Entanglement and Fidelity: Statics and Dynamics
Abstract
:1. Introduction
2. Entanglement Signatures
2.1. Von Neumann Entropy
2.2. Mutual Information
2.3. Negativity
2.4. Concurrence
2.5. Entanglement Spectrum
2.5.1. Momentum Space Description
2.5.2. Real Space Description
3. Topological Entanglement Entropy
4. Reduced Density Matrix and Order Parameters of a Topological Insulator
4.1. Reduced Density Matrix and Order Parameters
4.2. Topological Correlators in Equilibrium
5. Fidelity
5.1. Pure State Fidelity
5.2. Fidelity Susceptibility and Scaling
5.3. Mixed State Fidelity
5.4. Uhlman’s Phase
5.5. Partial State Fidelity
5.6. Fidelity Spectrum
6. Entanglement Dynamics
6.1. Entanglement Growth
6.2. Loschmidt Echo and Loschmidt Rate
6.3. Berry Phase, Pancharatnam Phase and Dynamical Topological Order Parameter
6.4. Time Evolution of Topological Correlators
7. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Landau, L.D. On the theory of phase transitions. Nature 1937, 7, 19–32. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133. [Google Scholar] [CrossRef]
- Kosterlitz, J.M.; Thouless, D.J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C 1972, 5, L124. [Google Scholar] [CrossRef]
- Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 1973, 6, 1181. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Nobel Lecture: Topological quantum matter. Rev. Mod. Phys. 2017, 89, 040502. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. 1983, 93A, 464. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State. Phys. Rev. Lett. 1983, 50, 1153. [Google Scholar] [CrossRef]
- Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 2008, 80, 517. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Li, H.; Haldane, F.D.M. Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States. Phys. Rev. Lett. 2008, 101, 010504. [Google Scholar] [CrossRef]
- Yu, W.C.; Li, Y.C.; Sacramento, P.D.; Lin, H.-Q. Reduced density matrix and order parameters of a topological insulator. Phys. Rev. B 2016, 94, 245123. [Google Scholar] [CrossRef]
- Zanardi, P.; Paunković, N. Ground state overlap and quantum phase transitions. Phys. Rev. E 2006, 74, 031123. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Gu, S.J. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 2010, 24, 4371. [Google Scholar] [CrossRef]
- Latorre, J.I.; Rico, E.; Vidal, G. Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 2004, 4, 48. [Google Scholar]
- Gu, S.-J.-; Tian, G.-S.; Lin, H.-Q. Ground-state entanglement in the XXZ model. Phys. Rev. A 2005, 71, 052322. [Google Scholar] [CrossRef]
- Gu, S.-J.; Lin, H.-Q.; Li, Y.-Q. Entanglement, quantum phase transition, and scaling in the XXZ chain. Phys. Rev. A 2003, 68, 042330. [Google Scholar] [CrossRef]
- Gu, S.-J.; Deng, S.-S.; Li, Y.-Q.; Lin, H.-Q. Entanglement and Quantum Phase Transition in the Extended Hubbard Model. Phys. Rev. Lett. 2004, 93, 086402. [Google Scholar] [CrossRef]
- Larsson, D.; Johannesson, H. Entanglement Scaling in the One-Dimensional Hubbard Model at Criticality. Phys. Rev. Lett. 2005, 95, 196406. [Google Scholar] [CrossRef]
- Vidal, J. Concurrence in collective models. Phys. Rev. A 2006, 73, 062318. [Google Scholar] [CrossRef]
- Vidal, J.; Dusuel, S.; Barthel, T. Entanglement entropy in collective models. J. Stat. Mech. 2007, P01015. [Google Scholar] [CrossRef]
- Wootters, W.K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 1998, 80, 2245. [Google Scholar] [CrossRef]
- Vedral, V. Mean-field approximations and multipartite thermal correlations. New. J. Phys. 2004, 6, 22. [Google Scholar] [CrossRef]
- Gu, S.-J.; Sun, C.-P.; Lin, H.-Q. Universal role of correlation entropy in critical phenomena. J. Phys. A Math. Theor. 2008, 41, 025002. [Google Scholar] [CrossRef]
- Chan, W.-L.; Cao, J.-P.; Yang, D.; Gu, S.-J. Effects of environmental parameters to total, quantum and classical correlations. J. Phys. A Math. Theor. 2007, 40, 12143. [Google Scholar] [CrossRef]
- Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [Google Scholar] [CrossRef]
- Meyer, A.D.; Wallach, N.R. Global entanglement in multiparticle systems. J. Math. Phys. 2002, 43, 4273. [Google Scholar] [CrossRef]
