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Abstract: In this article, we discuss the existence of a positive periodic solution for a first-order
nonlinear neutral differential equation with impulses on time scales. Based on the Leggett–Williams
fixed-point theorem and Krasnoselskii’s fixed-point theorem, some sufficient conditions are estab-
lished for the existence of positive periodic solution. An example is given to show the feasibility and
application of the obtained results. Since periodic solutions are solutions with symmetry characteris-
tics, the existence conditions for periodic solutions also imply symmetry.
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1. Introduction
Nonlinear neutral functional differential equations on time scales have been studied

by many authors due to their wide applications. In 2010, Wang, Li, and Fei [1] studied the
following nonlinear neutral functional differential equation with impulses on time scales:{

(x(t) + c(t)x(t− r1))
∆ = a(t)g(x(t))x(t)−∑n

i=1 λi fi(t, x(t− τi(t))), t 6= tj, t ∈ T,
x(t−j )− x(t+j ) = Ij(x(tj)), t = tj,

(1)

where j = 1, 2, · · · , q, T is a periodic time scale, a ∈ C(T,R+), c ∈ C(T, [0, 1)), τi ∈
C(T,R) and all of them are ω—periodic functions, fi ∈ C(T×R+,R+) is nondecreasing
with respect to x, and ω—periodic with respect to its first argument, g ∈ C(R+,R+) is
a bounded function, Ij ∈ C(R,R+) is a bounded function. Under c ∈ [0, 1) and other
conditions, using the Leggett–Williams fixed-point theorem, the authors obtained some
sufficient conditions for guaranteeing the existence of three positive periodic solutions to
(1). In this paper, we will extend the range of c(t) to (−∞, 1) ∪ (1,+∞) and obtain the
existence of positive periodic solutions for a first-order neutral differential equation on time
scales. Many biological models, physical models, and economic models are described by
first-order neutral differential equations. Researchers have conducted significant research
on the above equations for a long time. From the continuation theorem of the coincidence
degree principle, Sella [2] studied a first-order neutral functional differential equation.
Using the Leggett–Williams fixed-point theorem, Wang and Dai [3] considered the ex-
istence of three periodic solutions of nonlinear neutral functional differential equations.
Luo et al. [4] investigated the existence of positive periodic solutions for the first-order
neutral differential equation with time-varying delays. In a very recent paper, Candan [5]
dealt with the existence of positive periodic solutions for the first-order neutral differential
equation by using Krasnoselskii’s fixed-point theorem.

In 1988, Hilger [6] first introduced the theory of time scales for unifying continuous and
discrete analysis. After that, the study for differential equations on time scales has attracted
many researchers’ attention, resulting in significant research results. In [7], Ardjouni and
Djoudi studied the existence of periodic solutions for nonlinear neutral dynamic equations
with variable delay on a time scale by using a large contraction theorem. Based on pinning

Symmetry 2023, 15, 1072. https://doi.org/10.3390/sym15051072 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15051072
https://doi.org/10.3390/sym15051072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4484-8789
https://doi.org/10.3390/sym15051072
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15051072?type=check_update&version=1


Symmetry 2023, 15, 1072 2 of 11

impulsive control, finite-time synchronization of nonlinear complex dynamical networks
on time scales was obtained in [8]. Using matrix-valued Lyapunov functions, Babenko [9]
considered the consensus tracking investigation for multi-agent systems on the time scale.
Liu and Zhang [10] dealt with uniqueness and stability results for functional differential
equations on time scales which greatly extend the research range of dynamic equations.
For more results about dynamic equations, see [11–18].

Pulse exists widely in nature, and its research is of great significance to reveal the
essence of the system and control the behavior of the system. Therefore, the study of
impulsive differential equations has important practical value. For important research
on impulsive differential equations or systems, Akgl and Zafer [19] obtained prescribed
asymptotic behavior of second-order impulsive differential equations via principal and
nonprincipal solutions; principal and nonprincipal solutions of impulsive differential
equations were studied in [20]; Akgöl and Zafer [21] obtained asymptotic integration of
second-order impulsive differential equations; the authors of [22] investigated multiplicity
results for second order impulsive differential equations by variational methods. For more
details about impulsive differential equations, see [23–27].

