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Abstract:
for twice g-differentiable functions by utilizing Mercer’s approach. We introduce a new auxiliary

The objective of this study is to identify novel quantum midpoint-type inequalities

variant of the quantum Mercer midpoint-type identity related to twice g-differentiable functions.
By applying the theory of convex functions to this identity, we introduce new bounds using well-
known inequalities, such as H"older’s inequality and power-mean inequality. We provide explicit
examples along with graphical demonstrations. The findings of this study explain previous studies
on midpoint-type inequalities. Analytic inequalities of this type, as well as related strategies, have
applications in various fields where symmetry plays an important role.

Keywords: quantum calculus; convex functions; midpoint inequalities; Jensen-Mercer inequality

MSC: 26D07; 26D10; 26D15; 26 A33

1. Introduction

The study of mathematical inequalities has expanded rapidly and is now considered a
classic area of study due to its supportive role in the development of functional analysis.
Inequalities have found applications in many fields of science and technology, from ancient
to modern times. Their application has been beneficial to numerous disciplines, including
information theory, engineering, and more. Since their relevance has been well established,
several fundamental inequalities (e.g., Hardy, Cauchy-Schwarz, Jensen, Jensen—-Mercer,
and Hermite-Hadamard) are quite significant in the development of classical calculus and
g-calculus.

The relationship between inequality and convex functions has been shown to be
exceptionally strong. The study of convex functions provides a breathtaking view of
the beauty of advanced mathematics. Convexity has been gaining attention in the field
of mathematics, as it is recognized to play a crucial role in both theoretical and applied
domains. It is one of the most sophisticated disciplines of mathematical modeling due to
the variety of implementations available. The definition of convex functions is as follows:

Definition 1 ([1]). A function § : [¢1,E2] € R — R is called a convex function if the following
inequality holds for every ¢,y € [&1,G2] and

fE+ Ay 1) < Af(y) + (1= A)f().

Convex function analysis provides an excellent starting point for creating and im-
proving numerical tools to address challenging mathematical problems. Its theory of
optimization is one of its greatest advantages, playing a significant role in constructing
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applications in differential equations to facilitate boundary conditions [2,3]. Moreover, in
approximation theory and data analysis, convex functions play a significant role in solving
regression statistical models [4,5]. Convex functions and mathematical inequalities have
fantastic interactions. One of the most striking inequalities is Jensen’s inequality [1], which
can be viewed as the weighted extension of a convex function. For a convex function
f:[ay,by] — R and the weights A, € [0,1] satisfying Y™, w, = 1, Jensen’s inequality

states that
M M
f(Z Ay @) < (Z Ay f(‘fl)) , 1
1=1 1=1

for all ¢, € [a,,b,]. Since it is a logical extension of the convex function, in the litera-
ture, a comprehensive study is present in its extensions, refinements, and generalizations
(see [6,7]). By using the conditions of Jensen’s inequality, McD Mercer [8] introduced the
notable Jensen-Mercer inequality as:

<C11+az ZA €l><fal +f(az) — Z)\l (:] 2

holds for a convex function f and all finite positive increasing sequences ¢; € [a,,a,],
for (1=1,2,..., M) along with weights A, € [0,1] defined in (1). The Jensen-Mercer
inequality has been the subject of extensive research throughout the years. Improvements,
generalizations, and applications in information theory include increasing the dimensions
of the inequality, acquiring it for convex operators with several purifications, operator
variations for super-quadratic functions, and many other developments (see [9-12]).

Mathematicians have puzzled over how to provide estimates for some Mid-point
and trapezoid differences where the concept of classical derivatives has been insufficient
for years. This curiosity has also spurred mathematicians to embark on new searches for
practical uses of their theories (where there is a lack of classical analyses). This search has
led to the discovery of quantum derivative and quantum integral operators, which have
sped up the research on quantum analysis.

The idea of “calculus without bounds”, often referred to as “g-calculus”, is limitless
and unrestricted. Mathematics and related subjects require a thorough understanding
of quantum theory. To study the theory of inequalities, numerical theory, fundamental
hypergeometric functions, and orthogonal polynomials, mathematicians have turned to
g-calculus, which had previously been used in physics, philosophy, cryptology, computer
science, and mechanics (see [13-16]). The inventor of this discipline is Euler, who used the
g-parameter in his study of infinite series, which built upon Newton’s work. According
to [13], Jackson was the one who introduced the g-calculus. Jackson developed g-definite
integrals as the initial stage of his symmetrical research in the nineteenth century.

