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Abstract: With the extensive applications of neural networks in several fields, research on their
security has become a hot topic. The digitization of paintings attracts our interest in the security of
artistic style classification tasks. The concept of symmetry is commonly adopted in the construction of
deep learning models. However, we find that low-quality artistic examples can fool high-performance
deep neural networks. Therefore, we propose the enhanced example diffusion model (EDM) for
low-quality paintings to symmetrically generate high-quality enhanced examples with positive style
perturbations, which improves the performance of the deep learning-based style classification model.
Our proposed framework consists of two parts: a style perturbation network that transforms the
inputs into the latent space and extracts style features to form a positive style perturbation, and a
conditional latent diffusion model that generates high-quality artistic features. High-quality artistic
images are combined with positive style perturbations to generate artistic style-enhanced examples.
We conduct extensive experiments on synthetic and real datasets, and find the effectiveness of our
approach in improving the performance of deep learning models.

Keywords: enhanced examples; diffusion model; artistic images; adversarial examples; image
restoration

1. Introduction

Artistic painting is a form of expression that uses highly summarized and refined
figurative graphics to design objective objects, which carries the connotation of human
social development and has a very important cultural and historical value. The difference
between artistic images and natural images is that artistic images have unique artistic
styles. There are many styles of artistic images, such as Van Gogh’s style, Monet’s style,
abstract expressionism, and figurative expressionism. With the digitization of paintings, it
is worthwhile to study artistic paintings as objects in the computer vision domain.

Convolutional neural networks (CNNs), as a crucial technique in computer vision,
are widely adopted in the processing of digital images, such as image classification [1,2],
image translation [3,4], and object detection [5,6]. In the field of artistic images, neural
networks can be applied to artistic image generation (e.g., style transfer) [7–9], artistic style
classification [10,11], etc. Although neural networks are successful in multiple domains,
extensive research finds that they are vulnerable to data errors, natural noise, and carefully
designed examples, which can fool high-performance deep learning models. An adversarial
attack on an image classification model is usually to add small perturbations to images so
that the target classifier makes incorrect judgments. The perturbed images are called the
adversarial examples [12]. The success of adversarial attacks brings security threats to the
real-life application of neural networks. Artistic paintings often suffer from serious quality
degradation due to inappropriate preservation conditions and the environment, such as
blurring, noise, and fading. These degradations are equivalent to adding perturbations
to high-quality artworks. Low-quality artistic images affect the visual appearance and
reduce the classification accuracy of the deep learning-based classifier which affects our
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judgments of the artistic styles at the same time. Therefore, enhancing the style of low-
quality paintings is a valuable issue that can be applied to the fields of artistic image
restoration and robustness improvement of deep learning-based style classifiers.

The enhancement of low-quality paintings is the process of generating high-quality
paintings that are visually consistent with the original low-quality images. The process
can be considered an image-to-image translation task. A typical approach is to use a deep
generative model to learn the distribution of the output image given the input. Deep gener-
ative models are excellent at learning complex distributions [13]. Generative adversarial
networks (GANs) [14,15], variational autoencoders (VAEs) [16,17], and normalizing flows
(NFs) [18,19] have produced excellent results in image generation. Moreover, diffusion
models [20,21] have attracted attention recently with their superior performance in com-
puter vision. Perona et al. [22] first used the diffusion process to smooth images and detect
edges. Since Ho et al. [20] proposed denoising diffusion probabilistic models (DDPM),
which we will call the “diffusion model” for brevity, many extended methods have been
proposed to be used in the image domain, such as image-to-image translation [23,24],
super-resolution [25,26], and image in-painting [27,28].

Motivated by these observations, we propose an enhanced example diffusion model
EDM for the low-quality artistic images to restore them, while we inject positive style
perturbations to generate enhanced examples. The style-enhanced examples can ultimately
improve the performance of the style classifier and the robustness of the model. We
compress the input image into a latent space and use DDPM to restore the low-quality
artwork features. Then, we inject positive style perturbations into the restored image to
achieve style enhancement. We separate the training into two phases: first, we train a
style perturbation network (SP-Net), which contains an encoder that can extract the input
painting features, and a decoder that can reconstruct the processed image features in the
latent space; second, we train a conditional latent diffusion model (CLDM) in the latent
space to remove the noise from the input image feature space. The latent diffusion model
(LDM) [25] achieves effective feature denoising and also reduces the complexity of the
network. In summary, this paper makes the following contributions:

• We propose an artistic style enhancement method to improve the adversarial robust-
ness of deep learning models for low-quality artistic images. To the best of our knowl-
edge, this is a new approach for improving the accuracy of artistic style classifiers.

• We use the latent diffusion model to denoise the features of the input paintings and add
positive style perturbations in the pixel space to produce artistic style-enhanced examples.

• We show that our method can generate high-quality artistic examples and improve
the accuracy of the deep learning-based style classifier.