This paper is mainly motivated by paper [1]. In particular, we will study the following
first-order nonlinear neutral differential equation with impulses on time scales:{

(x(t)− c(t)x(t− τ0))
∆ = a(t)g(x(t))x(t)− λ f (t, x(t− τ(t))), t 6= tj, t ∈ T,

x(t−j )− x(t+j ) = Ij(x(tj)), t = tj,
(2)

where j = 1, 2, · · · , q, T is a periodic time scale, a ∈ C(T,R+), c ∈ C(T, (−∞, 1) ∪
(1,+∞)), τ ∈ C(T,R) and all of them are ω—periodic functions, τ0 is a constant, λ
is a parameter, f ∈ C(T×R+,R+) is nondecreasing with respect to x, and ω—periodic
with respect to its first argument, g ∈ C(R+,R+) is a bounded function, Ij ∈ C(R,R+) is a
bounded function, x(t−j ) and x(t+j ) represent the left and right limits of x(tj), respectively,
and there exists a positive constant p such that tj+p = t + ω and Ij+p(x(tj+p)) = Ij(x(tj)).
Since T is a ω—periodic time scale, we let {[0, ω] ∩ tj; j ∈ Z+} = {t1, t2, · · · , tq}.

Remark 1. We find that the number of delays in (1) has no essential effect on the conclusions, so
Equation (2) contains only one variable delay.

Equation (2) is a neutral-type single population model with impulses on time scales,
where x(t) is population density at time t, g represents the relationship between the intrinsic
growth rate and population density of a population, and f indicates that population
growth is related to population density at all times in the past. The existing conclusions
mostly use the fixed-point theorem to obtain the existence of positive periodic solutions
for Equation (2). However, due to the lack of utilizing the properties of neutral operators,
the application scope of the obtained conclusions is relatively small. This article combines
the properties of neutral-type operators with fixed-point theorems to obtain the existence
results of positive solutions, which greatly generalize the existing results of [1–3].

We list the main contributions of this paper as follows:

(1) We extend the range of positive periodic solutions for Equation (2), and when |c| > 1,
there is also a positive periodic solution.

(2) This article provides a method for studying an impulsive differential equation on time
scales using the properties of neutral-type operators, which provides a new approach
for studying equations of the same type.

The following sections are organized as follows: In Section 2, some preliminaries are
given. Section 3 gives the existence for three positive periodic solutions of Equation (2).
Section 4 gives the existence of at least one positive periodic solution of Equation (2). In
Section 5, an example is given to show the feasibility of our results. Finally, Section 6
concludes the paper.
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2. Preliminaries

A time scale T is a closed subset of R. For t ∈ T, the forward jump σ and backward
jump operator ρ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

The point t ∈ T is said to left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, right-scattered if σ(t) > t. If T has a right-scattered
minimum m, set Tk := T < {m}, otherwise Tk := T. The forward graininess µ : T→ [0, ∞)
is defined by µ(t) = σ(t)− t. A function is said to be left-dense continuous provided it is
continuous at a left-dense point in T and its right-side limit exists at right-dense point in T.
We give the following notations: [a, b]T = {t ∈ T, a ≤ t ≤ b}, the intervals [a, b)T, (a, b]T
and [a, b]T are similar to the above notation.

Definition 1 ([28]). A function p : T→ R is said to be regressive provided 1 + µ(t)p(t) 6= 0 for
all t ∈ Tk, where µ(t) is the graininess function. The set of all regressive rd-continuous functions
f : T→ R is denoted byR whereas the setR+ is given by { f ∈ R : 1 + µ(t) f (t) > 0 for all t ∈
T}. Let p ∈ R. The set of all right-dense continuous functions on T is defined by Crd(T,R).