- De Oliveira, T.R.; Rigolin, G.; de Oliveira, M.C. Genuine multipartite entanglement in quantum phase transitions. Phys. Rev. A 2006, 73, 010305. [Google Scholar] [CrossRef]
- De Oliveira, T.R.; Rigolin, G.; de Oliveira, M.C.; Miranda, E. Multipartite Entanglement Signature of Quantum Phase Transitions. Phys. Rev. Lett. 2006, 97, 170401. [Google Scholar] [CrossRef]
- Lunkes, C.; Brukner, Č.; Vedral, V. Natural multiparticle entanglement in a Fermi gas. Phys. Rev. Lett. 2005, 95, 030503. [Google Scholar] [CrossRef]
- Heaney, L.; Anders, J.; Vedral, V. Spatial entanglement of a free Bosonic field. arXiv 2006, arXiv:quant-ph/0607069. [Google Scholar]
- Oh, S.; Kim, J. Entanglement of electron spins in superconductors. Phys. Rev. B 2005, 71, 144523. [Google Scholar] [CrossRef]
- Zanardi, P.; Cozzini, M.; Giorda, P. Ground state fidelity and quantum phase transitions in free Fermi systems. J. Stat. Mech. 2007, L02002. [Google Scholar] [CrossRef]
- Cozzini, M.; Giorda, P.; Zanardi, P. Quantum phase transitions and quantum fidelity in free fermion graphs. Phys. Rev. B 2007, 75, 014439. [Google Scholar] [CrossRef]
- Buonsante, P.; Vezzani, A. Ground-State Fidelity and Bipartite Entanglement in the Bose-Hubbard Model. Phys. Rev. Lett. 2007, 98, 110601. [Google Scholar] [CrossRef] [PubMed]
- Oelkers, N.; Links, J. Ground-state properties of the attractive one-dimensional Bose-Hubbard model. Phys. Rev. B 2007, 75, 115119. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Gu, S.-J.; Wang, Y. Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction. Phys. Rev. E 2007, 76, 061108. [Google Scholar] [CrossRef]
- Yang, M.-F. Ground-state fidelity in one-dimensional gapless models. Phys. Rev. B 2007, 76, 180403. [Google Scholar] [CrossRef]
- Zhou, H.Q.; Barjaktarevic, J.P. Fidelity and quantum phase transitions. J. Phys. A Math. Theor. 2008, 41, 412001. [Google Scholar] [CrossRef]
- Zhou, H.-Q.; Zhao, J.-H.; Li, B. Fidelity approach to quantum phase transitions: Finite size scaling for quantum Ising model in a transverse field. J. Phys. Math. Gen. 2008, 41, 492002. [Google Scholar] [CrossRef]
- Zhou, H.Q. Renormalization group flows and quantum phase transitions: Fidelity versus entanglement. arXiv 2007, arXiv:0704.2945. [Google Scholar]
- Zanardi, P.; Giorda, P.; Cozzini, M. Information-Theoretic Differential Geometry of Quantum Phase Transitions. Phys. Rev. Lett. 2007, 99, 100603. [Google Scholar] [CrossRef]
- Venuti, L.C.; Zanardi, P. Quantum Critical Scaling of the Geometric Tensors. Phys. Rev. Lett. 2007, 99, 095701. [Google Scholar] [CrossRef]
- You, W.-L.; Li, Y.-W.; Gu, S.-J. Fidelity, dynamic structure factor, and susceptibility in critical phenomena. Phys. Rev. E 2007, 76, 022101. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Hao, Y.; Wang, Y. Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition. Phys. Rev. A 2008, 77, 032111. [Google Scholar] [CrossRef]
- Gu, S.-J.; Kwok, H.-M.; Ning, W.-Q.; Lin, H.-Q. Fidelity susceptibility, scaling, and universality in quantum critical phenomena. Phys. Rev. B 2008, 77, 245109, Erratum in Phys. Rev. B 2011, 83, 159905. [Google Scholar] [CrossRef]
- Campos Venuti, L.; Cozzini, M.; Buonsante, P.; Massel, F.; Bray-Ali, N.; Zanardi, P. Fidelity approach to the Hubbard model. Phys. Rev. B 2008, 78, 115410. [Google Scholar] [CrossRef]
- Hamma, A.; Zhang, W.; Haas, S.; Lidar, D.A. Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order. Phys. Rev. B 2008, 77, 155111. [Google Scholar] [CrossRef]
- Abasto, D.F.; Hamma, A.; Zanardi, P. Fidelity analysis of topological quantum phase transitions. Phys. Rev. A 2008, 78, 010301. [Google Scholar] [CrossRef]
- Yang, S.; Gu, S.-J.; Sun, C.-P.; Lin, H.-Q. Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A 2008, 78, 012304. [Google Scholar] [CrossRef]
- Abasto, D.F.; Zanardi, P. Thermal states of the Kitaev honeycomb model: Bures metric analysis. Phys. Rev. A 2009, 79, 012321. [Google Scholar] [CrossRef]
