; Naaz, S.; Agarwal,

P.; Alankar, B.; Siddiqui, F.; Ali, J. A

Genetic Algorithm-Based Virtual

Machine Allocation Policy for Load

Balancing Using Actual Asymmetric

Workload Traces. Symmetry 2023, 15,

1025. https://doi.org/10.3390/

sym15051025

Academic Editors: Ruay-Shiung

Chang, Yaochung Chang and José

Carlos R. Alcantud

Received: 17 March 2023

Revised: 25 April 2023

Accepted: 2 May 2023

Published: 5 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Genetic Algorithm-Based Virtual Machine Allocation Policy
for Load Balancing Using Actual Asymmetric Workload Traces
Insha Naz 1, Sameena Naaz 1,* , Parul Agarwal 1 , Bhavya Alankar 1, Farheen Siddiqui 1,* and Javed Ali 2

1 Department of Computer Science and Engineering, School of Engineering Sciences and Technology,
Jamia Hamdard, New Delhi 110062, India; inshanaz_sch@jamiahamdard.ac.in (I.N.);
pagarwal@jamiahamdard.ac.in (P.A.); balankar@jamiahamdard.ac.in (B.A.)

2 College of Computing and Informatics, Saudi Electronic University, Riyadh 93499, Saudi Arabia;
j.ali@seu.edu.sa

* Correspondence: snaaz@jamiahamdard.ac.in (S.N.); fsiddiqui@jamiahamdard.ac.in (F.S.)

Abstract: Load balancing is a very important concept in cloud computing. In this work, studies
are conducted on workload traces at Los Alamos National Lab (LANL). The jobs in this trace are
asymmetric in nature as most of them have small time limit. Two hybrid algorithms, a Genetic
Algorithm combined with First Come First Serve (GA_FCFS) and Genetic Algorithm combined with
Round Robin (GA_RR), are proposed here. The results obtained are compared with the existing First
Come First Serve (FCFS), Round Robin (RR) and Genetic Algorithm (GA). Makespan and Resource
Utilization are used for the comparison of results. In terms of Makespan, it is observed that GA_RR
outperforms the other methods for all the batch sizes. Although the performance of GA_FCFS is much
better than that of the other three well-established algorithms FCFS, RR and GA, it is still worse than
that of the GA_RR algorithm for all the cases. GA_RR performs best in terms of Resource Utilization
also and GA_FCFS is a close competitor. Overall, GA_RR outperforms all the other algorithms.

Keywords: task scheduling; genetic algorithms; virtual machines; cloud computing; load balancing;
optimization; CloudSim

1. Introduction

The usage of the internet has grown tremendously in our day and age, and consumer
needs are changing radically. A lot of computational resources are required to meet the
needs of a wide range of clients. Through outsourcing, resources are made available to
clients as a service in cloud computing (see Figure 1) [1,2].

Due to the distributed nature and flexibility of cloud resources, clients receive flawless
services. Virtual machines, often known as VMs, are shared resources that are virtual-
ized [3], and they replicate a physical server to provide isolated hardware and software.
Cloud users and cloud service providers [4] are the two key stakeholder groups, and cloud
service providers must guarantee they achieve the highest level of client satisfaction by
offering on-demand services [4].

Requests from clients are viewed as jobs that need to be allocated to the relevant
virtual machine (VM). Task scheduling is therefore among the most crucial elements of
cloud computing. Numerous Quality of Service criteria have to be assessed to ascertain
the extent of appropriate scheduling [5]. The computational QoS criteria of maximum
resource use, shortest makespan, and high throughput have a substantial impact on task
scheduling. The optimization of job scheduling is aided by the improvement of these
indicators. Resource usage is enhanced by load balancing [3], which equally distributes
the load among various resources. Client requests are considered tasks that must be
meticulously scheduled [3,6].

Symmetry 2023, 15, 1025. https://doi.org/10.3390/sym15051025 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15051025
https://doi.org/10.3390/sym15051025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0080-5063
https://orcid.org/0000-0002-7297-335X
https://doi.org/10.3390/sym15051025
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15051025?type=check_update&version=1

Symmetry 2023, 15, 1025 2 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 2 of 22

Figure 1. Cloud Architecture.

The concept of load balancing is used to prevent cloud resources from being over-
used or underused. Due to inadequate load balancing [3,7], the cloud system loses com-
puting capacity as some resources remain inactive for an extended period of time. Idle
resources are to be blamed for rising financial losses [7,8] and increasing CO2 emissions.
BeĴer load balancing can help enhance makespan, and throughput thus benefits equally
the client and the cloud service provider. In cloud computing, schedulers define the map-
ping of various jobs that arrive at far-off data centers. The best mapping occurs when tasks
are sent to the best machine for the job since different jobs have distinct computational
requirements. Task scheduling is categorized as an NP-hard problem [9] as varied task
mapping is aĴainable on heterogeneous virtual machines. In service-oriented clouds, Ser-
vice Level Agreements [10] (SLAs) are used to negotiate services among service providers
and customers. Static schedulers can be quite beneficial in this situation because the needs
of the client are already known [11]. Meta-heuristic [1] and Heuristic schedulers [3,10] are
employed in this field to determine the best scheduling. Because of its diversity, meta-
heuristics can best achieve the goal of improving results while examining a wide search
space of potential solutions. Meta-heuristics are beĴer optimization approaches because
they search for a solution iteratively and have the ability to become more efficient over
time [12,13]. Heuristics, on the other hand, frequently draw hasty conclusions based on
limited evidence. It is common practice to explore and make use of the probable mapping
search space using schedulers with meta-heuristics [1]. The most prevalent meta-heuris-
tics techniques used in cloud computing (CC) for job scheduling are Symbiotic Organism
Search (SOS), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony
Algorithm (ACO), etc. Owing to excellent search capabilities, GA-based schedulers have
been employed for task scheduling [14–16].

In order to increase throughput, makespan and load balancing in task scheduling,
hybrid schedulers have recently become available. Numerous hybridization strategies for
schedulers can use Modified Genetic Algorithm (MGA) [15] combined with the Greedy
approach (MGGS) to direct the optimization process [11,17,18]. The amount of load bal-
ancing is calculated as a fitness criterion. Effectively balancing the load in a cloud seĴing
can be beneficial to the Cloud service provider (CSP) and high throughput with improved
makespan can be beneficial for both the user and the CSP. In order to aĴain both load
balancing and a shorter makespan, multi-objective optimization is needed [1].

In this work, the real workload traces at Los Alamos National Lab (LANL) are con-
sidered. These jobs terminate in three different states: they can either be successful, may
be cancelled or may time out. A job may be cancelled either by the user or due to some

Figure 1. Cloud Architecture.

The concept of load balancing is used to prevent cloud resources from being overused
or underused. Due to inadequate load balancing [3,7], the cloud system loses computing
capacity as some resources remain inactive for an extended period of time. Idle resources
are to be blamed for rising financial losses [7,8] and increasing CO2 emissions. Better load
balancing can help enhance makespan, and throughput thus benefits equally the client and
the cloud service provider. In cloud computing, schedulers define the mapping of various
jobs that arrive at far-off data centers. The best mapping occurs when tasks are sent to the
best machine for the job since different jobs have distinct computational requirements. Task
scheduling is categorized as an NP-hard problem [9] as varied task mapping is attainable on
heterogeneous virtual machines. In service-oriented clouds, Service Level Agreements [10]
(SLAs) are used to negotiate services among service providers and customers. Static
schedulers can be quite beneficial in this situation because the needs of the client are
already known [11]. Meta-heuristic [1] and Heuristic schedulers [3,10] are employed
in this field to determine the best scheduling. Because of its diversity, meta-heuristics
can best achieve the goal of improving results while examining a wide search space of
potential solutions. Meta-heuristics are better optimization approaches because they search
for a solution iteratively and have the ability to become more efficient over time [12,13].
Heuristics, on the other hand, frequently draw hasty conclusions based on limited evidence.
It is common practice to explore and make use of the probable mapping search space using
schedulers with meta-heuristics [1]. The most prevalent meta-heuristics techniques used in
cloud computing (CC) for job scheduling are Symbiotic Organism Search (SOS), Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Algorithm (ACO), etc.
Owing to excellent search capabilities, GA-based schedulers have been employed for task
scheduling [14–16].

In order to increase throughput, makespan and load balancing in task scheduling,
hybrid schedulers have recently become available. Numerous hybridization strategies for
schedulers can use Modified Genetic Algorithm (MGA) [15] combined with the Greedy
approach (MGGS) to direct the optimization process [11,17,18]. The amount of load bal-
ancing is calculated as a fitness criterion. Effectively balancing the load in a cloud setting
can be beneficial to the Cloud service provider (CSP) and high throughput with improved

Symmetry 2023, 15, 1025 3 of 22

makespan can be beneficial for both the user and the CSP. In order to attain both load
balancing and a shorter makespan, multi-objective optimization is needed [1].