The purpose of this paper is to establish some midpoint-type inequalities. The general
outline of the paper consists of four sections, including the introduction. The remainder of
the paper is as follows: In Section 2, we present the definitions of the quantum derivatives
and integrals. Then we give related Hermite-Hadamard inequalities and some lemmas,
which will be used in the following section. After we obtain an identity for twice g-
differentiable functions, we obtain several midpoint-type inequalities by using the Jensen—
Mercer inequality in Section 3. Furthermore, we give an example to illustrate our results.
In the Section 4, we present our conclusions and provide some directions for future studies.

2. Description of Quantum Calculus

In this section, we recall the concept of differentiability and integrability of g-calculus:
Definition 2 ([16]). Iff: [¢1,82] — R, the qz, —derivative of fat x € [Ty, C2], is defined as follows:

f(x) — flar + (1 —q)&1)

Daflr) = (1—q)(x—21)

T F G ®)
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Ifr = 1, we define &, Dq¢(81) = limy ¢, & Dq¢p(x) if it exists and it is finite.

In [17], Rajkovic introduced the notion of the Riemann g-integral, which was later
expanded to the Jackson g-integral in [§1, §7] :

/f ) qdad = (- @) Eoa"Ta" + (1 a")), @

n=0

where ¢ € [¢1, &a].

Definition 3. One can recapture the notion of the g-definite integral [16] by putting {1 = 0
in (4) as:

/ odA—/f 1*qx2q“qu) )

n=0

Furthermore, for any ¢ € (&1,r), we can obtain the following relation of the

q-definite integral:
L r c
[50) adar = [§2) idad = [FA) a2 - ©)
¢ &1 &1

Using the above fundamentals of the quantum theory, Alp et al. in (2018) introduced
the first corrected version of the g-Hermite-Hadamard inequality in [18], which is defined
as follows:

Theorem 1. Let f : [1,82] — R be a convex function on (&1, &2|, we have

G2
qé1 + &2 1 af(¢1) +§(%2)
f(1+q)§@—agﬁ”@%*§]+q’

where q € (0,1).

Another useful approach regarding quantum calculus was introduced by Bermudo
et al. in 2020 [19]. They provided new definitions of quantum derivatives and quantum
integrals, and employed them to obtain a fresh interpretation of the Hermite-Hadamard
inequality.

Definition 4 ([19]). Let | : [¢1,&] — R be a function, then the q°2 —definite integral on [&1, &)
is expressed as follows:

gl (e
[i@)%2dgr =¥ (1—q)(& —&1)a(q"&1 + (1 —q")&2)
& n=0 @)

1
&) [F(AG1 + (1= A)Ea)dgA
0

Definition 5 ([19]). Let f : [¢1, ] — R be a function, then the q%2 —derivative of f at ¢ € [&1, &)
can be expressed as:

_ flar+ (1 —a)d2) —(x)

T 0@-u 7%

gquf(Zf)
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Theorem 2 ([19]). Let f : [¢1, 2] — R be a convex function on |1, Ca|, then we have the following
new variants of the q-Hermite-Hadamard inequalities:

93
§1+4ak 1 & f(81) + af(82)
(e ><€2_§lé/f(x) dg < FOLTTEE, ®)

where q € (0,1).

The notations shown below were often employed while dealing with quantum calculus:
n—1
m,=) ¢
i=0

and
n—1

1-A)5 = (a), = [T(1-a2). ©)

i=0
We recall some useful computations, which will be frequently used for our
new results.

Lemma 1 ([18]). The below identity is valid for all @ € R\{—1}

r
JA=e)® qdor =
&

(x—&)°!
R (10)

Lemma 2 ([20]). The below identity holds:

(1 B [21](]):-&-1

p— n —
(1 q/\)qdq)‘ [n+1]q

‘“\H

S
E=1

Quantum integral inequalities are of utmost importance due to their recent appli-
cations in mathematical sciences and quantum physics. Due to the significance and ef-
fectiveness of the respective ¢ Dq-derivative, gz -integral, q%2-derivative, and q¢2 -integral
concept, several integral inequalities have been postulated in relation to several types of
functions (see [18,19,21-24]). Several quantum integral inequalities involving coordinates
can be found in references [25,26]. Some g-mid-point inequalities along with their refined
estimates can be found in [18,20,27,28]. Using Mercer’s technique, significant progress
has been made on quantum Hermite-Mercer type inequalities by Budak et al. in [29,30].
Mercer’s (p, q) variants were also introduced by Bohner et al. in [31]. Butt et al. in [32]
presented new estimates of quantum Mercer’s Newton and Simpson-type inequalities.

Inspired by the recent advancements in quantum integral inequalities, this study aims
to introduce novel quantum analogs of Mercer-midpoint inequalities for functions that are
twice quantum-differentiable functions.