Definition 2 ([28]). Let g : T→ R be a function and t ∈ Tk. Then, define g∆(t) to be the number
(provided it exists) with the property that given any ε > 0; there exists a neighborhood U of t
such that

|g(σ(t))− g(s)− g∆(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U. g∆ is called to be the Delta derivative of g at t.

Definition 3 ([29]). A time scale T is periodic if there exists m > 0 such that if t ∈ T, then
t±m ∈ T. For T = R, the smallest positive m is called the period of the time scale.

Definition 4 ([29]). Let T 6= R be a periodic time scale with the period m. The function g : T→ R
is periodic with period ω if there exists a natural number n such that ω = nm, g(t±ω) = g(t)
for all t ∈ T. When T = R, g is a periodic function if ω is the smallest positive number such that
g(t±ω) = g(t).

Let E be a Banach space and P be a a cone in E. Denote ρ : P → [0, ∞). If ρ is
continuous and

ρ(tx + (1− t)y) ≥ tρ(x) + (1− t)ρ(y) for all x, y ∈ E and t ∈ [0, 1],

we call ρ a nonnegative continuous concave functional on P. Given numbers α1 and α4
with 0 < α1 < α4, ρ is a nonnegative continuous concave functional on P. Define the
following sets:

Pα1 = {x ∈ P : ||x|| < α1}, Pα1 = {x ∈ P : ||x|| ≤ α1}, P(ρ, α1, α4) = {x ∈ P : α1 ≤ ρ(x), ||x|| ≤ α4}.

Lemma 1 ([30]). (Leggett–Williams fixed-point theorem) Let T : Pα4 → Pα4 be completely contin-
uous and ρ is a nonnegative continuous concave functional on P with ρ(x) ≤ ||x|| for x ∈ Pα4 .
Assume that there exist constants α1, α2, α3, α4 with 0 < α1 < α2 < α3 ≤ α4 such that
(1) {x ∈ P(ρ, α2, α3) : ρ(x) > α2} 6= ∅ and ρ(Tx) > α2 for x ∈ P(ρ, α2, α3);
(2) ||Tx|| < α1 for x ∈ Pα1 ;
(3) ρ(Tx) > α2 for x ∈ P(ρ, α2, α4) with ||Tx|| > α3. Then, T has at least three fixed points x1, x2,
and x3, satisfying

x1 ∈ Pα1 , x2 ∈ {x ∈ P(ρ, α2, α3) : ρ(x) > α2}, x3 ∈ Pα4 \
(

P(ρ, α2, α3) ∪ Pα1

)
.
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Lemma 2 ([31]). (Krasnoselskii’s fixed-point theorem) Let B be a Banach space and K be a cone in
B. Assume that Ω1 and Ω2 are open bounded subsets of B with 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2 \Ω1)→ K

be a completely continuous operator such that either

||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω1 and ||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω2,

or
||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω1 and ||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω2.

Then, T has a fixed point in K ∩ (Ω̄2 \Ω1).

3. Three Positive Periodic Solutions for Equation (2)

Throughout this paper, we need the following assumptions:
(H1) a ∈ C(T,R+), c ∈ C(T, (−∞, 1) ∪ (1,+∞)), τ ∈ C(T,R) all of which are ω—periodic
functions;
(H2) f ∈ C(T×R+,R+) is nondecreasing with respect to x, ω—periodic with respect to its
first argument;
(H3) g ∈ C(R+,R+) is a bounded function with 0 < l ≤ g(x) ≤ L, Ij ∈ C(R,R+) is a
bounded function with ||Ij|| ≤ dj, j = 1, 2, · · · , q, where l, L, and dj are given constants.

Let
PC(T) = {x : x|(tj ,tj+1)T

, x(t+j ) = x(tj), j = 1, 2, · · · , q}.