The remainder of the paper is organized as follows. In Section 2, we introduce the
related works of this paper. Section 3 describes the principles of DDPM to provide the
theoretical basis for the proposed method. The details of our proposed method are shown
in Section 4. Experimental results and analyses are demonstrated in Section 5. Finally, we
conclude this paper and present prospects for further work in Section 6.

2. Related Works

In this section, we introduce some related works, which summarize the current state
of research and representative approaches on adversarial attack and image restoration.

2.1. Adversarial Attack

Szegedy et al. [12] demonstrate that deep neural networks are sensitive to adversarial
examples. For example, in an image classification task, adding some slight perturbations
to the input image can result in different outputs from a well-performing neural classifier.
Many algorithms have been proposed to investigate the vulnerability of neural networks.
Goodfellow et al. [29] propose the fast gradient sign method (FGSM), which utilizes
the gradient information of the target classifier to generate adversarial examples. This
method is extended by iterative FGSM (I-FGSM) [30] to iteratively perform the FGSM
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attack. The projected gradient descent (PGD) [31] randomly selects an initial noise near a
positive example as the beginning of the iterative attack. DeepFool [32] successfully attacks
the target neural classifier with minimal perturbations from an optimization perspective.
Carlini et al. [33] propose three adversarial attack algorithms based on different norms and
aim to solve the minimization perturbation problem.

The above methods are proposed on the premise that all information about the target
model is known (i.e., white-box attack). In the black-box case, Chen et al. [34] generate
adversarial examples by estimating the gradient of the target model with limited informa-
tion. However, this method has a low success rate of attack. Therefore, the prior-guided
random gradient-free method (P-RGF) [35] is proposed to solve this problem, which makes
better use of the transfer-base prior to estimating the gradient. Cheng et al. [36] transform
the decision-based black-box attack problem (i.e., only the prediction class of a given in-
put image from the target model is available) into a continuous real-valued optimization
problem. Croce et al. [37] propose a versatile framework based on the random search that
reduces the problem in a black-box setting to a discrete problem instead of continuous
optimization one.

2.2. Image Restoration

There are a lot of degradations that can affect the photographs, including some degra-
dations during the shooting process and other degradations that occur over time and with
environmental influences. The existing image degradation can be broadly categorized into
unstructured degradation and structured degradation. The former contains blurriness,
noise, fading, JPEG compression, etc., while the latter contains spots, scratches, holes,
etc. [38].

For unstructured degradation, traditional restoration methods mostly employ different
image prior constraints, such as non-local self-similarity [39], local smoothness [40], and
sparsity [41]. Deep learning-based restoration methods transform image restoration into an
image translation and learn the mapping between the low-quality and high-quality image
pairs. Many state-of-the-art methods have been proposed. Zhang et al. [42] propose the fast
and flexible denoising CNN (FFDNet), which uses a single network for image denoising
with different noise levels. Fang et al. [43] perform the non-blind image deblurring task by
using a deep neural network (DNN) as an implicit prior of the image. Saharia et al. [26]
complete the image super-resolution via the diffusion model. The structured degradation
image restoration is often regarded as an image inpainting task. Liu et al. [44] mask hole
regions during DNN learning and focus only on features in non-hole regions. Ren et al. [45]
make the texture in the hole regions available for synthesis from features of patches with
similar structures by estimating the appearance flow. Shao et al. [46] and Xu et al. [47]
restore images with the conditional GAN and new perceptual losses. RePaint [27] utilizes
the diffusion model to generate high-quality results for any inpainting form.

However, in the real world, images usually suffer from complex degradations. The
reinforcement learning restoration method (RL-Restore) [48] dynamically selects different
networks to handle different degradations. Suganuma et al. [49] execute different convo-
lution operations for different degradations using the attention mechanism. To improve
the performance of the restoration on real photos, Wan et al. [50] propose a latent space
restoration method that learns the domain translation between real old photos, synthetic
degraded images, and the corresponding ground truth images, which generalizes the
restoration to real old photographs well.

3. Preliminaries: Denoising Diffusion Probabilistic Models

Diffusion models [20] have emerged as a very powerful family of deep generative
models that break the long-standing dominance of GANs [14] in image synthesis tasks [51].
In this paper, we use the diffusion model as a method to generate high-quality artistic fea-
tures. DDPM is a parametric Markov chain of length T trained using variational inference,
which consists of two processes: the forward process of gradually adding Gaussian noise
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to the input data x0 and the reverse process of denoising the noisy data xT by training a
neural network. Next, we briefly review the definitions of DDPM from Ho et al. [20].