3. New Mercer Quantum Midpoint-Type Auxiliary Results

In this section, we will show how equality advances our key objectives.
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Lemma3. Let§: [a,,b,] — R be twice g-differentiable on (a,, by ) and g € (0,1). If "+ T*2~61D2
f is continuous and integrable on [a,, b, ], then we attain

(&2 =& [ 3,2 atbriy
o [/qua)Q 08 D25 (a, + b, — (A& + (1 A)E1))dgA

+ [ Q= g9 S DD 04 b, = (A2 + (1= N)E) |
[2]q

1 b=t - $r+ady
= A)Fba=big A — (a +b, — >
G— 01 /ul+b1*Cz FA) R 2]

for ¢1,85 € [ay, by ] with & < Co.

Proof. By Definition 5, we have

B0 6 D2 (ay 4+ by — (MG + (1 - A)81))
= WO TaD (WD f(ay + by — (AG + (1= A)81)))
—atbi—Gip P(al + b1 — (Agl2 + (1 —gA)G1)) —flas + b1 — (A5 + (1 — )‘)él))}
K (1_‘7)(a1+bl_(:1_(a1+bl_(A§2+(1_A)gl)))
_ atb-Gip P(ﬂl + by — (Aq82 + (1 —gA)81)) — flay + by — (AG + (1 — )‘)‘:l)}
! (1—9)(&2—3¢1)A
_ 1 [f(ﬂl + 61— (A% + (1= °A))81) — flaw + b2 — (Agd1 + (1 — gA))&2)
(1 - q>(€2 - §1>)L (1 - Q)(al +by —381— (al +b, — (Aq‘:Z + (1 - qA)él)))
e +b1 — (Ag52 + (1 —gA))G1) — f(ar + b1 — (AG2 + (1 — )\)52))}
(1 - ‘7)(“1 + bl - c:-(1(511 + bl - (/\‘:2 + (1 - A)él)))
_ 1 [f(al +b; — (Aq2€2 + (1 — qz)‘))gl) — f(al + bl — (/\qCZ + (1 — ‘VQ)@Z)
(1-q)(62—2¢1)s (1-9)9(G2 —&1)A
flar +b1 — (Aq82 + (1 —gA))G1) — flax + by — (Ag2 + (1 — A))?z)}
(1-q)(G2—8&1)A
_ f(a b1 — (Ag°62 + (1= 4°A))G1) — §(an + by — (Agds + (1~ gA))81)
(1—9)%q(52 — 61)?A?
flar +by — (Aq52 + (1 —gA))G1) — f(ax + b1 — (g5 + (1 — gA))G1)
(1—9)%(&2 —&1)*A?
f(an 4 bx — (Ag*62 + (1 —°A))&1) — (1 +q)f(ax + by — (Ag82 + (1 — gA))&1)
(1—49)%9(82 — G1)*A2
qf(ax + by — (AG2 + (1 = A))&1)
(1-9)2q(62—G1)?A%

Using the properties of g-integrals, we have

+
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o i PA2STO D2 (a, + b, — (A& + (1 — A)87))dgA
+ f (1—gA)3. 0206 DZf(a, 4+ by — (AG2 + (1 — A)81))dgA

- fozlﬂ 32008 D2f(ay + by — (A& + (1 — A)E))dgA
+ [y (1 —ga)2eaten- EJ‘lsz(al + b, — (A2 + (1 —A)&1))dgA

- fom 1-— q/\)z fa+ba= ngzf(“l +b6,— (A +(1— /\)Cl))dq}\
= [y (1= qA)2. 8408 D2f(a, + by — (A& + (1 — A)&1))dgA

+ Lo (PA2 - (1 gA);). o0 e DZ(ay + by — (AG2 + (1 — A)E1))dgA )
11
- (1—q)2(r§z—§1)2 fo 0 qu . [1“‘11 +b—(q 2\E + (1- ‘72)‘)51))

~ L Df(a, + b, — (A& + (1 - gA)E1) +(a + b, — (A& + (1 - Wl)))] daA

1
on A
+ (1—q)2(lf§z—f§1)2 fomq ) )(Lz Wi [1)“(% + b, — (Ag?G + (1 —¢?A)&1)

— (0, + by — (Mg + (1 - gA)&1) +F(ow + by — (A& + (1 — Mél)))] dql

= el + Bl

We determine the values of the integrals [; and I, by employing the quantum computa-
tions:

(1—¢gA)
n= [ q[ (00402 — (AP + (1— £N)Z1)) -

q f(ay + by — (Agda + (1 —qA)¢y)

+ f(al +by — (MG + (1 - A)Cl))) dgA

i_oj _qq) [qf( +b, — (20" + (1 - ¢%4™)E1))