In this work, the real workload traces at Los Alamos National Lab (LANL) are con-
sidered. These jobs terminate in three different states: they can either be successful, may
be cancelled or may time out. A job may be cancelled either by the user or due to some
hardware or software failure. Users provide a time limit for each submitted job and usually
try to keep this value small as smaller jobs are assigned priority by the scheduler. If the
user-provided time limit is reached before the execution is completed, the jobs time out.
This trace is asymmetrical in nature as most of the jobs are of smaller size.

Therefore, the main objective of this work is to develop an algorithm which works
well for asymmetrical jobs and attempts to reduce the makespan along with optimizing the
energy requirement. The significant contributions are as follows:

1. Two hybrid algorithms based on Genetic Algorithm for multi-objective optimization
for reducing makespan and energy optimization are proposed.

2. The flowchart for the algorithms is presented and the algorithms are simulated using
CloudSim simulator.

3. Experiments are performed for FCFS, RR, GA, GA_FCFS and GA_RR algorithms for
the real workload traces at Los Alamos National Lab (LANL).

The remaining paper is arranged as follows. Section 2 includes a review of the
literature. Section 3 describes the proposed research methodology. Section 4 describes
in detail the proposed Hybrid Genetic algorithm. The results obtained are discussed in
Section 5. Section 6 enlists the conclusions drawn from the work.

2. Literature Review

In cloud computing, several solutions have been developed to address a range of task
scheduling challenges. In this domain, heuristics and meta-heuristics have been employed.
Makespan is the most commonly used parameter for the evaluation of any algorithm. Apart
from it, load balancing and resource utilization are also frequently used. The following are
some of the heuristic approaches and meta-heuristic approaches found in the literature.

2.1. Heuristic Approaches

To address a specific issue, heuristic algorithms are developed. Heuristics do not
examine all or a portion of all possible solutions in optimization problems, which often
have an extensive range of potential answers. Because a heuristic solution often has a
mathematical formulation at its core, heuristics are frequently employed in optimization.
The below portion explores the algorithms in which the heuristics are employed to develop
the possible solution to the problem.

To evenly distribute workloads between various VMs, Min-Min Load Balanced Algo-
rithm (MMLB) was developed [17]. It employs a classic Min-Min approach where a job is
assigned to a certain Virtual machine that has the fastest completion time. Following the
classic Min-Min approach, MMLB’s second stage remaps overburdened virtual machine
tasks to underloaded virtual machines. The completion time of each individual VM is
used to determine whether a VM is overloaded or underloaded. In an overloaded virtual
machine, the shortest job is moved to the virtual machine where it will finish in the lowest
amount of time. While determining whether a VM is overloaded, we do not consider the
actual load, and hence there is still room for enhancement in load balancing.

Travelling Salesman Algorithm for Cloudlet Scheduling TSCS [1,19] is based on the
well-known travelling salesman method incorporating three different stages. By creating
clusters for each one of the available VM, the vast size problem is scaled down to a
reasonable level in the initial clustering phase. Each cluster obtains cloudlets that are either
lesser than or equal to the full load of the cluster. In the next step, the issue is subsequently
shifted to the Traveling Salesman Problem (TSP) domain. The closest neighbor strategy is
used in the third phase; based on Cluster Execution Time, cloudlets are assigned to virtual

Symmetry 2023, 15, 1025 4 of 22

machines. Like adjacent neighbours, each node is accessed; hence, TSCS is better suited to
situations when we have a lesser number of clusters.

In order to boost efficiency while reducing energy use, a heuristic known as the Energy-
efficient Task Scheduling Algorithm (ETSA) was introduced in [20]. The use of resources
is considered to be a significant barrier to raising energy consumption. The first phase of
ETSA, which consists of three parts, determines the estimated time of completion and the
resource busy period. The tasks are then mapped to VMs in the third and final step after
the second step choose the finest VM according to the timings predicted in the first step.
However, because resource consumption occurs primarily on the basis of time, it cannot
drastically improve resource use.

In [21], a probabilistic load-balancing scheduler with two stages was presented. Non-
descending order of size is used to arrange the tasks. The second stage involves allocating
tasks to virtual machines. The subsequent tasks are mapped to VMs with the lowest starting
load, and the primary load is revised after the assignment.

A Resource-Aware Load Balancing Algorithm (RALBA) [3] determines a VM’s propor-
tion of the available processing power and distributes tasks in accordance with that share.
It is divided into two stages: spill and fill schedulers. In this stage, any VM may be given a
choice from a pool of jobs based on its portion of the workload. The biggest task is mapped
to the VM with the maximum VM share. In the second stage of RALBA, the remaining jobs
are mapped based on their earliest completion time.

2.2. Meta-Heuristics Approaches

In the case of NP-hard problems, Meta-Heuristics for Cloud Scheduling optimization
techniques are used to investigate a huge search space of potential solutions [1]. Although
they are problem-independent, meta-heuristics are altered for use in optimization problems.

In Longest Cloudlet to Fastest Processor (LCFP) algorithm in the initial stage of
population generation, a random number is assigned [12]. For finding the optimal solution
with a better makespan, the randomness and the properties of the Heuristic are merged to
obtain a more diverse population.

By combining Max-Min and Min-Min in GA, the Load Balancing Aware Genetic
Algorithm (LAGA) tried to improve the issue of load balancing [15]. Using the algorithms
Max-Min and Min-Min, LAGA creates only one chromosome. The major goal of combining
Min-Min and Max-Min is to combine the benefits of both strategies in order to enhance
makespan and other response times. However, in order to improve load balancing, the
fitness function takes into account the overall time required by resources.

A redesigned GA with improved Max-Min was proposed in [22]. By using improved
Max-Min, the virtual machine with the least processing power is subjected to the maximum
workload. The norm for choosing the largest task, on the other hand, is established on
average execution time. During the population initialization stage, improved Max-Min is
used for a better makespan.

For improved makespan, GA with Tournament Selection (TS-GA) algorithm was
presented in [13], and it performed much better than the round-robin heuristic in terms
of resource consumption and makespan. Random Make Genetic Optimizer (RMGO)
algorithm was suggested to improve load balancing in [23]. In RMGO, Suffrage, Min-
Min and Max-Min are three heuristics that are used to initialize the population. Even
though the fitness function excludes the need for load balancing, RMGO shows significant
improvement in makespan and load balancing.

Adaptable Incremental Genetic Algorithm (AIGA) [4] has adaptive crossover and
mutation possibilities. The chances are determined by the fitness of the best chromosome,
the number of iterations and the size of the population. When compared to regular GA,
AIGA offers enhanced performance. To optimize resource use, the Improved Genetic
Algorithm (IGA) [24] takes into account idle resources and monitors them. Tasks are
allocated to all the idle resources till no more idle resource is found. The remaining tasks

Symmetry 2023, 15, 1025 5 of 22

are assigned to resources according to their minimum projected completion time. In IGA,
fitness is calculated based on resource consumption.

For enhancing the makespan and load balancing, a hybrid GA called Modified Genetic
Algorithm (MGA) paired with Greedy Approach (MGGS) [14] was proposed. Although
MGGS considers makespan to be a chromosome’s fitness criterion, greedy strategy, a load
balancing procedure, is activated on chromosomes to prevent overuse of the available
resources. Load balancing is achieved by ordering virtual machines according to their
execution time. To activate load balancing, the shortest job allocated to the VM with the
longest finishing time is mapped to a virtual machine with the shortest execution time.
This process is repeated till the VM with the shortest execution time becomes the VM
with the longest execution time. Although this algorithm enhances load balancing, it is
computationally expensive.

A scheduler based just on GA, Efficient Task Allocation based on Genetic Algorithms
(ETA-GA) [25], was proposed to decrease failure in network delay and improve makespan.
The GA parameters are reflected in order to fine-tune the objective function. However, in
the case of ETA-GA, the chances of selecting the best chromosome are highest, which could
lead to a discrepancy between exploration and exploitation. Two meta-heuristics were
combined in Ant Colony Optimization with Hybrid Genetic Algorithm HGA-ACO [26],
Ant Colony Optimization and Hybrid Genetic Algorithm. A queue of jobs is monitored
by a utility scheduler and is arranged according to memory and execution time. The
utility scheduler selects the best chromosomes, which are then delivered to ACO, where
the final chromosomes are subjected to mutation and crossover. This method employs
two completely working meta-heuristics.

A Hybrid-Particle Swarm Optimization (H-PSO) [27] was presented in this method.
In PSO, a method called differential evolution is employed for upgrading the velocity.
Hybrid PSO defines a multi-objective fitness function that includes makespan and use of
resources. To enhance the PSO’s performance, the Shortest Job to Fastest Processor (SJFP)
heuristic was incorporated in [28]. SJFP is only used during the population initialization
phase. SJF technique outplays GA and PSO with regard to makespan. In [29], an enhanced
PSO was proposed for optimizing resource use. As stated by the author, PSO’s traditional
convergence speed can be increased by adding Simulated Annealing (SA) with it, which
also results in better resource usage. Personal worst is introduced in the enhanced version,
which is identical to PSO’s traditional personal best. Merging SA into regular PSO improves
the goal of better resource usage

To attain improved load balancing, the honeybee model is combined with PSO [9].
The degree of load balancing between VMs is calculated by means of a statistical measure
of standard deviation. In this strategy, attaining honey from an empty origin is similar
to overloading. The load is later moved from overloaded VMs to underloaded VMs. To
improve the makespan, Discrete Symbiotic Organism Search DSOS [30] approach has
been proposed. Three processes—mutualism, commensalism, and parasitism—are used
to illustrate the symbiotic interdependence of animals. The DSOS performs better than a
number of PSO versions when their respective performances are compared.