- Trebst, S.; Werner, P.; Troyer, M.; Shtengel, K.; Nayak, C. Breakdown of a Topological Phase: Quantum Phase Transition in a Loop Gas Model with Tension. Phys. Rev. Lett. 2007, 98, 070602. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Zhou, H.-Q. Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B 2009, 80, 014403. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, T.; Gu, S.-J.; Lin, H.-Q. Reduced fidelity in the Kitaev honeycomb model. Phys. Rev. A 2010, 81, 062350. [Google Scholar] [CrossRef]
- Castelnovo, C.; Chamon, C. Quantum topological phase transition at the microscopic level. Phys. Rev. B 2008, 77, 054433. [Google Scholar] [CrossRef]
- Eriksson, E.; Johannesson, H. Reduced fidelity in topological quantum phase transitions. Phys. Rev. A 2009, 79, 060301. [Google Scholar] [CrossRef]
- Zanardi, P.; Quan, H.T.; Wang, X.; Sun, C.P. Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 2007, 75, 032109. [Google Scholar] [CrossRef]
- Zanardi, P.; Venuti, L.C.; Giorda, P. Bures metric over thermal state manifolds and quantum criticality. Phys. Rev. A 2007, 76, 062318. [Google Scholar] [CrossRef]
- Paunković, N.; Vieira, V.R. Macroscopic distinguishability between quantum states defining different phases of matter: Fidelity and the Uhlmann geometric phase. Phys. Rev. E 2008, 77, 011129. [Google Scholar] [CrossRef]
- Paunković, N.; Sacramento, P.D.; Nogueira, P.; Vieira, V.R.; Dugaev, V.K. Fidelity between partial states as a signature of quantum phase transitions. Phys. Rev. A 2008, 77, 052302. [Google Scholar] [CrossRef]
- Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys. 2002, 74, 197. [Google Scholar] [CrossRef]
- Sacramento, P.D.; Nogueira, P.; Vieira, V.R.; Dugaev, V.K. Entanglement signatures of the quantum phase transition induced by a magnetic impurity in a superconductor. Phys. Rev. B 2007, 76, 184517. [Google Scholar] [CrossRef]
- Osborne, T.J.; Nielsen, M.A. Entanglement in a simple quantum phase transition. Phys. Rev. A 2002, 66, 032110. [Google Scholar] [CrossRef]
- Osterloh, A.; Amico, L.; Falci, G.; Fazio, R. Scaling of entanglement close to a quantum phase transition. Nature 2002, 416, 608. [Google Scholar] [CrossRef]
- Vidal, G.; Latorre, J.I.; Rico, E.; Kitaev, A. Entanglement in Quantum Critical Phenomena. Phys. Rev. Lett. 2003, 90, 227902. [Google Scholar] [CrossRef]
- Calabrese, P.; Cardy, J. Entanglement entropy and quantum field theory. J. Stat. Mech. 2004, 2004, P06002. [Google Scholar] [CrossRef]
- Page, D.N. Average entropy of a subsystem. Phys. Rev. Lett. 1993, 71, 1291. [Google Scholar] [CrossRef]
- Tomasi, G.D.; Khaymovich, I. Multifractality Meets Entanglement: Relation for Nonergodic Extended States. Phys. Rev. Lett. 2020, 124, 200602. [Google Scholar] [CrossRef]
- Lydzba, P.; Rigol, M.; Vidmar, L. Eigenstate Entanglement Entropy in Random Quadratic Hamiltonians. Phys. Rev. Lett. 2020, 125, 180604. [Google Scholar] [CrossRef]
- Peschel, I. Calculation of reduced density matrices from correlation functions. J. Phys. A Math. Gen. 2003, 36, L205. [Google Scholar] [CrossRef]
- Chung, M.C.; Peschel, I. Density-matrix spectra of solvable fermionic systems. Phys. Rev. B 2001, 64, 064412. [Google Scholar] [CrossRef]
- Cheong, S.A.; Henley, C.L. Many-body density matrices for free fermions. Phys. Rev. B 2004, 69, 075111. [Google Scholar] [CrossRef]
- Peschel, I.; Eisler, V. Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A 2009, 42, 504003. [Google Scholar] [CrossRef]
- Peschel, I. Entanglement in solvable many-particle models. Braz. J. Phys. 2012, 42, 267–291. [Google Scholar] [CrossRef]
- Regnault, N.; Bernevig, B.A.; Haldane, F.D.M. Topological Entanglement and Clustering of Jain Hierarchy States. Phys. Rev. Lett. 2009, 103, 016801. [Google Scholar] [CrossRef]
- Poilblanc, D. Entanglement Spectra of Quantum Heisenberg Ladders. Phys. Rev. Lett. 2010, 105, 077202. [Google Scholar] [CrossRef]
- Sterdyniak, A.; Regnault, N.; Bernevig, B.A. Extracting Excitations from Model State Entanglement. Phys. Rev. Lett. 2011, 106, 100405. [Google Scholar] [CrossRef]
- Thomale, R.; Arovas, D.P.; Bernevig, B.A. Nonlocal Order in Gapless Systems: Entanglement Spectrum in Spin Chains. Phys. Rev. Lett. 2010, 105, 116805. [Google Scholar] [CrossRef]