0D g by (0" (1= gg")E) + fan + b — ("G 4+ (1 — g")E))
00 2
[6] Z ) 1+bl*(qn+2§2+(1*qn+2)€1))
”q i( ) &t by — (G + (1 " E)
n=0
( —qq"); " n
+§) pe L§(ay + by — (9"& + (1 — 4")&1))
_ o (1 — gg"—2)2
— ;2< o 50, + b, — (82 + (1= )2)
- “‘”’);”‘” y U _qqu iy 12 — (078 + (L= 720))
n=1
o (1— n\2
-9y LM e e+ (- gE))
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Ti(ay +01) = (4762 + (1= ")&1)

S
- oot o & _qi”ﬁl)gﬂal £~ (@8 + (1— @)

-9 % £ ;n"’i")éﬂal oy (' + (= "))

SO R,

-0 & _jf’ll)sﬂal £ - (g8 + (1 )E))

G q)q(l +9) 0 qqql_l)gf(al + b, — &)

g £ [T () BT AR, s, g+ (g2

n=0
+[(1 =) (1 =997 —q(1 =) (1 — 997)]§(ar + b2 — &2)
— (1 —=q) (1 = g7 )7§(as + b1 — (981 + (1 = 9)¢1))

— (1)1 P —q) ioq”f(ul Foy— ('8t (1))

_g)2 ad
N W(l —q) (G- &) qu"ﬂal +by = (7"02+ (1—9")51))

_(1+g) (A =g [utha a6, —8
(22 /ul-i-bl—Cz A da

Similarly,

% 3/\2_ 1— )\2
A A [;f(ﬂl+bl(qz/\Cz+(1q2/\)é‘1))

_ Wf(al + by — (gA& + (1 = gA)E)) +F(ay 4+ by — (A& + (1 — A)éﬁ))] dqA
_ (1[2_};) gqnqg’(ﬂ,)z[é’;;— q%)é [;f(al tb, ‘7[2]252 +(1- q[zqzé‘z))
- D0 b)) + (1= )+ 0, = (a4 (1 [Z];m))]
_ (1[2_}:) :0 (PP — [an(l —q%D [;f(al b, — (fi[’;]:zgz +(1- E’[Z:x)))
Ly 1+bl—<q[’;]+;¢2+<1—q{;;x»m(aﬁbl—<[§q¢z+<l—g}zq)a))]
B (1[2}:) ;:)q%% - [jﬁ(ll_q%)f(“ﬁbl ) (q[’;]fgﬁ (1 q[;jx))))
S 2’43‘72” - pfﬂ“ ) (e, (G ta+ (=T
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o g3 — [22(1 - g n
+ (1[2_] 7 ) il [qlq_(l q[z]q)f(al +by - ([g] x))
9 n=0 q
_o) & PP - 22— g ) w2 nt2
= (1[2}:) ZO q,zu 2]q flay + b, — (q[z]: &H+(1- q[z];x))))
~fogetd 5 A [zfn(l D 0tay, L, (Bt 0-Tr0)
q n=0 q q
(1-q) & P -2 —ad) g
+ [Z]q 7&) qn,1 f(al+bl ([2]qx))
2
P - [2]q<1—qqf;]2> )
_ (-9 ¢ ( "4 (a9 _qt
~m L 7 oo (e (1-45)9))
2
P - [2]§<1—q"{;}1> )
(- 9+gq) "o a9 1
2, L 7 f(oro-gres (141 )a)
2
P - [215(1q£) )
(1-9) ¢ ( /g g9 _qn
T L 7 f(oren- g (1247 )4)
2
3.4 2 q?
-9 (M [2]q<1 172, )f(a b _§2+q§1>
24 gt L 2]4
=@ (5 2 ol a! ? _x+q8
(o2 (1 mq)q)f(“l“’l )

_ (1—17[;](ql+q) (qsq_z_[2]5(1_q’[12_]:):>f(u1+b_Czé}:&)
[q<q3q2"-4 - 121 qﬁj)j)) - e (1 qq{;;):)

+ <q3q2” —[2)7 (1 - LI[ZL):H f<u1 +by — [gnqéz + <1 - [317)51)

(1+4) (vf’q‘z -2 (1 - q’g:):) —q (oﬁz“* - [2I7 (1 - qgﬁ):)] f(al +b,

_ (1[2_]qq) (q3q‘2 - 213 <1 - q@>:)f<al T qg[zfq— x)

Q-9 g2 5l G tad
= (=14+49"+9q q)f(lﬂn 2, >
_ (-9 2 CGtali\ _ 4 2 _ Gataqdy
= G5 = (o +0 - L) = R4 (0 + 0, - ),

By putting the values of I; and I in (11), we obtain the required result.