Let
E = {x : x ∈ PC(T), x(t) = x(t + ω)}

with the norm
||x|| = sup

t∈[0,ω]T,x∈E
|x(t)|,

then E is a Banach space. Let A : E→ E be defined by

(Ax)(t) = x(t)− c(t)x(t− τ0).

Lemma 3. If |c(t)| 6= 1, then operator A has continuous inverse A−1 on E, satisfying

(1)

[A−1 f ](t) =


f (t) +

∞
∑

j=1

j
∏
i=1

c(t− (i− 1)τ0) f (t− jτ0), cM < 1, ∀ f ∈ E,

− f (t+σ)
c(t+τ0)

−
∞
∑

j=1

j+1
∏
i=1

1
c(t+iτ0)

f (t + jτ0 + τ0), cm > 1, ∀ f ∈ E,

(2)

||A−1 f || ≤
{

1
1−cM || f ||, cM < 1, ∀ f ∈ E,

1
cm−1 || f ||, cm > 1, ∀ f ∈ E,

where cM = maxt∈[0,ω]T
|c(t)|, cm = mint∈[0,ω]T

|c(t)|.

Proof. The proof is similar to the proof of Lemma 2.1 in [32]; we omit it.

Remark 2. Let Φ : E→ E be defined by

(Φx)(t) = x(t) + c(t)x(t− τ0).
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In [1], the authors obtained the following results:
If 0 ≤ c(t) < 1, then Φ has a bounded inverse φ−1 on E, and for all x ∈ E

(Φ−1x)(t) = ∑
j≥0

∏
0≤i≤j−1

(−1)kc(t− iτ0)x(t− jτ0)

and ||Φx|| ≤ ||x||
1−cM . Obviously, Lemma 3 greatly extends the results of [1].

From Lemma 3, and letting (Ax)(t) = u(t), Equation (2) can be rewritten by{
u∆(t) = a(t)g((A−1u)(t))(A−1u)(t)− λ f (t, (A−1u)(t− τ(t))), t 6= tj, t ∈ T,
(A−1u)(t−j )− (A−1u)(t+j ) = Ij((A−1u)(tj)), t = tj.

(3)

Using (A−1u)(t) = u(t) + c(t)(A−1u)(t− σ) and (3), we have{
u∆(t) = a(t)g((A−1u)(t))u(t)− a(t)H(u(t))− λ f (t, (A−1u)(t− τ(t))), t 6= tj, t ∈ T,
u(t−j )− u(t+j ) = (AIj A−1u)(tj)), t = tj,

(4)

where H(u(t)) = −g((A−1u)(t))c(t)(A−1u)(t− σ). Define a cone in E by

P = {u ∈ E : u(t) ≥ k||u||}, (5)

where k ∈ (ϑ, rL(1−rl)
1−rL ], ϑ > max{ cM

1−cM , c̃
(cm)2−cm , L(cM)2

lcm(1−cM)
, L(cM)2

lcm((cm)2−cm)
}. The range of k is

based on (6)–(9) and Theorem 3.1 of [1].

Lemma 4. Assume that (H1)–(H3) hold. For u ∈ P, if cM < 1 and c(t) < 0, or cm > 1 and
−c̃ ≤ c(t) ≤ −cm, we have

γ1||u|| ≤ (A−1u)(t) ≤ γ2||u||

and
γ3||u|| ≤ H(u(t)) ≤ LcMγ2||u||,

where

γ1 = min
{

k− cM

1− cM ,
k
c̃
− 1

(cm)2 − cm

}
, γ2 = max

{
1

1− cM ,
1

cm − 1

}
,

γ3 = min
{

lcmk− L(cM)2

1− cM ,
lcmk
cM − LcM

(cm)2 − cm

}
,

c̃ > 0 is a constant.

Proof. If cM < 1, for u ∈ P, by Lemma 3 we have

(A−1u)(t) = u(t) +
∞

∑
j=1

j

∏
i=1

c(t− (i− 1)τ0)u(t− jτ0)

≥ k||u|| −
∞

∑
j=1

(cM)j||u||

=

(
k− cM

1− cM

)
||u||.