- Fidkowski, L. Entanglement Spectrum of Topological Insulators and Superconductors. Phys. Rev. Lett. 2010, 104, 130502. [Google Scholar] [CrossRef]
- Turner, A.M.; Zhang, Y.; Vishwanath, A. Entanglement and inversion symmetry in topological insulators. Phys. Rev. B 2010, 82, 241102. [Google Scholar] [CrossRef]
- Hughes, T.L.; Prodan, E.; Bernevig, B.A. Inversion-symmetric topological insulators. Phys. Rev. B 2011, 83, 245132. [Google Scholar] [CrossRef]
- Alexandradinata, A.; Hughes, T.L.; Bernevig, B.A. Trace index and spectral flow in the entanglement spectrum of topological insulators. Phys. Rev. B 2011, 84, 195103. [Google Scholar] [CrossRef]
- Pichler, H.; Zhu, G.; Seif, A.; Zoller, P.; Hafezi, M. Measurement Protocol for the Entanglement Spectrum of Cold Atoms. Phys. Rev. X 2016, 6, 041033. [Google Scholar] [CrossRef]
- Pollmann, F.; Turner, A.M.; Berg, E.; Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 2010, 81, 064439. [Google Scholar] [CrossRef]
- Fidkowski, L.; Kitaev, A. Effects of interactions on the topological classification of free fermion systems. Phys. Rev. B 2010, 81, 134509. [Google Scholar] [CrossRef]
- Turner, A.M.; Pollmann, F.; Berg, E. Topological phases of one-dimensional fermions: An entanglement point of view. Phys. Rev. B 2011, 83, 075102. [Google Scholar] [CrossRef]
- Eisert, J.; Cramer, M.; Plenio, M.B. Area laws for the entanglement entropy. Rev. Mod. Phys. 2010, 82, 277. [Google Scholar] [CrossRef]
- Wolf, M.M.; Verstraete, F.; Hastings, M.B.; Cirac, J.I. Area Laws in Quantum Systems: Mutual Information and Correlations. Phys. Rev. Lett. 2008, 100, 070502. [Google Scholar] [CrossRef]
- Jiang, H.C.; Wang, Z.; Balents, L. Identifying topological order by entanglement entropy. Nature Phys. 2012, 8, 902. [Google Scholar] [CrossRef]
- Kitaev, A.; Preskill, J. Topological Entanglement Entropy. Phys. Rev. Lett. 2006, 96, 110404. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Wen, X.G. Detecting Topological Order in a Ground State Wave Function. Phys. Rev. Lett. 2006, 96, 110405. [Google Scholar] [CrossRef]
- Ali, N.B.; Ding, L.; Haas, S. Topological superconductivity induced by a triple-q magnetic structure. Phys. Rev. B 2010, 80, 180504. [Google Scholar]
- Nussinov, Z.; Ortiz, G. A symmetry principle for topological quantum order. Ann. Phys. 2009, 324, 977. [Google Scholar] [CrossRef]
- Ryu, S.; Hatsugai, Y. Entanglement entropy and the Berry phase in the solid state. Phys. Rev. B 2006, 73, 245115. [Google Scholar] [CrossRef]
- Furukawa, S.; Misguich, G. Topological entanglement entropy in the quantum dimer model on the triangular lattice. Phys. Rev. B 2007, 75, 214407. [Google Scholar] [CrossRef]
- Depenbrock, S.; McCulloch, I.P.; Schollwöck, U. Nature of the Spin-Liquid Ground State of the S=1/2 Heisenberg Model on the Kagome Lattice. Phys. Rev. Lett. 2012, 109, 067201. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.C.; Yao, H.; Balents, L. Spin liquid ground state of the spin-1/2 square J1-J2 Heisenberg model. Phys. Rev. B 2012, 86, 024424. [Google Scholar] [CrossRef]
- Kallin, A.B.; Hastings, M.B.; Melke, R.G.; Singh, R.R.P. Anomalies in the entanglement properties of the square-lattice Heisenberg model. Phys. Rev. B 2011, 84, 165134. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.-X.; Wen, X.-G. Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations. Phys. Rev. B 2011, 84, 235141. [Google Scholar] [CrossRef]
- Lu, Y.-M.; Vishwanath, A. Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach. Phys. Rev. B 2012, 86, 125119. [Google Scholar] [CrossRef]
- Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 1995, 44, 405. [Google Scholar] [CrossRef]
- Chen, X.; Gu, Z.-C.; Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 2010, 82, 155138. [Google Scholar] [CrossRef]
- Read, N.; Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 2000, 61, 10267. [Google Scholar] [CrossRef]
- Yao, H.; Qi, X.-L. Entanglement Entropy and Entanglement Spectrum of the Kitaev Model. Phys. Rev. Lett. 2010, 105, 080501. [Google Scholar] [CrossRef]