Remark 1. If we set a, = §1 and b, = Cp in Lemma 3, it can be reduced into the following

inequality proven in [33] [Lemma 5].
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(52_‘31)2 g 342 &H2 B B 282 B
P}ql/oﬂm Dgf(Ag1 + (1 )gsz+/[z1q1 gA)2 2D2(AE + (1 — A)&2)dgA

_ 1 2 Naqa o G186
= @ fy T i 2, )

Remark 2. By substitutingq — 17, a, = {1 and by, = & in Lemma 3, we have

(C //\2 (A& + (1= A)& d)\+/ (1= A)F"(A& + (1= A)EH)dA

- <§zi¢1>§/f(”“_f(§1;§2>’

which was given in [34].

New Quantum Mercer Midpoint-Type Estimates

Theorem 3. Under the assumptions of Lemma 3, if |“l+bl’§1 Dﬁﬂ is convex on [ay, b, ], then we
have the inequality

52_51 a;+b,— éZ
< P@=g? ([ D (an) [ +]* T DEf(b))| | Y DEf(G))|
- 2%, 131, [21314]
_<[2131[31 e J'mbl ngzf(‘:l)')

(E-8)* [ a+a?>=d°
+ 2]q 2,131, (

. ZH+4q2+HS_q4_HS
2]5(3]q[4]q

__2+23+34+25_6_7 b,— 2
_[ B M }‘M ngqf@“')'

2]q

(12)

a;+b;—¢1 D%{f(al)‘ +

al+b1—§1D§f(bl)|)

} b8 D25(5y)|

Proof. Employing the modulus on both sides of the quantum identity obtained in Lemma 3,

we have
1 a,+b,—G _ 62 + qgl
At é’ld}x—<l 1 >‘

Gr—¢1 /ulerl FA) UG 12l

Cz - Cl [ / N2t =8D2f(a, 4 by — (A& + (1 - A)E1)) ’dq)‘

0

1

N / (1— )%= D25 (a, + b, — (A& + (1 - A)E1)) ’qu].

N

2,

By using the convexity of ‘ Gtbi—Gy Dfl
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1 a,+b;—¢1 g + g
a,+by;—0> a

€

PE-a)? (.
< T/ (22

_<A3

1
+(§2[§]§1)2 / ((1q}\)é(

a 1

B D((a))] +

ay+b,—& D2f((b)) D

ot DR | + (- )

“ﬁblgzDéf(Cz)’))dq)\

a,+by;—1 D%{f(bl)

a;+b;—¢q Déf(al)‘ +

)

2,

— (A = a)3[m B D2 E) |+ (1- ) (1 - ar) “l“’l‘élDﬁf(éz)D)qu
We have :
2
AdgA = 31 (14)
J 21,03,
ol
/(/\2—/\3>dq/\: RS (15)
, 21,18, [21504],
1
29+49°+0° —q* — ¢
A1 —qA)2d A = 16
RIS BHONCE 1o
ol
and
1 2 3 4 5_ 6 7
—q— @ + 26 +3q* +2¢° — g —
/(1—A)(1—q/\)§dq/\: Ll "‘[2];:[31[;(’ o (17)

1

Bly

Putting (14)—(17) into (13) leads to the required results. O

Example 1. Let us consider the function f : [0,1] — R defined by f(A) = A% and let & = } and
¢1 = %. Under these assumptions, we have

al+br§1D§l]c(A) = %Dﬁf()t) = ([4]q + a[2]g)A + %(2 +q)(1—¢?). (18)

Thus, the function | ®+T°2=€1D2f | is convex on [0,1]. Thus, by using Theorem 3 and
Definition 4, we have

N
\Mm
>
w
=
[
=
>

1 a;+b,—8 a1 +by -8
¢ —0G1 /a1+bl—éz FA) dak =

[l
N
AN e
—_
N
3
N—
X
(Hjl‘ 3
e
=2
VN
Rl
=
NI
+
~—
—_
\
e
=2
N—
PN
N———
w
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w9 1
64 3202

We also have

§2+q§1> _ (1+39)°
2l 6423

Therefore, the L.H.S. of inequality (12) reduces to

a;+b,—;

27 27 9 1 (1+3q)°
- + — .
64 322, ' 16B3], 8[4ly 642

f<a1+b1 —

On the other hand, by (18), we have

“HGDi)| = S+ -e)

6 +3q — 69> — 3q°
4 '

(g +a200) + 5 2 +0)(1 ~ )