(6)
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If cm > 1 and −c̃ ≤ c(t) ≤ −cm, for u ∈ P, by Lemma 3 we have

(A−1u)(t) = −u(t + τ0)

c(t + τ0)
−

∞

∑
j=1

j+1

∏
i=1

1
c(t + iτ0)

u(t + jτ0 + τ0)

≥ k
c̃
||u|| −

∞

∑
j=1

(
1

cm

)j+1

||u||

=

(
k
c̃
− 1

(cm)2 − cm

)
||u||.

(7)

From (6) and (7), we have
(A−1u)(t) ≥ γ1||u||.

On the other hand, again using Lemma 3, we have

(A−1u) ≤ max{ 1
1− cM ,

1
cm − 1

}||u|| = γ2||u||.

In view of the definition of H(u(t)), we have

H(u(t)) = −g((A−1u)(t))c(t)(A−1u)(t− τ0)

≤ LcM max{ 1
1− cM ,

1
cm − 1

}||u||

= LcMγ2||u||.

If cM < 1 and c(t) < 0, for u ∈ P, using Lemma 3, we have

H(u(t)) = −g((A−1u)(t))c(t)(A−1u)(t− τ0)

= g((A−1u)(t))
(
− c(t)u(t)− c(t)

∞

∑
j=1

j

∏
i=1

c(t− (i− 1)τ0)u(t− jτ0)

)

≥ lcmk|||u|| − LcM
∞

∑
j=1

(cM)j||u||

=

(
lcmk− L(cM)2

1− cM

)
||u||.

(8)

If cm > 1 and −c̃ ≤ c(t) ≤ −cm, for u ∈ P, by Lemma 3 we have

H(u(t)) = −g((A−1u)(t))c(t)(A−1u)(t− τ0)

= g((A−1u)(t))
(

c(t)u(t + τ0)

c(t + τ0)
+ c(t)

∞

∑
j=1

j+1

∏
i=1

1
c(t + iτ0)

u(t + jτ0 + τ0)

)

≥ lcmk
cM |||u|| − LcM

∞

∑
j=1

(
1

cm

)j+1

||u||

=

(
lcmk
cM − LcM

(cm)2 − cm

)
||u||.

(9)

From (8) and (9), we have
H(u(t)) ≥ γ3||u||.

The proof is complete.
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Define the operator T : P→ E by

(Tu)(t) =
∫ t+ω

t
G(t, s)

(
a(s)H(u(s)) + λ f (s, (A−1u)(s− τ(s)))

)
ds

+ ∑
j:tj∈[t,t+ω]T

G(t, tj)eag(A−1u)(σ(tj), tj)(AIj A−1u)(tj)),
(10)

where

G(t, s) =
eag(A−1u)(t, σ(s))

1− eag(A−1u)(0, ω)
, t ∈ T, s ∈ [t, t + ω]T.

Denote r = ea(0, ω). Obviously

rL

1− rL ≤ G(t, s) ≤ 1
1− rl . (11)

Remark 3. In (4), estimates of u(t) and H(u(t)) are crucial for obtaining the existence of positive
periodic solutions. Our results greatly extend the corresponding ones of [1].

The proof of Lemmas 5–7 is similar to the proof of Lemmas 2.8–2.10 of [1]; we omit it.

Lemma 5. u is an ω—periodic solution of Equtaion (4) if and only if u is a fixed point of the
operator T.

Lemma 6. Assume that (H1)–(H3) hold, then TP ⊂ P, and T : P→ P is compact and continuous.

Lemma 7. Assume that (H1)–(H3) hold and cM < 1 and c(t) < 0, or cm > 1 and−c̃ ≤ c(t) ≤ −cm,
then u is a positive fixed point of T in P if and only if (A−1u)(t) is a positive ω—periodic solution
of Equation (2).