- Oliveira, T.P.; Ribeiro, P.; Sacramento, P.D. Entanglement entropy and entanglement spectrum of triplet topological superconductors. J. Phys. Cond. Matt. 2014, 26, 425702. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Fujimoto, S. Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics. Phys. Rev. B 2009, 79, 094504. [Google Scholar] [CrossRef]
- Zhang, Y.; Grover, T.; Vishwanath, A. Topological entanglement entropy of Z2 spin liquids and lattice Laughlin states. Phys. Rev. B 2011, 84, 075128. [Google Scholar] [CrossRef]
- Sacramento, P.D.; Araújo, M.A.N.; Castro, E.V. Hall conductivity as bulk signature of topological transitions in superconductors. Europhys. Lett. 2014, 105, 37011. [Google Scholar] [CrossRef]
- Emery, V.J.; Kivelson, S. Mapping of the two-channel Kondo problem to a resonant-level model. Phys. Rev. B 1992, 46, 10812. [Google Scholar] [CrossRef]
- Tsvelik, A.M. The thermodynamics of multichannel Kondo problem. J. Phys. C 1985, 18, 159. [Google Scholar] [CrossRef]
- Desgranges, H.U. Thermodynamics of the n-channel Kondo problem (numerical solution). J. Phys. C 1985, 18, 5481. [Google Scholar] [CrossRef]
- Schlottmann, P.; Sacramento, P.D. Multichannel Kondo problem and some applications. Adv. Phys. 1993, 42, 641. [Google Scholar] [CrossRef]
- Carr, L. Understanding Quantum Phase Transitions; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wen, X.G. Quantum Field Theory of Many-Body Systems; Oxford University: New York, NY, USA, 2004. [Google Scholar]
- Gu, S.-J.; Yu, W.C.; Lin, H.-Q. Construct order parameters from the reduced density matrix spectra. Ann. Phys. 2013, 336, 118. [Google Scholar] [CrossRef]
- Yu, W.C.; Gu, S.-J.; Lin, H.-Q. Density matrix spectra and order parameters in the 1D extended Hubbard model. Eur. Phys. J. 2016, 89, 212. [Google Scholar] [CrossRef]
- Furukawa, S.; Misguich, G.; Oshikawa, M. Systematic Derivation of Order Parameters through Reduced Density Matrices. Phys. Rev. Lett. 2006, 96, 047211. [Google Scholar] [CrossRef] [PubMed]
- Henley, C.L.; Changlani, H.J. Density-matrix based numerical methods for discovering order and correlations in interacting systems. J. Stat. Mech. 2014, P11002. [Google Scholar] [CrossRef]
- Cheong, S.-A.; Henley, C.L. Correlation density matrix: An unbiased analysis of exact diagonalizations. Phys. Rev. B 2009, 79, 212402. [Google Scholar] [CrossRef]
- Wakatsuki, R.; Ezawa, M.; Tanaka, Y.; Nagaosa, N. Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor. Phys. Rev. B 2014, 90, 014505. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, A.J. Solitons in Polyacetylene. Phys. Rev. Lett. 1979, 42, 1698. [Google Scholar] [CrossRef]
- Kitaev, A.Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 2001, 44, 131. [Google Scholar] [CrossRef]
- Yu, W.C.; Sacramento, P.D.; Li, Y.C.; Angelakis, D.G.; Lin, H.-Q. Detection of topological phases by quasilocal operators. Phys. Rev. B 2019, 99, 115113. [Google Scholar] [CrossRef]
- Yu, W.C.; Cheng, C.; Sacramento, P.D. Energy bonds as correlators for long-range symmetry-protected topological models and models with long-range topological order. Phys. Rev. B 2020, 101, 245131. [Google Scholar] [CrossRef]
- Magnifico, G.; Vodola, D.; Ercolessi, E.; Kumar, S.P.; Müller, M.; Bermudez, A. Symmetry-protected topological phases in lattice gauge theories: Topological QED2. Phys. Rev. D 2019, 99, 014503. [Google Scholar] [CrossRef]
- You, Y.-Z.; Bi, Z.; Rasmussen, A.; Slagle, K.; Xu, C. Wave Function and Strange Correlator of Short-Range Entangled States. Phys. Rev. Lett. 2014, 112, 247202. [Google Scholar] [CrossRef]
- Wu, H.-Q.; He, Y.-Y.; You, Y.-Z.; Xu, C.; Meng, Z.Y.; Lu, Z.-Y. Quantum Monte Carlo study of strange correlator in interacting topological insulators. Phys. Rev. B 2015, 92, 165123. [Google Scholar] [CrossRef]
- Vanhove, R.; Bal, M.; Williamson, D.J.; Bultinck, N.; Haegeman, J.; Verstraete, F. Mapping Topological to Conformal Field Theories through strange Correlators. Phys. Rev. Lett. 2018, 121, 177203. [Google Scholar] [CrossRef]