10+ 11q + 29 + ¢°
4 7

a;+b;—¢q D%{f(bl)

wHO-Gp2iE)| = ([4] + q[z]q)i + 2(2 +a)(1 - %)

7 +5q — 4% — 2¢°

and

WD) = (gt a2l + @+ a) (- )

Hence, the R.H.S. of inequality (12) reduces to

(& — &1)? <|al+alng3f(a1)| + [0 aDEf ()| [t EDE(G))|

2] 23131, [2]514]q

_ 1 _ 1 a;+b;—81 02
([213[31q m%.mq)' )

(62—61)2(q+q2—q3<

2lq 21313],

29+4°+¢° —q* - ¢°
[2]3[3]4(4]q ]
—4—*+2¢° +3q* +2¢° —¢° — ¢’

- [ [2]413]4[4]4 ]
q° <16+14q — 49> —2¢°

2L\ 4

+ al"’blfénglf(bl)

a,+b,—¢; Dgf(al)‘ +

)

o D2(e)|

a+b,—Gq Dﬁf(&) D

9
q PR,
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_( 11 >7+5q—4q2—2q3>
2308lq (21504 4

L1 ((q+q2—q3)(16+14q—4q2—2q3)
4[2]q a21%13],
_9(20+49* +¢° —g* —¢°)
423 [3]q[4]q
B (—q—q2+2q3+3q4+2q5—q6—q7)(7+5q—4q2—2q3)>
4[2]3[3]q[4]q ‘

By inequality (12), we have the inequality

27 27 9 1 _ (143q’
64 3212 ' 16[3]  8[4]4 6423
< q3 16414q— 4q2—2q 9
— 42 4[2313], 40213 (4]
< 7+5q—4¢>—2q°
3]l1 2] [4 4 (20)
(a+9*—q )(16+14q—4q2—2q3)
H 42303,
_ 9(2q+4a’+4’—q*—q )
4[2]313]q[4lq
_ (—a—a?+2q°+3q*+2¢°—q°—q” ) (7+5q—442—2q°%)
4[2]5(3]q[4lq '

The correctness of inequality (20) is verified in Figure 1.

0.05 T T T T T T T T T
0.045 b
0.04
0.035 .
0.03 7

—— The left term
The right term

0.025

0.02 | 4

0.015 .

0.01 .

0.005 .

0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g values

Figure 1. An example of inequality (12).
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Remark 3. Putting a, = ¢1 and b, = {p and taking limit ¢ — 1~ in Theorem 3, we have

2
< (62 ;861) (’f//(é-l)‘_’_“//(gz)

),

1)
1 1+
52—€1€/f(/\)dA_f( 2 )

proven in [34] [Theorem 3].

Remark 4. Substituting a, = ¢1 and by, = &, in Theorem 3, we have the results proven in [33]

[Theorem 3].

Theorem 4. Under the assumptions of Lemma 3, if | G Fb—6 Dg
function on [&1, &3], then we have

1 /a1+61*§1 f(/\)a+b1—§1dq/\f<al+bl ’§2+q€1)’

G2 —C1 Jay+b, 2]
| _f@-a)? ( @08 D2j(a,)| " 4 [ G D2i(6y)| oG D) |
< L 3
2 ey 4112 2lg 215
(¢ +20) “ﬁhé'lDéf@nl“)% (E2— &)’ i
_ oe  vr) ,0)) 2
[Zﬁ + [Z]q ((P(q 2))
y <q a1+b1*C1Déf<al)‘€1 + ul+b1*§1D§f(bl)‘€1 B ([2]3 _1)|a1+51*§1Déf(§1)|€1
2, 27
~ (q2_|_2q> u1+bl_§lD%f(é )’51)[1
213 ’
where %—F%:land
1
(g, 0) = / 1 — q)t dgA.

2y

Proof. Employing the quantum Holder’s inequality on Lemma 3, we have

ﬂl+51*§
1 / 1f()\)a+bl_§1dq)\f<a1+blCz+q§l>‘
a

&2 —C1 Jar+b, - 2]
(@-&) % " 0 .
< Tq?) / /\ZKqu)\ / a,+b;— ngzf(CIJ_‘Fbl*()ng (17 )51))’ q)\
q 0 "
(B-&)° 1 21% / ay+b, &1 2 b '
+W / [<1 - qA>q} dqA / Dif(ay + by — (A2 + (1 — /\)51))’ dgA
Gn Gn

. ly .
Since | ®+2=61D2§ | is convex on [¢1, &3], we have

G0 =G D2f(a, + b, — (A& + (1 - A)E1)) "

V4 .
'ty > 1, is a convex

(21)