Theorem 1. Assume that (H1)–(H3) hold and cM < 1 and c(t) < 0, or cm > 1 and−c̃ ≤ c(t) ≤ −cm.
Furthermore, suppose the following conditions hold:
(H4) α0 = (1− cM)(1− rl)−ωaMLcM − (1− cM)∑

q
j=1 dj > 0;

(H5) There exist positive constants α1, α2, and α4 with 0 < α1 < α2 < α4 such that

supt∈[0,ω]T
f (t, α1

1−cM )
α1

1−cM α0
<

supt∈[0,ω]T
f (t, α4

1−cM )
α4

1−cM α0
<

inft∈[0,ω]T
f (t, γ1α2)

γ1α2α0
,

where α0 = 1−rL

γ1rL − ωamlcm. Then, for λ ∈ (λ1, λ2], Equation (2) has at least three positive
ω—periodic solutions, where

λ1 =
γ1α2α0

ω inft∈[0,ω]T
f (t, γ1α2)

, λ2 =

α4
1−cM α0

ω supt∈[0,ω]T
f (t, α4

1−cM )
.

Proof. The proof of Theorem 1 is similar to the proof of Theorem 3.1 in [1]. Thus, we omit
its proof.

According to Corollary 3.1 of [1], we have the following corollary.

Corollary 1. Assume that (H1)–(H4) hold and cM < 1 and c(t) < 0, or cm > 1 and−c̃ ≤ c(t) ≤ −cm.
Furthermore, suppose the following conditions hold:

lim
u→∞

supt∈[0,ω]T
f (t, u)

u
= 0
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and

lim
u→0

inft∈[0,ω]T
f (t, u)

u
= 0.

Equation (2) has at least three positive ω—periodic solutions.

4. One Positive Periodic Solution for Equation (2)

In this section, using Krasnoselskii’s fixed-point theorem, we obtain that Equation (2)
has at least one positive periodic solution. In the following proof, the cone P is defined by
(5) and the mapping T is defined by (10). Due to results in Section 3, we easily obtain the
following results:
(1) The mapping T maps P into P;
(2) The mapping T : P→ P is completely continuous.

For the convenience of proof, by (11) we denote

ǧ =
rL

1− rL ≤ G(t, s) ≤ 1
1− rl = ĝ. (12)

Theorem 2. Suppose that assumptions (H1)–(H3) hold and λ > 0, cM < 1, and c(t) < 0, or
cm > 1 and −c̃ ≤ c(t) ≤ −cm. Furthermore, assume that there are positive constants R1 and R2
with R1 < R2 such that

sup
||φ||=R1,φ∈P

[ ∫ ω

0

(
a(s)H(φ(s)) + λ f (s, (A−1φ)(s− τ(s)))

)
ds

+ ∑
j:tj∈[0,ω]T

eag(A−1φ)(σ(tj), tj)(AIj A−1φ)(tj))

]
≤ R1

ĝ

(13)

and

inf
||φ||=R2,φ∈P

[ ∫ ω

0

(
a(s)H(φ(s)) + λ f (s, (A−1φ)(s− τ(s)))

)
ds

+ ∑
j:tj∈[0,ω]T

eag(A−1φ)(σ(tj), tj)(AIj A−1φ)(tj))

]
≥ R2

ǧ
,

(14)

where ǧ and ĝ are defined by (12). Then, Equation (4) has an ω—periodic solution z with R1 ≤
||z|| ≤ R2, i.e., Equation (2) has an ω—periodic solution x > 0.