In [31], Deep Reinforcement Learning with Long Short-Term Memory (DRL-LSTM)
approach was suggested to gain an understanding of optimal scheduling policy on the
basis of response. In this technique, task execution is examined, and the model is then
taught to obtain enhanced resource use. In comparison to other strategies that address
time-sensitive tasks, DRL-LSTM improves prediction accuracy and resource utilization.

A job scheduler based on supervised Artificial Neural Network (ANN) [32] was
proposed to reduce energy consumption, leading to better resource usage. The training
set is created by applying GA. A back-propagation ANN is used to normalize both the
energy consumption and job completion times in order to determine the mapping. Based
on training data, the scheduler displays an enhancement in precision.

The approach that the authors proposed in [33] makes use of load-balancing methods,
new genetic operators, and updated genetic operators. To maximise resource efficiency

Symmetry 2023, 15, 1025 6 of 22

at execution time, the algorithm described in this study makes use of a load-balancing
routine. The findings show that the suggested algorithm executes task scheduling with the
least amount of time and money spent when compared to other algorithms of this field.
In [34], the author suggests three major contributions: first. a Heterogeneous Initialized
Load Balancing (HILB) method is suggested. Second, combining the HILB and genetic
algorithm to create a Hybrid Load Balance based on Genetic Algorithm (HLBGA) is pro-
posed. Finally, GA is performed using a newly developed fitness function that minimizes
the load deviation. While using cloud resources, the suggested approach is applied in both
homogeneous and heterogeneous resource scenarios.

In [35], Multi-resource Load Balancing Algorithm (MrLBA) is proposed. The sug-
gested technique, which is based on Ant Colony Optimization (ACO), targets makespan
and cost while maintaining a well-balanced system. By maintaining a balanced load across
resources, MrLBA decreases execution time and cost while making efficient use of the avail-
able resources. To manage cloud resources, state-action-reward-state-action learning and
genetic algorithms are combined in [36]. The intelligent agents schedule the tasks in the first
phase by investigating the workflow while they are learning. The resource provisioning
stage follows with the assignment of each resource to an agent and attempts to maximize
its consumption during the learning process of its related agent. The suggested method’s
agents are brought together using a genetic algorithm, which also achieves global opti-
mization. The approach shortens the makespan and improves load balancing and resource
consumption. An improved ant-lion optimization (ALO) approach hybridized with particle
swarm optimisation (PSO) technique is proposed in [37] to optimize a workflow scheduling
specifically for the cloud. The goal of the research is to improve workflow scheduling.
Evaluation criteria for enhancement processes include cost, makespan and load. According
to the results, the suggested technique reduces costs by 10% for PSO, 20% for ALO, 9.8% for
GA-PSO, 12% for GA and 30% for RR. The proposed solution decreases load balancing
and makespan by 10% compared to ALO, 8% compared to GA-PSO, 35% compared to RR,
45% compared to GA and 20% compared to PSO.

3. Proposed Research Approach

One of the main concerns in cloud computing is task scheduling. The diverse nature of
tasks requires heavy computing demands. Virtual machines (VMs) require task scheduling.
Quality of Service (QoS) metrics are essential for load balancing and scheduling makespan.
In order to increase makespan and load balancing, this research presents a revolutionary
load balancer. The architecture of Genetic Algorithm-based hybrid algorithms GA_FCFS
and GA_RR is discussed in this section. The logic for combining heuristics to improve load
balancing is discussed.

3.1. Task Scheduling

Task scheduling, which is an important part of cloud computing, seeks to maximize the
usage of virtual machines (VMs) whilst cutting datacenter operational expenditures, which
results in considerable improvements in QoS parameters and general performance [6]. The
job of the scheduler is to decide on the resources that are to be allocated to a system. In the
cloud, there are three major entities. Overall, the client is the user who must accomplish
a task on one hand. On other hand, the resource provider makes infrastructure available
for the transfer or storage of data as well as the execution of programs [4]. The broker
is in charge of managing customer data on resources and coordinating the execution of
applications among clients and resource providers [38].

The scheduler defines a mapping scheme once tasks arrive in data centers. A cloud
broker receives a mapping scheme, which is then used to assign jobs to virtual machines.
Figure 2 depicts a cloud environment in which the scheduler determines an appropriate
mapping for incoming jobs.

Symmetry 2023, 15, 1025 7 of 22Symmetry 2023, 15, x FOR PEER REVIEW 7 of 22

Figure 2. Cloud Environment.

The challenge of task scheduling is to efficiently assign, plan and distribute a wide
variety of jobs to a large number of virtual machines while completing all the tasks in a
short period of time [39,40]. As demonstrated in Equation (1), the cloud environment de-
picted as CS (Cloud System) consists of (N୮୫) physical machines (PM) and (N୴୫) virtual
machines on each physical machine.

CS = [PM1, PM2, ………, PMi, ……., PMNpm], (1)

where PMi (i = 1, 2,…, N୮୫) represents the physical machines working in the cloud,
demonstrated in Equation (2):

PM = [VM1, VM2, ………, VMk, ………, VMNvm], (2)

in which VMk (k = 1, 2,…, N୴୫) denotes the k୲୦virtual machine (VM). N୴୫ stands for the
entire quantity of VMs, and VM୩ for cloud’s kth virtual machine device. The criteria in
Equation (3) are used to define the characteristics of the kth VM:

VMk = [idk, userIdk, mipsk, pesNumberk, ramk, bwk, sizek, vmmk], (3)

where idk is the identifier of the VM, userIdk is the identifier of the user whose job has
been assigned to the VM, mipsk is the processing power of the physical machine in million
instructions per second, pesNumberk is the identifier of the physical machine on which
the VM exists, ramk is the size of RAM, bwk is the bandwidth of the VM, sizek is the VM
size in MB and vmmk is the virtual machine manager [41,42].

Tasks or cloudlets are defined as given in Equation (4):

T= [Task1, Task2, …….., Taski, ……., TaskNtsk], (4)

where 𝑁௧௦ represents the total number of tasks submiĴed by the client.

Figure 2. Cloud Environment.

The challenge of task scheduling is to efficiently assign, plan and distribute a wide
variety of jobs to a large number of virtual machines while completing all the tasks in
a short period of time [39,40]. As demonstrated in Equation (1), the cloud environment
depicted as CS (Cloud System) consists of (Npm) physical machines (PM) and (Nvm) virtual
machines on each physical machine.

CS = [PM1, PM2, , PMi,, PMNpm], (1)

where PMi (i = 1, 2, . . . , Npm) represents the physical machines working in the cloud,
demonstrated in Equation (2):

PM = [VM1, VM2, , VMk, , VMNvm], (2)

in which VMk (k = 1, 2, . . . , Nvm) denotes the kth virtual machine (VM). Nvm stands for
the entire quantity of VMs, and VMk for cloud’s kth virtual machine device. The criteria in
Equation (3) are used to define the characteristics of the kth VM:

VMk = [idk, userIdk, mipsk, pesNumberk, ramk, bwk, sizek, vmmk], (3)

where idk is the identifier of the VM, userIdk is the identifier of the user whose job has
been assigned to the VM, mipsk is the processing power of the physical machine in million
instructions per second, pesNumberk is the identifier of the physical machine on which the
VM exists, ramk is the size of RAM, bwk is the bandwidth of the VM, sizek is the VM size
in MB and vmmk is the virtual machine manager [41,42].

Tasks or cloudlets are defined as given in Equation (4):

T =
[
Task1, Task2,, Taski,, TaskNtsk

]
, (4)

where Ntsk represents the total number of tasks submitted by the client.

Symmetry 2023, 15, 1025 8 of 22

ith virtual machine’s completion time, CTi, is the amount of time spent in executing
the current task after the previous task was completed on the given machine. It is given by
the Equation (5):

CTi = ∑n
j=1

Ti.length

VMi.pesnumber XVMi.mips

, (5)

where i (in the range of 1 to m) stands for the total number of virtual machines [40,43,44],
and j (in the range of 1 to n) stands for the total number of tasks.

3.2. Performance Parameters
3.2.1. Makespan

The duration of time required to complete all jobs is known as the makespan. In other
words, the length of time between the start and finish of a sequence of tasks is known as
the makespan. If the makespan value is low, the scheduler is offering virtual machines the
best and most efficient planning stages for jobs. However, the scheduler does not provide
devices with the best and most effective task-planning steps if the makespan has a larger
value [40]. Equation (6) determines the makespan:

makespan = max
1≤i≤m

{CTi}. (6)

3.2.2. Resource Utilization (Ru)

Resource Utilization [45] is a performance statistic or metric that is employed to calcu-
late how well resources and devices are being used. A high price or value for utilization
indicates that the service provider makes the utmost profit. It can be calculated using
Equation (7) below:

Ru =
∑m

i=1 CTi

makespan × m
. (7)

4. Hybrid Genetic Algorithms

In this work, two hybrid algorithms based on Genetic Algorithms, GA_FCFS and
GA_RR, are proposed. These algorithms take 20 chromosomes in the initial population,
but instead of generating all these chromosomes randomly, they generate 19 chromosomes
randomly, take the last chromosome using First Come First Serve (FCFS) in the GA_FCFS
algorithm, and take the last chromosome using Round Robin (RR) in the GA_RR algorithm.