Symmetry 2023, 15, 1038 14 of 19

b

1 _ 4 - - a
< +{ S TADI(b,) |~ A|BTRTADIE) | — (1 A) MO DI (E)

J4
@ tbal Dﬁf(al)

By Lemma 3, we have

a;+b;—¢
1 / 1f(A>a+blélqu_f<al+bl_§2+qgl)‘
a

$2—C1 Jay+b,— 2]
LB,
(E-¢&)° 3< 1 )1’2( ‘(a+b—c 2 I PRI b
< q VI TeDef(ay) |+ (TSI DgR(by)
2], 2122 260, + 1], O/ ) |
Y a1+b1—f§1D§f(Cz) b (1-7) a1+bl—ClD§f(§1) El)dq/\> "
— 2 1 1 Zl (1
+ E 8 g s ([ (Jersetnitan[" + [ aD2io)
q
2lq
—A a1+b1—¢1D3f(€2) h —(1-2) a1+bl—é‘1D§f(§1) E1>qu> n
_ (&2 — &)’ (aﬁblngéf(al)\M W GDZi(e,)|" |t fD(E)|"
2[1%-%—1 / [z]q [2]3
2]4[2]q % [262 +1]¢? |
(a* +29) “l*blngﬁf(Cl)lzlyl (&2 &) 1
_ ,0:)) 2
[2]?1 =+ [Z}q ((P(q 2))
e ul+b17§1Dgf(al>|€1 + alerl*ClD%lf(bl)’Kl - ([2]3 _1) al+b17§1Daf(§1)|€1
2, o7
(> +29)

o6 D) | >

213
O

Remark 5. Putting a, = §1 and by, = ¢ and taking limit ¢ — 1~ in Theorem 4, we have the
following result proven in [35] [Theorem 3 ]:

$)
& 1 Clé/f()\)d}\ - f<§1j2L€2> ‘

e B s rel) (e cpre )

Remark 6. Selecting a, = {1 and b, = &y in Theorem 4 leads to the result given in [33] [Theorem 4].

Theorem 5. Taking into account the considerations of Lemma 3, if | a1+b1—G Dgf |£1, 0Hh>1,
and is convex on [&q, &), then we have the inequality
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1 a;+by— b,— B  oral
H fal“l‘bl f( )Cl+ érldq)\ f(al —+ bl 2[2}2 1)

1
1 1 —E D2 4\ "
<mi[s1q mé.mq)qa lD"f@m)
1

-+
(Cl+q2—q3) 1(&H-5)? ((a+9>—a%) ay+b,—& 2 O Jar4by—E 12 0
g T i, 1Dgian)[" + | DZj(b.)|")

< _P6-a) (I“*‘”51D%f(a>|“+|““"l51D§f(bl)“ _|mreangie)|
— 3 1 3 4
o 213031, 2314,

(22)

2q+4q2+q fq —q° |a+blf§1D§f(§2)‘€1

[ 233
b

1
2+2q3+3q4+2q —4°=d” | jai 46,8 2 A

Proof. Practicing the power-mean inequality on Lemma 3 along with the convexity of
|t ba=C1 D%lﬂél, we have

a,+b,— @'
1 / 1f()\)a+bl_§ldq)\—f(ﬂl+bl— §2+C|€1)‘
a

& — &1 Jarto,— [2]4
&\ ;
_ 12
- ffz 51 /AquA //\2 G D, + by — MG — (1- A)&)| ' dg)
0 0
1 Pﬁ 1 %
(& —&) 2 a2 |atb & 2 A (1 f
+ T (1 - q)\)qqu (1 q/\)q qu(al + b,y A‘:Z (1 A)gl) dqA
q
1
I2n
22 3 ¢
S (62[2]61) - 3q T <( a1+51*§1D§f(a1) 1 + a,+b,— §1D2 ) //\qu)\
[ 0
T2 TBlg 0
T ) :
_ a1+blf§1D§f(§2) 1 //\qu)\ a,+b,— §1D2 gl / /\3 d )t)
0 0
P e nr ‘ ay [
_ B : - )
+ 2[2] 1 1‘LL (( a,+by GlDﬁf(al)) 4 [mtby ngéf(bl) ) /(1_qA)ﬁqu
l
! Blg ﬁ
;1 ;1 L
1
_ |ai+by— (’:IDZ 62 1 //\ 1_q/\ al+bl_§1D§f(§1) ! /(1—)L)( ) d /\)
_ _ 1 _ ¢
P —& ) (|a+b1 éngf(alN 1 |a1+bl élD%f(bl” 1 B |@at0a élpéf(gm 1
3 1_1 4
mi C mi C [2]3;{3]q [Z}q[‘l]q