Proof. Let z ∈ P and ||z|| = R1. By (13) we have

||Tz|| ≤ĝ
[ ∫ ω

0

(
a(s)H(z(s)) + λ f (s, (A−1z)(s− τ(s)))

)
ds

+ ∑
j:tj∈[0,ω]T

eag(A−1z)(σ(tj), tj)(AIj A−1z)(tj))

]
≤ R1 = ||z||,

where z ∈ P ∩ ∂Ω1, Ω1 = {z ∈ E : ||z|| < R1}. Similar to the above proof, in view of (14),
for z ∈ P and ||z|| = R2, we have

||Tz|| ≥ǧ
[ ∫ ω

0

(
a(s)H(z(s)) + λ f (s, (A−1z)(s− τ(s)))

)
ds

+ ∑
j:tj∈[0,ω]T

eag(A−1z)(σ(tj), tj)(AIj A−1z)(tj))

]
≥ R2 = ||z||,
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where z ∈ P ∩ ∂Ω2, Ω2 = {z ∈ E : ||z|| < R2}. By Lemma 2, T has a fixed point z in
P ∩ (Ω̄2 \Ω1) with R1 ≤ ||z|| ≤ R2. Hence, Equation (4) has an ω—periodic solution z
with R1 ≤ ||z|| ≤ R2, i.e., Equation (2) has an ω—periodic solution x = A−1z > 0.

Remark 4. Under simple conditions, we establish existence criteria of at least one positive periodic
solution for Equation (2) by using Krasnoselskii’s fixed-point theorem. The existence conditions of
positive periodic solution of Theorem 2 are easier to verify.

5. Example

Consider the following equation of model (2):
(x(t)− (| sin t|+ 1.5)x(t− π))∆ = 2

π

(
1
4 + 1

4 e−x(σ(t), t)
)

x(t)− λx
1
2 (t) ln(x(t− e| sin t|(σ(t), t) + 1),

t 6= tj, j = 1, 2, · · · , q, t ∈ T,
x(t−j )− x(t+j ) = Ij(x(tj)) = 27( 1

10 )
jx(tj), t = tj,

(15)

where T = R, λ > 0 is a parameter,

c(t) = (| sin t|+ 1.5), a(t) =
2
π

, g(x(t)) =
1
4
+

1
4

e−x(σ(t), t),

f (t, x(t− τ(t))) = x
1
2 (t) ln(x(t− τ(t)) + 1), τ(t) = e| sin t|(σ(t), t).

It is easy to see that ω = π, cm = 1.5, cM = 2.5, l = 0.25, L = 0.5, r = 0.136. We also have

||Ij|| ≤ 27(
1

10
)j = dj and

q

∑
j=1

dj ≤
∞

∑
j=1

dj = 3.

Hence,

(1− cM)(1− rl)−ωaMLcM − (1− cM)
q

∑
j=1

dj ≈ 1.41 > 0.

Then, all conditions of Corollary 1 hold. Hence, Equation (15) has at least three positive
π—periodic solutions.

Remark 5. When cM > 1, Equation (15) has at least three positive π—periodic solutions. However,
in [1], when cM > 1, Equation (15) does not necessarily have three positive periodic solutions.
Hence, our results extend the corresponding results belonging to [1].

6. Conclusions and Discussions

In past decades, the dynamic equation on time scales has aroused extensive interest
in researchers because it unifies discrete analysis and continuous analysis. In this paper,
the existence of a positive periodic solution for a first-order nonlinear neutral differential
equation with impulses on time scales is discussed by using a conclusion about neutral-type
operators obtained by the author in the early stage. The conclusions of this paper greatly
extend the existing conclusions.

The methods of this paper can be extended to investigate other types of dynamic
equations on time scales such as stochastic differential equations, high-order differential
equations, fractional differential equations, and so on. We hope some authors can use the
methods provided in this article to conduct more in-depth research on various types of
dynamic equations on time scales.
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18. Gulsen, T.; Yilmaz, E.; Kemaloğlu, H. Conformable Fractional Sturm–Liouville equation and some existence results on time scales.

Turk. J. Math. 2018, 42, 1348–1360. [CrossRef]
19. Akgl, S.; Zafer, A. Prescribed asymptotic behavior of second-order impulsive differential equations via principal and nonprincipal

solutions. J. Math. Anal. Appl. 2021, 503, 125311.
20. Özbekler, A.; Zafer, A. Principal and nonprincipal solutions of impulsive differential equations with applications. Appl. Math.