4.1. Task-Scheduling Policies
4.1.1. Time-Shared

Time-shared can be explained as a policy in which multiple jobs are allocated to a
processor where the allocated job runs for some period of time before being preempted to
allow other jobs to run [45,46]. In other words, time sharing means the central processor is
made available to each entity in turn for a set amount of time and that entity is interrupted
when the allotted time has elapsed, and the next entity then starts its execution.

4.1.2. Space-Shared

The concept of space-shared is that the resource is distributed among different entities
at the same time [47,48].

Each of these entities holds its share of resources and executes till completion.
The scheduling policies used in this work are as specified below:

• Cloudlet Scheduler—Space-Shared;
• VM Scheduler—Time-Shared;
• PE to VM scheduling in host—Space-Shared.

Symmetry 2023, 15, 1025 9 of 22

4.2. Proposed Algorithms

In this work, we suggest two hybrid algorithms based on Genetic Algorithm for
targeting the problem of load balancing. The reason for using the Genetic Algorithm is
that the data that are mostly available for the job scheduling problem suffer from three
main problems: availability and diversity, workload variability and effect of accuracy on
final performance [49,50]. A lot of research is being conducted in the domain of machine
learning for load balancing, but due to these limitations, it has not been a great success
till now.

The flowchart for the proposed hybrid algorithm after fine-tuning the GA parameters
is depicted in Figure 3, and its various components are discussed below. We arrived at
the values of various parameters used in the Genetic Algorithm by using the ANalysis Of
VAriance (ANOVA) statistical technique.

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 22

 VM Scheduler—Time-Shared;
 PE to VM scheduling in host—Space-Shared.

4.2. Proposed Algorithms
In this work, we suggest two hybrid algorithms based on Genetic Algorithm for tar-

geting the problem of load balancing. The reason for using the Genetic Algorithm is that
the data that are mostly available for the job scheduling problem suffer from three main
problems: availability and diversity, workload variability and effect of accuracy on final
performance [49,50]. A lot of research is being conducted in the domain of machine learn-
ing for load balancing, but due to these limitations, it has not been a great success till now.

The flowchart for the proposed hybrid algorithm after fine-tuning the GA parameters
is depicted in Figure 3, and its various components are discussed below. We arrived at the
values of various parameters used in the Genetic Algorithm by using the ANalysis Of
VAriance (ANOVA) statistical technique.

Figure 3. Flowchart for the proposed GA_FCFS and GA_RR algorithms.

Figure 3. Flowchart for the proposed GA_FCFS and GA_RR algorithms.

4.2.1. Parameter Tuning in Genetic Algorithm

The performance of Genetic Algorithm depends on its parameters (Population size,
Mutation Probability, Crossover Probability, etc.). In this work, the Analysis of the variance
(ANOVA) is used as the statistical technique for fine-tuning the GA parameters. This
technique analyses the variations in mean to determine the effect of one or more than one
quantitative or qualitative variables (factors) on any quantitative response. Then, the values

Symmetry 2023, 15, 1025 10 of 22

of Sum of Squares, Degree of Freedom, Mean Square, F-ratio, Significance Level (p-level)
and F-critical are determined. For the null hypothesis to hold true, the obtained p-level
should be less than or equal to a threshold value (p-value). In this work, the threshold
value (p-value) was taken as 0.05. This means that if the p-level obtained for any factor
is less than 0.05, then the various values of that factor are statistically significant with a
confidence level of 95%.

The variables (factors) used in this work for carrying out the statistical test using
ANOVA are Number of Iterations, Crossover Probability, Mutation Probability, Type of
Crossover, Type of Mutation and Type of Selection. The values of these factors are listed
in Table 1.

Table 1. Variables used in ANOVA.

Level 1 Level 2 Level 3 Level 4 Level 5

No. of Iterations 500 700 1000 1200 1500

Crossover Probability 0.2 0.4 0.6 0.8 0.9

Mutation Probability 0.01 0.02 0.05 0.1 0.2

Type of Crossover Single-point Two-point

Type of Mutation Inversion Bit Flip

Type of Selection Roulette Wheel Tournament Deterministic

Two-factor ANOVA was used in this work for carrying out the statistical analysis for
each of the factors separately. The implementation was carried out in Microsoft Excel and
the results obtained for each factor are depicted in Table 2 below.

Table 2. ANOVA table for the analysis of effect of various factors in Genetic Algorithm using the
fitness function.

Source Sum of Squares D.F Mean Square F-Ratio p-Level F-Critical

Number of Iterations 2.49 4 0.624 3.41 0.018 2.63
Crossover Probability 64.32 4 16.08 9.112 0.00 2.63
Mutation Probability 125.225 4 31.306 16.21 0.00 2.63
Type of Crossover 0.886 1 0.886 0.64 0.44 5.12
Type of Mutation 0.0028 1 0.0028 0.02 0.88 5.12
Type of Selection 126.91 2 63.45 16.07 0.00 3.55

The fitness function normalized in the range of [0, 1] was used for the comparison of
the results. As can be seen from Table 2, the significance level (p-level) for type of crossover
and type of mutation is greater than 0.05. This means that these factors are not having
significant impact on our results. On the other hand, the number of iterations, crossover
probability, mutation probability and the type of selection have higher value of F-Ratio and
lower value of significance level (p-level). Hence, these factors have greater relevance.

Once the importance of these factors was established, further analysis was carried
out for each of these factors using Duncan’s Multiple Range Test. In this test, comparisons
are made for each value of a particular factor to determine which value has the maximum
impact. This helps to determine the influence of these factors on the performance of the
Genetic Algorithm. The results obtained from this statistical method for each factor are
depicted in Table 3.

Symmetry 2023, 15, 1025 11 of 22

Table 3. Duncan’s Multiple Range Test results for various factors in Genetic Algorithm using the
fitness function.

Levels of Variable “No. of Iterations” Mean Homogeneous Groups

1200 106.418 A
1500 106.353 A B
500 106.037 A B C
700 105.929 B C D

1000 105.868 E

Levels of variable “Crossover Probability” Mean Homogeneous Groups

0.2 109.378 A
0.4 108.517 A B
0.9 108.23 A B C
0.6 107.364 B C D
0.8 106.037 E

Levels of variable “Mutation Probability” Mean Homogeneous Groups

0.1 110.854 A
0.02 108.517 B
0.2 108.23 B C

0.05 107.364 B C D
0.01 106.037 E

Levels of variable “Type of Crossover” Mean Homogeneous Groups

Two Point 106.458 A
Single Point 106.037 B

Levels of variable “Type of Mutation” Mean Homogeneous Groups

Inversion 106.061 A
Bit Flip 106.037 B

Levels of variable “Type of Selection” Mean Homogeneous Groups

Deterministic 110.7430 A
Tournament 109.9480 A B

Roulette 106.0370 C

Significance level for all the test was taken as 0.05

Based on the results obtained from ANOVA, it was observed that the Number of
iterations has significant impact on the execution of GA, and the MRT table shows that
the value of 1000 yields significantly different result. Hence, this value was considered for
further investigation.

The variable Crossover Probability has significant impact as established by ANOVA,
and for this, the MRT table shows that the value 0.8 provides a significantly different result
and hence this value was considered for further evaluation of the algorithm. Mutation
Probability also has a significant impact on the working of the algorithm, and from the MRT
table, it can be seen that the values 0.1 and 0.01 are yielding significantly different results.
Out of these two values, 0.01 provides minimum mean, and hence it is the optimum value
for further investigation.

Although Type of Crossover and Type of Mutation did not have any significant
impact as was concluded for ANOVA, Single Point Crossover and Bit Flip Mutation were
considered in this work as they are providing better mean value. As far as the Type of
Selection is concerned, Roulette wheel method provides significantly different result, and
hence it is considered for the rest of the calculations.

Therefore, the final values for the various factors obtained from ANOVA and Duncan’s
MRT test are given in Table 4.

Symmetry 2023, 15, 1025 12 of 22

Table 4. Final Values of the variables.

Variable Final Value

No. of Iterations 1000

Crossover Probability 0.8

Mutation Probability 0.01

Type of Crossover Single-point

Type of Mutation Bit Flip

Type of Selection Roulette Wheel

The detailed description of the steps of the Algorithms 1–5 is given below.

4.2.2. Encoding

The scheduler has to map a number of jobs after receiving them as input in batch mode.
Chromosomes exist in GA, and they must be correctly encoded in order to represent the
job scheduling issue. Task scheduling can use GA in a variety of ways. Discrete encoding,
also referred to as real number encoding, is used in this work. A vector of 1×n dimensions
is generated through discrete encoding where n represents the total number of tasks. It
indicates that there is a corresponding value of genes that reflects the VM number for
every task/job. Genes only have single allele, and the total number of VMs (m) is their
allele range.