N 11 @yt by &1 2 N\
([zﬁ.mq m‘;mq)q LD )
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1—1
. (q T q3)3 i ( 1 ((CI + 12 - C|3) ( a1+bl—€1D§f(al) 4 + al+b1_§1D§f(bl) él)
4*@ 1- 2y [2] [3]
[Z]q [3]11 | )
2q+4q2+q3—q4—q5] +b,—81 )2 n
_ a 1 1 f(g )
i, m

1
4

Gl D)

B {—q—q2+2q3+3q4+2q5—q6—cq

213131, (4]

)

q[q

This completes the proof. [

Example 2. Consider the same function § defined in Example 1. By {1 = 2, the function

2
| wt0i-Gip2f(2) |2 = (([4]Ul +q2]q)A + 2(24— q)(1 - q2)> . (23)

is convex on [0,1]. Thus, using Theorem 5 along with Definition 4, the L.H.S. of the
inequality (22) is similar to (19).
On the other hand, we can calculate the R.H.S. of the inequality (22) as follows:

B — &) (|a+blng%f(a)|él + ‘al+brélpgf(bl){fl - |al+blf§1D§f(§2)]£1
[Z]A: T [3]27 n [2]3, 3] q [2]%, (4] q
(1 TSN

[ﬁmq[mm)q vifcol')

(a+—) (& (@+d* =) (aso.-g b Jate—g b
R e, (e[ e nien])

2] [8]q ! ar-a

2q+4q2+q3q4q5] atbu-1 2 b
- o1 DEf(82)

[ [2]413],[4], |

a;+b, -8 Déf(gl)

1
_{—q—q2+2q3+3q4+2q5—q6—q7} fl>f1
! .
(214131414l
P ((6+3q — 642 —3¢%)” + (10 + 11q + 202 + ¢°)° 81

16[2]3 [3], 16[2]2 (4]

_( 11 )q(7+5q—4q2—2q3)2>f11
236], (254, 16

(a+0*— 0 (@ - &)
a(p53al,)

(q+q2—q3)< 2 a2 2 32)

x ("2 ((6+3q—6q%>—3q°) + (10 +11q+2q% +

(16[2]3[[3101 ( q—6q q) ( q-+2q q)

81(29+ 49>+ ¢° — q* — ¢°)

- 2
16[2]; 3] ,[4]

q

_|_

Nl—

q

(—9—q*+2¢°> +3q* +2¢° — ¢® — ¢’) (7+5q—4q2—2q3)2>411

_ . ,
16[2],[3],[4]

qt=q
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Then, by inequality (22), we have

7 27 9 1 (1+30)°

64 322, ' 16B3], 8[4ly 642

S ((6+3q_6q2_3‘"3)2+(10+11q+2c12+q3)2 8

< ([2]2[3]q>% 16[2]3[3], 16224],

_( 1 )q(7+5q—4q2—2q3)2>f11
2161, 21504, 16

q+q° — ‘13)%(52 — &)
4(12138],)

(q+q2—q‘°’)< Y 2 3 2)
x (2T ) ((643qg—6¢% —3¢3) + (10 +11q 4+ 2¢% +
( 16273, ( q—6q q) ( q+2q q)
81(2q+49°+¢° — q* — ¢°)
16[2]2 (3], [4]

L (24)

Nl—

[
al*lq
(—9—q*>+2¢> +39* +29° — q° — ¢”) (7 + 59 — 4¢? —2q3)2> T
< :
1602 3], 4]

q[q

Ome can see the validity of inequality (24) in Figure 2.

0.06 T T T T T T T T T

0.05 | 4

T
1

0.04

0.03 | b

The left term
The right term

T
1

0.02

0.01 | .

0 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g values

Figure 2. An example of inequality (22).

Remark 7. Choosing the limit as ¢ — 17, a, = {1, and b, = ¢y in Theorem 5, we attain

&)
1 ¢1+32
v (830
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=

;f5<224+€1>)2{ (7@l + 3l @)+ (3@l + sl el)

o~

)
proven in [35] [Theorem 4].

Remark 8. Substituting a, = ¢y and by = &y in Theorem 5, we recapture the result mentioned in
[33] [Theorem 5].

4. Concluding Remarks

To summarize, we obtained new quantum estimates of Mercer midpoint inequalities
for convex functions, which represent a significant generalization of previously published
related results. Our findings demonstrate the potential for further research in this area,
particularly in exploring the use of different types of convexity to derive new bounds. It is
necessary to state that our primary results can be reduced to classical calculus by choosing
q— 17, a, =y, and b, = ¢p. We feel that this opens up a fascinating and novel research
direction for scholars to explore, where analogous inequalities can be obtained by using
different types of convexity.
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