- Lepori, L.; Burrello, M.; Trombettoni, A.; Paganelli, S. Strange correlators for topological quantum systems from bulk-boundary correspondence. arXiv 2022, arXiv:2209.04283. [Google Scholar]
- Zhang, J.-H.; Qi, Y.; Bi, Z. Strange Correlation Function for Average Symmetry-Protected Topological Phases. arXiv 2022, arXiv:2210.17485. [Google Scholar]
- Cobanera, E.; Ortiz, G.; Nussinov, Z. Holographic symmetries and generalized order parameters for topological matter. Phys. Rev. B 2013, 87, 041105. [Google Scholar] [CrossRef]
- Cozzini, M.; Ionicioiu, R.; Zanardi, P. Quantum fidelity and quantum phase transitions in matrix product states. Phys. Rev. B 2007, 76, 104420. [Google Scholar] [CrossRef]
- Carollo, A.C.M.; Pachos, J.K. Geometric Phases and Criticality in Spin-Chain Systems. Phys. Rev. Lett. 2005, 95, 157203. [Google Scholar] [CrossRef]
- Zhu, S.-L. Scaling of Geometric Phases Close to the Quantum Phase Transition in the XY Spin Chain. Phys. Rev. Lett. 2006, 96, 077206. [Google Scholar] [CrossRef]
- Hamma, A. Berry Phases and Quantum Phase Transitions. arXiv 2006, arXiv:quant-ph/0602091v1. [Google Scholar]
- Reuter, M.E.; Hartmann, M.J.; Plenio, M.B. Geometric Phases and Critical Phenomena in a Chain of Interacting Spins. Proc. Roy. Soc. Lond. A 2007, 463, 1271. [Google Scholar] [CrossRef]
- Okamoto, K.; Nomura, K. Fluid-dimer critical point in S=1/2 antiferromagnetic Heisenberg chain with next nearest neighbor interactions. Phys. Lett. A 1992, 169, 433. [Google Scholar] [CrossRef]
- Gu, S.-J.; Lin, H.-Q. Scaling dimension of fidelity susceptibility in quantum phase transitions. Europhys. Lett. 2009, 87, 10003. [Google Scholar] [CrossRef]
- Sirker, J.; Maiti, M.; Konstantinidis, N.P.; Sedlmayr, N. Boundary fidelity and entanglement in the symmetry protected topological phase of the SSH model. J. Stat. Mech. 2014, 2014, P10032. [Google Scholar] [CrossRef]
- Fuchs, C.A. Distinguishability and Accessible Information in Quantum Theory. Ph.D. Thesis, University of New Mexico, Albuquerque, NM, USA, 1995. [Google Scholar]
- Uhlmann, A. Parallel transport and “quantum holonomy” along density operators. Rep. Math. Phys. 1986, 24, 229. [Google Scholar] [CrossRef]
- Viyuela, O.; Rivas, A.; Martin-Delgado, M.A. Uhlmann Phase as a Topological Measure for One-Dimensional Fermion Systems. Phys. Rev. Lett. 2014, 112, 130401. [Google Scholar] [CrossRef]
- Huang, Z.; Arovas, D.P. Topological Indices for Open and Thermal Systems Via Uhlmann’s Phase. Phys. Rev. Lett. 2014, 113, 076407. [Google Scholar] [CrossRef] [PubMed]
- Viyuela, O.; Rivas, A.; Martin-Delgado, M.A. Two-Dimensional Density-Matrix Topological Fermionic Phases: Topological Uhlmann Numbers. Phys. Rev. Lett. 2014, 113, 076408. [Google Scholar] [CrossRef] [PubMed]
- Mera, B.; Vlachou, C.; Paunković, N.; Vieira, V.R. Uhlmann Connection in Fermionic Systems Undergoing Phase Transitions. Phys. Rev. Lett. 2017, 119, 015702. [Google Scholar] [CrossRef]
- Amin, S.T.; Mera, B.; Vlachou, C.; Paunković, N.; Vieira, V.R. Fidelity and Uhlmann connection analysis of topological phase transitions in two dimensions. Phys. Rev. B 2018, 98, 245141. [Google Scholar] [CrossRef]
- Silva, H.; Mera, B.; Paunković, N. Interferometric geometry from symmetry-broken Uhlmann gauge group with applications to topological phase transitions. Phys. Rev. B 2021, 103, 085127. [Google Scholar] [CrossRef]
- Hou, X.-Y.; Wang, X.; Zhou, Z.; Guo, H.; Chien, C.-C. Geometric phases of mixed quantum states: A comparative study of interferometric and Uhlmann phases. arXiv 2023, arXiv:2301.01210. [Google Scholar] [CrossRef]
- Ma, J.; Xu, L.; Xiong, H.-N.; Wang, X. Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin-Meshkov-Glick model. Phys. Rev. E 2008, 78, 051126. [Google Scholar] [CrossRef]
- Kwok, H.-M.; Hoi, C.-S.; Gu, S.-J. Partial-state fidelity and quantum phase transitions induced by continuous level crossing. Phys. Rev. A 2008, 78, 062302. [Google Scholar] [CrossRef]
- Son, W.; Amico, L.; Plastina, F.; Vedral, V. Quantum instability and edge entanglement in the quasi-long-range order. Phys. Rev. A 2009, 79, 022302. [Google Scholar] [CrossRef]