It is assumed there are six tasks represented by T1, T2, T3, T4, T5, and T6.
Three virtual machines (R1, R2, and R3) must be assigned to tasks. We let the chromosome
be v = 3, 2, 3, 1, 2, 2. This indicates that T1 is allocated to R3. The corresponding R2, R3, R1,
R2, and R2 values are assigned to T2, T3, T4, T5, and T6. There are three task pools since

there are three VMs. R1 only receives one job in the mapping defined for chromosome v, so
the pool R1 ={T4}, R2 ={T2, T5, T6} and R3 = {T1, T3}. The aim of GA_FCFS and GA_RR is
to identify a chromosome that represents a mapping that is best suited for achieving better
and improved makespan and resource utilization.

Proposed Hybrid Virtual Machine Allocation policy for load balancing

Algorithm 1: Hybrid Virtual Machine Allocation Algorithm

Input:
-Cloudlet list: The tasks to be assigned to the VMs;
-VM list: The total number of virtual machines;
-Host list: Total number of hosts in the datacenter;
-GA parameters: Selection, Crossover, Mutation.
Output:
-VM allocation list.
Method:
-Read the workload traces from Los Alamos National Lab (LANL);
-Create a container for storing the virtual machines;
-Create VMs with parameters (id, userId, mips, pesNumber, ram, bw, size, vmm) with space
shared scheduling policy for cloudlets;
-Create a container for storing the cloudlets;
-Read Cloudlets from the workload traces.

Symmetry 2023, 15, 1025 13 of 22

Algorithm 1: Cont.

Main program:
Step1: Initialize the CloudSim package before creating any entity;
Step 2: Create Datacenters;
Step 3: Create Datacenter Broker;
Step 4: Create VMs and send them to broker along with the cloudlets:

Sort the cloudlets based on their completion time;
Sort the VMs based on their MIPS value;
Assign longest task to fastest processor.

Hybrid Genetic Algorithm:
Step 1: Initial Population

Generate the initial population of 20 chromosomes:
Generate 19 chromosomes randomly;
Take the 20th chromosome using FCFS.

Step 2: Fitness Function
Makespan and energy consumption are used for calculating the fitness function:

Fitness = w maxec−ec
maxec−minec + w maxms−ms

maxms−minms .
Step 3: Selection

Use roulette wheel selection.
Step 4: Crossover

Use single-point crossover.
Step 5: Mutation

Carry out the mutation operation.
Step 6: Check the termination criteria

If time <1,000,000 ms,
Go back to step 2.

Else
Print the final allocation and the makespan.

4.2.3. Fitness Function

The fitness of the solution is calculated with the minimum and maximum values of
energy consumption and makespan. The weight factor is used for each parameter. In the
experiments of this article, an equal weight, i.e., 0.5 was used for all parameters. Equation
(8) is used to calculate the fitness value.

Fitness = w
maxec − ec

maxec −minec + w
maxms −ms

maxms −minms . (8)

4.2.4. Selection Operator

GA_FCFS and GA_RR incorporate the proportionate selection operator with a few
simple changes. A roulette wheel spin is an analogy for proportionate selection, with the
size of the pie indicating the value of a particular chromosome across the entire population.
Every chromosome has a chance to be chosen in a typical proportionate selection operator.
The best chromosomes, however, can be selected more often than others since they have
high proportions.

The final chromosome to be included is chosen using the selection operator, and
there may be further possibilities to choose the healthiest of those obtained with previous
methods. Through the selection operator, two chromosomes are chosen, and they then
take part in the production of offspring. If the same two chromosomes are selected as
parents repeatedly, the selection mechanism has to be re-performed in order to select a
different pair.

4.2.5. Crossover Operator

Single-point crossover is implemented in both the hybrid algorithms proposed in this
work. For this, a pair of chromosomes is selected, and their values are swapped from a
particular point known as the crossover point. The offspring generated after crossover

Symmetry 2023, 15, 1025 14 of 22

is again evaluated using the fitness function. The crossover probability is taken as 0.8 in
this work.

Algorithm 2: Fitness Function

Initialize: k = −1, w1 = 0
make[] = no_cloudlets
makespans[] = no_chromosomes
for i = 0 to no_chromosomes do

makespans[i] = 0
ec[i] = 0

for i= 0 to no_VMs do
make[i] = 0

for m = 0 to no_chromosomes do
k++
for q= 0 to no_VMs do

for n = 0 to no_cloudlets do
if a[m][n] == q

make[w1] = make[w1] + etc[n][q]
w1++

w1 = 0
makespans[k] = maximum[make]
ec[k] =maximum[ec]

for w = 0 to no_chromosomes do
makespans2[w] = (makespans[w] + maximum[ec])/2

Algorithm 3: Selection

total_fitness = 0
for w = 0 to no_chromosomes do

total_fitness+=makespans[w]
current_min_makespan = makespans2[0]
for w = 0 to no_chromosomes do

if (current_min_makespan > makespans2[w])
current_min_makespan = makespans2[w]

throughput = no_cloudlets/current_min_makespan
current_min_makespan = current_min_makespan + (1/throughput)
Initialize count, count_same, ind, countm to 0
while (!(abs_value(min_makespan) == abs_value(current_min_makespan) && count_same == 3))
do

for m = 0 to no_chromosomes do
for n = 0 no_cloudlets do

final_matrix[m][n] = b[m][n]
for = 0 to no_chromosomes do

final_makespans2[q] = makespans2[q];
min_makespan = total_fitness

Algorithm 4: Crossover

Initialize temp1 = 0
for m = 0 to no_chromosomes do

for n = 0; o = no_VMs to n < no_VMs && o < no_cloudlets do
temp1 = b[m][n]
b[m][n] = b[m + 1][o]
b[m + 1][o] = temp1

end for
m = m+2

end for

Symmetry 2023, 15, 1025 15 of 22

4.2.6. Mutation Operator

The genetic algorithm uses a mutation operator to ensure that the optimization is not
stuck in some local minima. For this, few values of the chromosomes are taken randomly
and flipped. Our algorithms use arbitrary readjustment with a mutation rate of 0.01.

In this case, k is the population size

Algorithm 5: Mutation

for m = 0 to no_chromosomes do
b[m][rand.nextInt(no_VMs] = rand.nextInt(no_VMs)

end for

5. Results of the Experiment

In this section, the details of the dataset and the experimental setup are described.
Additionally, the benchmark approaches are described, followed by the findings and any
relevant comments.

5.1. Experimental Setup

For experimentation, the cloud-based environment is simulated using
CloudSim 3.0.3 [43]. Settings similar to the benchmark procedures are used for all the
experiments. As a stopping condition, the number of iterations for all the meta-heuristic
procedures is fixed at 1000. In CloudSim, two data centers were established. There is a total
of 14 VMs and 2 host computers in each data center. The host computers have 200 GBs of
RAM. Each machine, including the hosts, runs a Linux operating system. These devices
have a 100,000 Mbps bandwidth. For testing, CloudSim’s time-sharing VM scheduling
mechanism is employed. The VM, Host and Datacenter characteristics are summarized
in Table 5.

Real workload traces from Los Alamos National Lab (LANL) were used in this experi-
ment. The results were obtained for batches of 100, 200, 300, 400, 500, 600, 700, 800, 900 and
1000 cloudlets extracted from the real-time data.

5.2. Benchmark Techniques

The results of the three existing algorithms, First Come First Serve (FCFS), Round
Robin (RR), and Genetic Algorithm (GA), are compared with those of the newly pro-
posed algorithms. In this work, a hybrid of the Genetic Algorithm with the other two
algorithms was proposed and the results were compared. The proposed algorithm takes
20 chromosomes in the initial population, but instead of generating all these chromosomes
randomly, it generates 19 chromosomes randomly and takes the last chromosome using
FCFS in the GA_FCFS algorithm and selects the last chromosome using Round Robin
(RR) in the GA_RR algorithm. The crossover probability in GA was taken as 0.8 and the
mutation probability was 0.01.

Figure 4 shows the results obtained for the makespan for different batch sizes of our
workload. In this figure, the x-axis depicts the number of cloudlets and the y-axis depicts the
makespan in seconds. It provides a comparison of makespan for the five algorithms, FCFS,
RR, GA, GA_FCFS and GA_RR. It can be seen from this figure that GA_RR outperforms the
other methods for all the batch sizes. Although the performance of GA_FCFS is much better
than that of the other three well-established algorithms, FCFS, RR and GA, it is still worse
than that of the GA_RR algorithm for all the cases. Interestingly, it can be seen that although
First Come First Serve (FCFS) performs better than RR for batch size less than or equal to
500, RR outperforms it for larger batch sizes. On average, GA_FCFS outperforms FCFS, RR
and GA by 57.01%, 57.05% and 38.33%, respectively. Similarly, GA_RR outperforms FCFS,
RR and GA by 63.07%, 62.95% and 48.09%, respectively. Both these results are depicted
graphically in Figure 5.

Symmetry 2023, 15, 1025 16 of 22

Table 5. Host, VM and Datacenter Characteristics.