Comput. 2010, 216, 1158–1168. [CrossRef]
21. Akgöl, S.D.; Zafer, A. Asymptotic integration of second-order impulsive differential equations. Appl. Math. Lett. 2018, 76, 1–7.
22. Wang, H.; Lu, D.; Lu, H. Multiplicity Results for Second Order Impulsive Differential Equations via Variational Methods.

Engineering 2021, 13, 82–93.
23. Chen, H.; Li, J. Multiplicity of solutions for impulsive differential equations with Neumann boundary conditions via variational

methods. Nonlinear Anal. 2010, 73, 440–449. [CrossRef]
24. Atici, F.M.; Eloe, P.W.; Kaymakcalan, B. The quasilinearization method for boundary value problems on time scales. J. Math. Anal.

Appl. 2002, 276, 357–372.
25. Yang, T. Impulsive control. IEEE Trans. Automat. Control. 1999, 44, 1081–1083. [CrossRef]
26. Huang, T.; Yang, Q.; Luo, X. Exponential stability of impulsive neural networks with time-varying delays. Chaos Solitons Fractals

2008, 35, 770–780. [CrossRef]
27. Zhang, Y.; Sun, J. Stability of impulsive neural networks with time delays. Phys. Lett. A 2005, 348, 44–50. [CrossRef]

http://doi.org/10.1016/j.mcm.2010.06.009
http://dx.doi.org/10.1016/j.nonrwa.2007.01.014
http://dx.doi.org/10.1016/j.aml.2007.07.009
http://dx.doi.org/10.1016/j.aml.2015.08.014
http://dx.doi.org/10.1007/BF03323153
http://dx.doi.org/10.1016/j.cnsns.2011.11.026
http://dx.doi.org/10.1016/j.neucom.2017.10.033
http://dx.doi.org/10.1016/j.automatica.2018.08.003
http://dx.doi.org/10.1016/j.automatica.2016.06.001
http://dx.doi.org/10.1016/j.physrep.2021.10.006
http://dx.doi.org/10.1063/5.0073353
http://dx.doi.org/10.1016/j.jmaa.2022.126004
http://dx.doi.org/10.1080/1026190290017405
http://dx.doi.org/10.1007/s12346-021-00548-9
http://dx.doi.org/10.1016/j.jmaa.2021.125311
http://dx.doi.org/10.4236/eng.2021.132007
http://dx.doi.org/10.1016/S0022-247X(02)00466-3
http://dx.doi.org/10.1109/9.763234
http://dx.doi.org/10.1016/j.chaos.2006.05.089


Symmetry 2023, 15, 1072 11 of 11

28. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001.
[CrossRef]

29. Kaufmann, E.; Raffoul, Y. Periodic solutions for a neutral nonlinear dynamical equation on a time scale. J. Math. Anal. Appl. 2006,
319, 315–325.

30. Leggett, R.W.; Williams, L.R. Multiple positive fixed points of nonlinear operator on ordered Banach spaces. Indiana Math. J. 1979,
28, 673–688. [CrossRef]

31. Krasnoselskii, M.A. Positive Solutions of Operator Equations; Noordhoff: Gorninggen, The Netherlands, 1964. [CrossRef]
32. Du, B.; Guo, L.; Ge, W.; Lu, S. Periodic solutions for generalized Liénard neutral equation with variable parameter. Nonlinear

Anal. 2009, 70, 2387–2394.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.physleta.2005.08.030
http://dx.doi.org/10.1016/j.jmaa.2006.01.063
http://dx.doi.org/10.1512/iumj.1979.28.28046

	Introduction
	Preliminaries
	Three Positive Periodic Solutions for Equation (2)
	One Positive Periodic Solution for Equation (2)
	 Example 
	Conclusions and Discussions 
	References