- Xiong, H.-N.; Ma, J.; Sun, Z.; Wang, X. Reduced-fidelity approach for quantum phase transitions in spin-1/2 dimerized Heisenberg chains. Phys. Rev. B 2009, 79, 174425. [Google Scholar] [CrossRef]
- Sacramento, P.D.; Paunković, N.; Vieira, V.R. Fidelity spectrum and phase transitions of quantum systems. Phys. Rev. A 2011, 84, 062318. [Google Scholar] [CrossRef]
- Gu, S.-J.; Yu, W.-C.; Lin, H.-Q. A spin chain with spiral orders: Perspectives of quantum information and mechanical response. Int. J. Mod. Phys. B 2013, 27, 1350106. [Google Scholar] [CrossRef]
- Oliveira, T.P.; Sacramento, P.D. Entanglement modes and topological phase transitions in superconductors. Phys. Rev. B 2014, 89, 094512. [Google Scholar] [CrossRef]
- Sacramento, P.D.; Mera, B.; Paunković, N. Vanishing k-space fidelity and phase diagram’s bulk–edge–bulk correspondence. Ann. Phys. 2019, 401, 40. [Google Scholar] [CrossRef]
- Calabrese, P.; Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 2005, 2005, P04010. [Google Scholar] [CrossRef]
- Lieb, E.H.; Robinson, D.W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 1972, 28, 251. [Google Scholar] [CrossRef]
- Rigol, M.; Dunjko, V.; Yurovsky, V.; Olshanii, M. Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons. Phys. Rev. Lett. 2007, 98, 050405. [Google Scholar] [CrossRef]
- Cassidy, A.C.; Clark, C.W.; Rigol, M. Generalized Thermalization in an Integrable Lattice System. Phys. Rev. Lett. 2011, 106, 140405. [Google Scholar] [CrossRef]
- Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008, 452, 854. [Google Scholar] [CrossRef]
- Fagotti, M.; Essler, F.H.L. Reduced density matrix after a quantum quench. Phys. Rev. B 2013, 87, 245107. [Google Scholar] [CrossRef]
- Alba, V.; Calabrese, P. Entanglement dynamics after quantum quenches in generic integrable systems. SciPost Phys. 2018, 4, 017. [Google Scholar] [CrossRef]
- Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through entanglement in an isolated many-body system. Science 2016, 353, 794. [Google Scholar] [CrossRef]
- Daley, A.J.; Pichler, H.; Schachenmayer, J.; Zoller, P. Measuring Entanglement Growth in Quench Dynamics of Bosons in an Optical Lattice. Phys. Rev. Lett. 2012, 109, 020505. [Google Scholar] [CrossRef]
- Islam, R.; Ma, R.; Preiss, P.M.; Eric Tai, M.; Lukin, A.; Rispoli, M.; Greiner, M. Measuring entanglement entropy in a quantum many-body system. Nature 2015, 528, 77. [Google Scholar] [CrossRef]
- Lukin, A.; Rispoli, M.; Schittko, R.; Eric Tai, M.; Kaufman, A.M.; Choi, S.; Khemani, V.; Léonard, J.; Greiner, M. Probing entanglement in a many-body-localized system. Science 2019, 364, 256. [Google Scholar] [CrossRef]
- Torlai, G.; Tagliacozzo, L.; de Chiara, G. Dynamics of the entanglement spectrum in spin chains. J. Stat. Mech. 2014, P06001. [Google Scholar] [CrossRef]
- Canovi, E.; Ercolessi, E.; Naldesi, P.; Taddia, L.; Vodola, D. Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition. Phys. Rev. B 2014, 89, 104303. [Google Scholar] [CrossRef]
- Gong, Z.; Ueda, M. Topological Entanglement-Spectrum Crossing in Quench Dynamics. Phys. Rev. Lett. 2018, 121, 250601. [Google Scholar] [CrossRef]
- Foster, M.S.; Dzero, M.; Gurarie, V.; Yuzbashyan, E.A. Quantum quench in a p+ip superfluid: Winding numbers and topological states far from equilibrium. Phys. Rev. B 2013, 88, 104511. [Google Scholar] [CrossRef]
- Rajak, A.; Dutta, A. Survival probability of an edge Majorana in a one-dimensional p-wave superconducting chain under sudden quenching of parameters. Phys. Rev. E 2014, 89, 042125. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, P.D. Fate of Majorana fermions and Chern numbers after a quantum quench. Phys. Rev. E 2014, 90, 032138. [Google Scholar] [CrossRef]
- Caio, M.D.; Cooper, N.R.; Bhaseen, M.J. Quantum Quenches in Chern Insulators. Phys. Rev. Lett. 2015, 115, 236403. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, P.D. Edge mode dynamics of quenched topological wires. Phys. Rev. E 2016, 93, 062117. [Google Scholar] [CrossRef]
- Rakovszky, T.; Pollmann, F.; von Keyserlingk, C.W. Sub-ballistic growth of rényi entropies due to diffusion. Phys. Rev. Lett. 2019, 122, 250602. [Google Scholar] [CrossRef] [PubMed]