VM Parameters

Parameter Name Value

Number of hosts 02 per Datacenter

Number of Virtual Machines 14

Virtual Machine processing power in MIPS 500

Virtual Machine RAM (MB) 512

Virtual Machine Bandwidth (MBPS) 10

Virtual Machine size (MB) 10,000

Number of CPUs 4

Host Parameters

Host RAM (GB) 200

Host Storage 10,000,000

Host Bandwidth (Mbps) 100,000

Datacenter Properties

System Architecture ×86

Virtual Machine Manager Xen

Time Zone 10

Processing Cost 3.0

Memory Usage Cost 0.05

Operating System Linux

Table 6 shows the results obtained for all five algorithms in terms of resource utilization
and makespan.

Table 6. Makespan and resource utilization.

No. of
Cloudlets

Makespan Resource Utilization
FCFS RR GA GA_FCFS GA_RR FCFS RR GA GA_FCFS GA_RR

100 19.99 20.99 10.65 5.69 3.27 0.2519 0.3276 0.7643 0.8645 0.9176
200 41.22 45.66 21.33 10.99 8.44 0.2976 0.3965 0.7128 0.8245 0.9256
300 88.29 89.42 40.56 25.54 16.28 0.2654 0.3168 0.5942 0.9102 0.9674
400 110.56 121.45 100.11 36.89 30.22 0.3012 0.3783 0.5734 0.8289 0.9125
500 159.29 170.21 132.87 59.76 48.55 0.3143 0.3989 0.5998 0.8912 0.9356
600 220.76 210.87 175.09 89.32 80.41 0.2986 0.2983 0.6983 0.8019 0.9876
700 269.86 260.75 201.86 130.44 119.53 0.339 0.3112 0.6102 0.911 0.9942
800 320.89 300.12 225.43 180.56 165.23 0.3218 0.3468 0.6324 0.9234 0.9876
900 375.87 370.22 295.21 240.85 225.69 0.3315 0.3451 0.6542 0.9625 0.9912

1000 425.97 420.65 312.98 280.33 272.45 0.2975 0.3256 0.6356 0.9123 0.9842

The average resource utilization ratio is an important parameter which provides the
measure of how well resources and devices are being used. It also signifies the amount
of load balancing for any algorithm. It is a very important QoS parameter and its value
lies in the range of 0 to 1. Figure 6 shows the average resource utilization (RU) for the
existing and proposed algorithms. In this figure, the x-axis denotes the number of cloudlets
and the y-axis signifies the resource utilization. As can be seen from the figure, GA_RR
performs best in terms of this parameter and GA_FCFS is also a close competitor. Both
these algorithms perform much better compared to the FCFS, RR and GA. The average
improvement in GA_FCFS is 66.25%, 60.84% and 26.32%, respectively, compared to FCFS,
RR and GA algorithms. Similarly, the average improvement in GA_RR is 69.01%, 64.00%

Symmetry 2023, 15, 1025 17 of 22

and 32.46%, respectively, compared with FCFS, RR and GA algorithms. This is depicted in
Figure 7 below. Overall, GA_RR outperforms all the other algorithms. The reason for the
hybrid algorithms performance being better than that of the standard algorithms is that the
hybrid GA converges better and faster towards the optimal solution compared to the other
algorithms under study.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 22

Figure 4. Makespan obtained for various algorithms for different numbers of cloudlets.

Figure 5. Percentage Improvement of GA_FCFS and GA_RR based on Makespan.

The average resource utilization ratio is an important parameter which provides the
measure of how well resources and devices are being used. It also signifies the amount of
load balancing for any algorithm. It is a very important QoS parameter and its value lies
in the range of 0 to 1. Figure 6 shows the average resource utilization (RU) for the existing
and proposed algorithms. In this figure, the x-axis denotes the number of cloudlets and
the y-axis signifies the resource utilization. As can be seen from the figure, GA_RR per-
forms best in terms of this parameter and GA_FCFS is also a close competitor. Both these
algorithms perform much beĴer compared to the FCFS, RR and GA. The average improve-
ment in GA_FCFS is 66.25%, 60.84% and 26.32%, respectively, compared to FCFS, RR and
GA algorithms. Similarly, the average improvement in GA_RR is 69.01%, 64.00% and

Figure 4. Makespan obtained for various algorithms for different numbers of cloudlets.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 22

Figure 4. Makespan obtained for various algorithms for different numbers of cloudlets.

Figure 5. Percentage Improvement of GA_FCFS and GA_RR based on Makespan.

The average resource utilization ratio is an important parameter which provides the
measure of how well resources and devices are being used. It also signifies the amount of
load balancing for any algorithm. It is a very important QoS parameter and its value lies
in the range of 0 to 1. Figure 6 shows the average resource utilization (RU) for the existing
and proposed algorithms. In this figure, the x-axis denotes the number of cloudlets and
the y-axis signifies the resource utilization. As can be seen from the figure, GA_RR per-
forms best in terms of this parameter and GA_FCFS is also a close competitor. Both these
algorithms perform much beĴer compared to the FCFS, RR and GA. The average improve-
ment in GA_FCFS is 66.25%, 60.84% and 26.32%, respectively, compared to FCFS, RR and
GA algorithms. Similarly, the average improvement in GA_RR is 69.01%, 64.00% and

Figure 5. Percentage Improvement of GA_FCFS and GA_RR based on Makespan.

Symmetry 2023, 15, 1025 18 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 22

32.46%, respectively, compared with FCFS, RR and GA algorithms. This is depicted in
Figure 7 below. Overall, GA_RR outperforms all the other algorithms. The reason for the
hybrid algorithms performance being beĴer than that of the standard algorithms is that
the hybrid GA converges beĴer and faster towards the optimal solution compared to the
other algorithms under study.

Figure 6. Resource Utilization for the algorithms for different number of cloudlets.

Figure 7. Percentage Improvement of GA_FCFS and GA_RR based on Resource Utilization.

Another parameter used for the efficiency measurement of the proposed algorithms
and its comparison with the existing algorithms is the throughput which is the number of
tasks executed per unit of time. This value depends on the makespan obtained. As can be
seen from Figure 8, GA_RR outperforms all the other algorithms and GA_FCFS, is the

Figure 6. Resource Utilization for the algorithms for different number of cloudlets.

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 22

32.46%, respectively, compared with FCFS, RR and GA algorithms. This is depicted in
Figure 7 below. Overall, GA_RR outperforms all the other algorithms. The reason for the
hybrid algorithms performance being beĴer than that of the standard algorithms is that
the hybrid GA converges beĴer and faster towards the optimal solution compared to the
other algorithms under study.

Figure 6. Resource Utilization for the algorithms for different number of cloudlets.

Figure 7. Percentage Improvement of GA_FCFS and GA_RR based on Resource Utilization.

Another parameter used for the efficiency measurement of the proposed algorithms
and its comparison with the existing algorithms is the throughput which is the number of
tasks executed per unit of time. This value depends on the makespan obtained. As can be
seen from Figure 8, GA_RR outperforms all the other algorithms and GA_FCFS, is the

Figure 7. Percentage Improvement of GA_FCFS and GA_RR based on Resource Utilization.

Another parameter used for the efficiency measurement of the proposed algorithms
and its comparison with the existing algorithms is the throughput which is the number of
tasks executed per unit of time. This value depends on the makespan obtained. As can be
seen from Figure 8, GA_RR outperforms all the other algorithms and GA_FCFS, is the next
best to it. The reason for better throughput is that GA_RR converges faster towards the
optimal solution.

Symmetry 2023, 15, 1025 19 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 22

next best to it. The reason for beĴer throughput is that GA_RR converges faster towards
the optimal solution.

Figure 8. Average throughput of all the algorithms.

6. Discussion
Two hybrid algorithms, GA_FCFS and GA_RR, are proposed in this work. The first

part of this work consists of tuning of parameters in genetic algorithms. The detailed anal-
ysis for the same is presented in Section 4.2 using analysis of variance (ANOVA) and Dun-
can’s Multiple Range Tests (DMRT). The parameter value of 1000 for number of iterations,
0.8 for Crossover Probability, 0.01 for Mutation Probability, Single-Point for Crossover,
Bit Flip for mutation and RouleĴe Wheel for selection were determined to be the best val-
ues. Hence. these values are used for further analysis.

The workload traces that are studied in this work are asymmetrical in nature and for
this workload, it was determined that First Come First Serve (FCFS) algorithm is not good
in terms of makespan, resource utilization as well as throughput. Round Robin (RR) per-
forms a bit beĴer compared to FCFS, but the improvement is not significant in terms of all
the three parameters. Genetic algorithm (GA) shows significant improvement in terms of
all the three makespan parameters, resource utilization and throughput. This improve-
ment is greater in terms of makespan as the number of cloudlets increases, but is less sig-
nificant in terms of resource utilization as the number of cloudlets increases. The two pro-
posed hybrid algorithms show significant improvement in terms of all the three parame-
ters. After evaluating the performance of all the algorithms, we discover that GA_RR is
the most suitable algorithm for optimizing the makespan, resource utilization and the
throughput.

7. Conclusions
The use of cloud computing in a number of domains has increased manyfold in re-

cent years. Since the number of users is very large in cloud computing, there are several
issues associated with it. Some of these issues are resource utilization, energy consump-
tion, makespan and load balancing. In order to decrease the makespan and improve load
balancing, this research presents a revolutionary load balancer. When some of the re-
sources are left idle, insufficient load balancing might result in an overhead of less re-
source usage. The suggested technique incorporates a load-balancing mechanism that
takes into account the real load, measured in million instructions assigned to VMs. In this
method, a load balancer allocates a task to a server in real time based on the goal.

Figure 8. Average throughput of all the algorithms.

6. Discussion

Two hybrid algorithms, GA_FCFS and GA_RR, are proposed in this work. The first
part of this work consists of tuning of parameters in genetic algorithms. The detailed
analysis for the same is presented in Section 4.2 using analysis of variance (ANOVA)
and Duncan’s Multiple Range Tests (DMRT). The parameter value of 1000 for number
of iterations, 0.8 for Crossover Probability, 0.01 for Mutation Probability, Single-Point for
Crossover, Bit Flip for mutation and Roulette Wheel for selection were determined to be
the best values. Hence. these values are used for further analysis.

The workload traces that are studied in this work are asymmetrical in nature and
for this workload, it was determined that First Come First Serve (FCFS) algorithm is not
good in terms of makespan, resource utilization as well as throughput. Round Robin (RR)
performs a bit better compared to FCFS, but the improvement is not significant in terms of
all the three parameters. Genetic algorithm (GA) shows significant improvement in terms of
all the three makespan parameters, resource utilization and throughput. This improvement
is greater in terms of makespan as the number of cloudlets increases, but is less significant
in terms of resource utilization as the number of cloudlets increases. The two proposed
hybrid algorithms show significant improvement in terms of all the three parameters. After
evaluating the performance of all the algorithms, we discover that GA_RR is the most
suitable algorithm for optimizing the makespan, resource utilization and the throughput.

7. Conclusions

The use of cloud computing in a number of domains has increased manyfold in recent
years. Since the number of users is very large in cloud computing, there are several issues
associated with it. Some of these issues are resource utilization, energy consumption,
makespan and load balancing. In order to decrease the makespan and improve load
balancing, this research presents a revolutionary load balancer. When some of the resources
are left idle, insufficient load balancing might result in an overhead of less resource usage.
The suggested technique incorporates a load-balancing mechanism that takes into account
the real load, measured in million instructions assigned to VMs. In this method, a load
balancer allocates a task to a server in real time based on the goal. Experimental studies
are conducted on workload traces at Los Alamos National Lab (LANL). Two hybrid
algorithms, a Genetic Algorithm combined with First Come First Serve (GA_FCFS) and
Genetic Algorithm combined with Round Robin (GA_RR), are proposed in this work.
The implementation is carried out on CloudSim 3.0.3 installed into eclipse. The results
are compared with those of the existing First Come First Serve (FCFS), Round Robin

Symmetry 2023, 15, 1025 20 of 22

(RR) and Genetic Algorithm (GA). Makespan and Resource Utilization are used for the
comparison of results. The results obtained show that the performance of GA_RR is best
followed by GA_FCFS. These hybrid algorithms provide better results compared to the
standard algorithm because they explore the search space in a better manner compared to
standard GA.

In this paper, the energy requirement of the data center and CPU is only considered.
However, in real life, other resources also consume some energy. This is one of the limita-
tions of the work carried out here. Another limitation is that we take a simple weighted
function to solve the multi-objective optimization problem. In the future, some other
technique for multi-objective optimization can be employed.

Author Contributions: Conceptualization: I.N., S.N. and F.S.; Methodology: I.N., S.N., F.S. and P.A.;
Software: I.N., F.S. and S.N.; Validation: F.S., S.N., J.A. and B.A.; Formal analysis: S.N., P.A. and J.A.;
Initial draft: F.S. and I.N.; Review and editing: S.N., I.N. and J.A.; Supervision: S.N., P.A. and B.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Research data can be obtained from the corresponding author
upon request.

Acknowledgments: We would like to acknowledge the contributions made by Khalid Imam Rehmani
during the formal analysis, review and editing of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gulbaz, R.; Siddiqui, A.B.; Anjum, N.; Alotaibi, A.A.; Althobaiti, T.; Ramzan, N. Balancer genetic algorithm—A novel task

scheduling optimization approach in cloud computing. Appl. Sci. 2021, 11, 6244. [CrossRef]
2. Abdullahi, M.; Ngadi, M.A.; Dishing, S.I.; Ahmad, B.I.E. An efficient symbiotic organisms search algorithm with chaotic

optimization strategy for multi-objective task scheduling problems in cloud computing environment. J. Netw. Comput. Appl. 2019,
133, 60–74. [CrossRef]

3. Hussain, A.; Aleem, M.; Khan, A.; Iqbal, M.A.; Islam, M.A. RALBA: A computation-aware load balancing scheduler for cloud
computing. Clust. Comput. 2018, 21, 1667–1680. [CrossRef]

4. Duan, K.; Fong, S.; Siu, S.W.; Song, W.; Guan, S.S.U. Adaptive incremental genetic algorithm for task scheduling in cloud
environments. Symmetry 2018, 10, 168. [CrossRef]

5. Yiqiu, F.; Xia, X.; Junwei, G. Cloud computing task scheduling algorithm based on improved genetic algorithm. In Proceedings of
the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu,
China, 15–17 March 2017; pp. 852–856.

6. Wang, Y.; Zuo, X. An effective cloud workflow scheduling approach combining PSO and idle time slot-aware rules. IEEE/CAA J.
Autom. Sin. 2021, 8, 1079–1094. [CrossRef]

7. Xu, Z.; Xu, X.; Zhao, X. Task scheduling based on multi-objective genetic algorithm in cloud computing. J. Inf. Comput. Sci. 2015,
12, 1429–1438. [CrossRef]

8. Mansouri, N.; Zade, B.M.H.; Javidi, M.M. Hybrid task scheduling strategy for cloud computing by modified particle swarm
optimization and fuzzy theory. Comput. Ind. Eng. 2019, 130, 597–633. [CrossRef]

9. Ebadifard, F.; Babamir, S.M. A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud
computing environment. Concurr. Comput. Pract. Exp. 2018, 30, e4368. [CrossRef]

10. Hussain, A.; Aleem, M.; Iqbal, M.A.; Islam, M.A. SLA-RALBA: Cost-efficient and resource-aware load balancing algorithm for
cloud computing. J. Supercomput. 2019, 75, 6777–6803. [CrossRef]

11. Singh, R.M.; Paul, S.; Kumar, A. Task scheduling in cloud computing. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 7940–7944.
12. Kaur, S.; Verma, A. An efficient approach to genetic algorithm for task scheduling in cloud computing environment. Int. J. Inf.

Technol. Comput. Sci. (IJITCS) 2012, 4, 74–79. [CrossRef]
13. Hamad, S.A.; Omara, F.A. Genetic-based task scheduling algorithm in cloud computing environment. Int. J. Adv. Comput. Sci.

Appl. 2016, 7, 550–556.
14. Zhou, Z.; Li, F.; Zhu, H.; Xie, H.; Abawajy, J.H.; Chowdhury, M.U. An improved genetic algorithm using greedy strategy toward

task scheduling optimization in cloud environments. Neural Comput. Appl. 2020, 32, 1531–1541. [CrossRef]
15. Zhan, Z.H.; Zhang, G.Y.; Gong, Y.J.; Zhang, J. Load balance aware genetic algorithm for task scheduling in cloud computing. In

Proceedings of the Simulated Evolution and Learning: 10th International Conference, SEAL 2014, Dunedin, New Zealand, 15–18
December 2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 644–655.

https://doi.org/10.3390/app11146244
https://doi.org/10.1016/j.jnca.2019.02.005
https://doi.org/10.1007/s10586-018-2414-6
https://doi.org/10.3390/sym10050168
https://doi.org/10.1109/JAS.2021.1003982
https://doi.org/10.12733/jics20105468
https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.1002/cpe.4368
https://doi.org/10.1007/s11227-019-02916-4
https://doi.org/10.5815/ijitcs.2012.10.09
https://doi.org/10.1007/s00521-019-04119-7

Symmetry 2023, 15, 1025 21 of 22

16. Javanmardi, S.; Shojafar, M.; Amendola, D.; Cordeschi, N.; Liu, H.; Abraham, A. Hybrid job scheduling algorithm for cloud
computing environment. In Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and
Applications IBICA 2014, Ostrava, Czech Republic, 23–25 June 2014; Springer International Publishing: Berlin/Heidelberg,
Germany, 2014; pp. 43–52.