- Znidaric, M. Entanglement growth in diffusive systems. Commun. Phys. 2020, 3, 100. [Google Scholar] [CrossRef]
- Rakovszky, T.; Pollmann, F.; von Keyserlingk, C.W. Entanglement growth in diffusive systems with large spin. Commun. Phys. 2021, 4, 91. [Google Scholar] [CrossRef]
- Tang, H.-K.; Marashli, M.A.; Yu, W.C. Unveiling quantum phase transitions by fidelity mapping. Phys. Rev. B 2021, 104, 075142. [Google Scholar] [CrossRef]
- Heyl, M.; Polkovnikov, A.; Kehrein, S. Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model. Phys. Rev. Lett. 2013, 110, 135704. [Google Scholar] [CrossRef] [PubMed]
- Heyl, M. Dynamical quantum phase transitions: A review. Rep. Prog. Phys. 2018, 81, 054001. [Google Scholar] [CrossRef]
- Sedlmayr, N.; Jaeger, P.; Maiti, M.; Sirker, J. Bulk-boundary correspondence for dynamical phase transitions in one-dimensional topological insulators and superconductors. Phys. Rev. B 2018, 97, 064304. [Google Scholar] [CrossRef]
- Maslowski, T.; Sedlmayr, N. Quasiperiodic dynamical quantum phase transitions in multiband topological insulators and connections with entanglement entropy and fidelity susceptibility. Phys. Rev. B 2020, 101, 014301. [Google Scholar] [CrossRef]
- Budich, J.C.; Heyl, M. Dynamical topological order parameters far from equilibrium. Phys. Rev. B 2016, 93, 085416. [Google Scholar] [CrossRef]
- Halimeh, J.C.; Trapin, D.; Van Damme, M.; Heyl, M. Local measures of dynamical quantum phase transitions. Phys. Rev. B 2021, 104, 075130. [Google Scholar] [CrossRef]
- Hagymási, I.; Hubig, C.; Legeza, Ö.; Schollwöck, U. Dynamical Topological Quantum Phase Transitions in Nonintegrable Models. Phys. Rev. Lett. 2019, 122, 250601. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Polkovnikov, A.; Dutta, A. Observing Dynamical Quantum Phase Transitions through Quasilocal String Operators. Phys. Rev. Lett 2021, 126, 200602. [Google Scholar] [CrossRef]
- Peotta, S.; Brange, F.; Deger, A.; Ojanen, T.; Flindt, C. Determination of Dynamical Quantum Phase Transitions in Strongly Correlated Many-Body Systems Using Loschmidt Cumulants. Phys. Rev. X 2021, 11, 041018. [Google Scholar] [CrossRef]
- Bhattacharya, U.; Bandyopadhyay, S.; Dutta, A. Mixed state dynamical quantum phase transitions. Phys. Rev. B 2017, 96, 180303. [Google Scholar] [CrossRef]
- Mera, B.; Vlachou, C.; Paunković, N.; Vieira, V.R.; Viyuela, O. Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics. Phys. Rev. B 2018, 97, 094110. [Google Scholar] [CrossRef]
- Sedlmayr, N.; Fleischhauer, M.; Sirker, J. Fate of dynamical phase transitions at finite temperatures and in open systems. Phys. Rev. B 2018, 97, 045147. [Google Scholar] [CrossRef]
- Lang, J.; Frank, B.; Halimeh, J.C. Dynamical Quantum Phase Transitions: A Geometric Picture. Phys. Rev. Lett. 2018, 121, 130603. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.C.; Sacramento, P.D.; Li, Y.C.; Lin, H.-Q. Correlations and dynamical quantum phase transitions in an interacting topological insulator. Phys. Rev. B 2021, 104, 085104. [Google Scholar] [CrossRef]
- Verstraete, F.; Murg, V.; Cirac, J. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 2008, 57, 143. [Google Scholar] [CrossRef]
- Haegeman, J.; Verstraete, F. Diagonalizing transfer matrices and matrix product operators: A medley of exact and computational methods. Annu. Rev. Cond. Matt. Phys. 2016, 8, 355. [Google Scholar] [CrossRef]
- Swingle, B. Entanglement renormalization and holography. Phys. Rev. D 2012, 86, 065007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacramento, P.D. Entanglement and Fidelity: Statics and Dynamics. Symmetry 2023, 15, 1055. https://doi.org/10.3390/sym15051055
Sacramento PD. Entanglement and Fidelity: Statics and Dynamics. Symmetry. 2023; 15(5):1055. https://doi.org/10.3390/sym15051055
Chicago/Turabian StyleSacramento, Pedro D. 2023. "Entanglement and Fidelity: Statics and Dynamics" Symmetry 15, no. 5: 1055. https://doi.org/10.3390/sym15051055
APA StyleSacramento, P. D. (2023). Entanglement and Fidelity: Statics and Dynamics. Symmetry, 15(5), 1055. https://doi.org/10.3390/sym15051055