17. Patel, G.; Mehta, R.; Bhoi, U. Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing.
Procedia Comput. Sci. 2015, 57, 545–553. [CrossRef]

18. Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A. Comprehensive learning particle swarm optimization
algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 2018, 23, 718–731. [CrossRef]

19. Nasr, A.A.; El-Bahnasawy, N.A.; Attiya, G.; El-Sayed, A. Using the TSP solution strategy for cloudlet scheduling in cloud
computing. J. Netw. Syst. Manag. 2019, 27, 366–387. [CrossRef]

20. Panda, S.K.; Jana, P.K. An energy-efficient task scheduling algorithm for heterogeneous cloud computing systems. Clust. Comput.
2019, 22, 509–527. [CrossRef]

21. Panda, S.K.; Jana, P.K. Load balanced task scheduling for cloud computing: A probabilistic approach. Knowl. Inf. Syst. 2019, 61,
1607–1631. [CrossRef]

22. Singh, S.; Kalra, M. Scheduling of independent tasks in cloud computing using modified genetic algorithm. In Proceedings of the
2014 International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 14–16 November
2014; IEEE: Piscataway, NJ, USA, 2014; pp. 565–569.

23. Mohamad, Z.; Mahmoud, A.A.; Nik, W.N.S.W.; Mohamed, M.A.; Deris, M.M. A genetic algorithm for optimal job scheduling and
load balancing in cloud computing. Int. J. Eng. Technol. 2018, 7, 290–294.

24. Kaur, S.; Sengupta, J. Load balancing using improved genetic algorithm (iga) in cloud computing. Int. J. Adv. Res. Comput. Eng.
Technol. IJARCET 2017, 6, 1229–1233.

25. Rekha, P.M.; Dakshayini, M. Efficient task allocation approach using genetic algorithm for cloud environment. Clust. Comput.
2019, 22, 1241–1251. [CrossRef]

26. Senthil Kumar, A.M.; Venkatesan, M. Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in
cloud environment. Wirel. Pers. Commun. 2019, 107, 1835–1848. [CrossRef]

27. Krishnasamy, K. Task scheduling algorithm based on Hybrid Particle Swarm Optimization in cloud computing environment. J.
Theor. Appl. Inf. Technol. 2013, 55.

28. Abdi, S.; Motamedi, S.A.; Sharifian, S. Task scheduling using modified PSO algorithm in cloud computing environment. In
Proceedings of the International Conference on Machine Learning, Electrical and Mechanical Engineering, Athens, Greece,
8–9 April 2023; Volume 4, No. 1. pp. 8–12.

29. Kaur, G.; Sharma, E.S. Optimized utilization of resources using improved particle swarm optimization based task scheduling
algorithms in cloud computing. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 110–115.

30. Abdullahi, M.; Ngadi, M.A. Symbiotic organism search optimization based task scheduling in cloud computing environment.
Future Gener. Comput. Syst. 2016, 56, 640–650. [CrossRef]

31. Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Saleh Bataineh, A. Deep and reinforcement learning for automated task scheduling in
large-scale cloud computing systems. Concurr. Comput. Pract. Exp. 2021, 33, e5919. [CrossRef]

32. Sharma, M.; Garg, R. An artificial neural network based approach for energy efficient task scheduling in cloud data centers.
Sustain. Comput. Inform. Syst. 2020, 26, 100373. [CrossRef]

33. Iranmanesh, A.; Naji, H.R. DCHG-TS: A deadline-constrained and cost-effective hybrid genetic algorithm for scientific workflow
scheduling in cloud computing. Clust. Comput. 2021, 24, 667–681. [CrossRef]

34. Saber, W.; Moussa, W.; Ghuniem, A.M.; Rizk, R. Hybrid load balance based on genetic algorithm in cloud environment. Int. J.
Electr. Comput. Eng. 2021, 11, 2477–2489. [CrossRef]

35. Muteeh, A.; Sardaraz, M.; Tahir, M. MrLBA: Multi-resource load balancing algorithm for cloud computing using ant colony
optimization. Clust. Comput. 2021, 24, 3135–3145. [CrossRef]

36. Asghari, A.; Sohrabi, M.K.; Yaghmaee, F. Task scheduling, resource provisioning, and load balancing on scientific workflows
using parallel SARSA reinforcement learning agents and genetic algorithm. J. Supercomput. 2021, 77, 2800–2828. [CrossRef]

37. Kakkottakath Valappil Thekkepuryil, J.; Suseelan, D.P.; Keerikkattil, P.M. An effective meta-heuristic based multi-objective hybrid
optimization method for workflow scheduling in cloud computing environment. Clust. Comput. 2021, 24, 2367–2384. [CrossRef]

38. Aziza, H.; Krichen, S. Bi-objective decision support system for task-scheduling based on genetic algorithm in cloud computing.
Computing 2018, 100, 65–91. [CrossRef]

39. Mohammadi, A.; Rezvani, M.H. A novel optimized approach for resource reservation in cloud computing using producer–
consumer theory of microeconomics. J. Supercomput. 2019, 75, 7391–7425. [CrossRef]

40. Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud
computing environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]

41. Dai, Y.; Lou, Y.; Lu, X. A task scheduling algorithm based on genetic algorithm and ant colony optimization algorithm with
multi-QoS constraints in cloud computing. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine
Systems and Cybernetics, Washington, DC, USA, 26–27 August 2015; Volume 2, pp. 428–431.

42. Sundarrajan, R.; Vasudevan, V. An optimization algorithm for task scheduling in cloud computing based on multi-purpose
cuckoo seek algorithm. In Proceedings of the Theoretical Computer Science and Discrete Mathematics: First International

https://doi.org/10.1016/j.procs.2015.07.385
https://doi.org/10.1109/TEVC.2018.2885075
https://doi.org/10.1007/s10922-018-9469-9
https://doi.org/10.1007/s10586-018-2858-8
https://doi.org/10.1007/s10115-019-01327-4
https://doi.org/10.1007/s10586-019-02909-1
https://doi.org/10.1007/s11277-019-06360-8
https://doi.org/10.1016/j.future.2015.08.006
https://doi.org/10.1002/cpe.5919
https://doi.org/10.1016/j.suscom.2020.100373
https://doi.org/10.1007/s10586-020-03145-8
https://doi.org/10.11591/ijece.v11i3.pp2477-2489
https://doi.org/10.1007/s10586-021-03322-3
https://doi.org/10.1007/s11227-020-03364-1
https://doi.org/10.1007/s10586-021-03269-5
https://doi.org/10.1007/s00607-017-0566-5
https://doi.org/10.1007/s11227-019-02951-1
https://doi.org/10.1007/s10586-020-03075-5

Symmetry 2023, 15, 1025 22 of 22

Conference, ICTCSDM 2016, Krishnankoil, India, 19–21 December 2016; Revised Selected Papers 1. Springer International
Publishing: Berlin/Heidelberg, Germany, 2017; pp. 415–424.

43. Mapetu, J.P.B.; Chen, Z.; Kong, L. Low-time complexity and low-cost binary particle swarm optimization algorithm for task
scheduling and load balancing in cloud computing. Appl. Intell. 2019, 49, 3308–3330. [CrossRef]

44. Varshney, S.; Singh, S. An optimal bi-objective particle swarm optimization algorithm for task scheduling in cloud computing.
In Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India,
11–12 May 2018; pp. 780–784.

45. Saranu, K.A.; Jaganathan, S. Intensified Scheduling Algorithm for Virtual Machine Tasks in Cloud Computing. In Artificial
Intelligence and Evolutionary Algorithms in Engineering Systems: Proceedings of ICAEES 2014, Volume 2; Springer: Chennai, India,
2015; pp. 283–290.

46. Downey, A.B. Predicting queue times on space-sharing parallel computers. In Proceedings of the 11th International Parallel
Processing Symposium, Genva, Switzerland, 1–5 April 1997; pp. 209–218.

47. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

48. Fisher, R.A. Theory of statistical estimation. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University
Press: Cambridge, UK, 1925; Volume 22, No. 5; pp. 700–725.

49. Kuchnik, M.; Park, J.W.; Cranor, C.; Moore, E.; DeBardeleben, N.; Amvrosiadis, G. This is why ML-driven cluster scheduling
remains widely impractical. Tech. Rep. 2019. Available online: https://www.pdl.cmu.edu/ftp/CloudComputing/CMU-PDL-19
-103.pdf (accessed on 25 April 2023).

50. Naaz, S.; Alam, A.; Biswas, R. Load balancing algorithms for peer to peer and client server distributed environments. Int. J.
Comput. Appl. 2012, 47, 17–21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10489-019-01448-x
https://doi.org/10.1002/spe.995
https://www.pdl.cmu.edu/ftp/CloudComputing/CMU-PDL-19-103.pdf
https://www.pdl.cmu.edu/ftp/CloudComputing/CMU-PDL-19-103.pdf
https://doi.org/10.5120/7208-9995

	Introduction
	Literature Review
	Heuristic Approaches
	Meta-Heuristics Approaches

	Proposed Research Approach
	Task Scheduling
	Performance Parameters
	Makespan
	Resource Utilization (Ru)

	Hybrid Genetic Algorithms
	Task-Scheduling Policies
	Time-Shared
	Space-Shared

	Proposed Algorithms
	Parameter Tuning in Genetic Algorithm
	Encoding
	Fitness Function
	Selection Operator
	Crossover Operator
	Mutation Operator

	Results of the Experiment
	Experimental Setup
	Benchmark Techniques

	Discussion
	Conclusions
	References