The forward process defined in DDPM is to gradually add Gaussian noise to the input
image x0 ∼ q(x0) to generate Gaussian white noise xT ∼ N (0, I) in T timesteps. Each step
of the forward process is as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt is the variance of the Gaussian noise added at timestep t.
The reverse process gradually removes the noise by a learnable Markov chain to

restore the original image x0, which can be modeled by a neural network that predicts the
parameters of a Gaussian distribution:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (2)

where θ denotes the neural network model parameter, and µθ(xt, t) and Σθ(xt, t) denote
the mean and variance of the Gaussian distribution, respectively. Then, the posterior
probability q(xt−1|xt, x0) can be calculated using the Bayesian formula:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (3)

Assuming that αt := 1− βt and ᾱt := ∏t
s=0 αs, the expressions for µ̃t(xt, x0) and β̃t in

Equation (3) are as follows:

µ̃t(xt, x0) :=
√

ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (4)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (5)

The training objective of the reverse process can be optimized with a variable lower bound:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T)

q(x1:T |x0)

]
= Eq

[
− log p(xT)−∑

t≥1
log

pθ(xt−1|xt)

q(xt|xt−1)

]
=: L

(6)

As extended by Ho et al. [20], Equation (6) can be rewritten as:

Eq

[
DKL(q(xT |x0)||p(xT))︸ ︷︷ ︸

LT
+ ∑

t>1

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]
(7)

where DKL(·) denotes the function to calculate the KL divergence. For the sum of
LT , Lt−1(t = 2, . . . , T), L0 forms the variational lower bound L. There is an exception

for L0, Lt−1, and LT as they are KL divergences between the two Gaussian distributions
since q(xt−1|xt, x0) is also Gaussian [20], so they can be evaluated in closed forms.

The above derivations of DDPM are important theoretical bases for the restoration of
artistic images in Section 4.

4. Methodology

There are several challenges that need to be addressed when enhancing low-quality
paintings. Some paintings are damaged due to an improper preservation environment,
which affects the appreciation and the viewers’ or classifiers’ judgments of the artistic style.
Restoring damaged paintings by hand is very time-consuming and requires a high level of
expertise. In addition, since the degradations of paintings in real environments are very
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complex, it is difficult to realistically model and collect a large amount of representative
training data.

To address these challenges, we propose an enhancement network EDM to enhance
the degraded paintings and improve the robustness of the classification network. For
the problem of fewer training data, we resolve it by manually synthesizing low-quality
artistic images. Firstly, we use the encoder in SP-Net to transform the input paintings
into the latent space. Because the domain gap is closed in the latent space [50], the above
transformation can be better applied to the real degraded paintings. The perturbation of
the external environment on the artistic image is represented as a very large “noise” in the
feature mapping of the network [52]. We use CLDM to denoise the low-quality artistic
features. Secondly, we add positive artistic style perturbations to the restored paintings
so that these samples with incorrectly classified styles can be successfully classified by the
style classifier, and the correctly classified ones retain the original correct classification.

Figure 1 illustrates the overall architecture of EDM, which contains two main parts:
the style perturbation network SP-Net and the conditional latent diffusion model CLDM.
Here, Xsr denotes the source image, which is the original high-quality painting, Xold is the
low-quality painting, Xrec is the restored painting, Xsp denotes the positive perturbation,
and Xse is the corresponding output, i.e., the enhanced example. The encoder and decoders
of the auto-encoder are denoted by E(·), D0(·), and D1(·), respectively. Further, the content
and style parts are denoted by (·)C and (·)S, respectively.

Figure 1. An overview of our framework. EDM contains the style perturbation network (SP-Net) and
the conditional latent diffusion model (CLDM). SP-Net is composed of an encoder and two decoders,
one branch for decoding images, and the other branch for extracting style features and generating
style perturbations. The forward process of CLDM generates pure noise, and the reverse process
performs denoising.

4.1. Style Perturbation Network

Our SP-Net is based on the work proposed by Esser et al. [53], which is composed
of an encoder and two decoders. The auto-encoder is the neural backbone of SP-Net,
which is a typical encoder-decoder structure. The encoder compresses the input data and
extracts the most representative information from the input, which aims to decrease the
dimensionality of the input information and thus reduce the processing burden of CLDM.
The decoder decompresses the important features into raw information. Two decoders
divide the network into two branches: one branch is the reconstruction branch that is used
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to reconstruct the paintings from the latent representations and another branch is the style
perturbation branch that is used to generate style perturbations. It is worth mentioning that
the two decoders share weights. Moreover, inspired by Rombach et al. [25], we introduce
a vector quantization layer [54] in the decoder to prevent arbitrarily high-variance latent
spaces. This model can be interpreted as a vector quantized generative adversarial network
(VQGAN) [53], with the difference that the quantization layer of this model is absorbed by
the decoder.

More precisely, the encoder E encodes the source painting Xsr and the old painting
Xold into latent representations zsr = E(Xsr) and zold = E(Xold). CLDM restores the input
zold to generate the high-quality feature z0, which is similar to zsr:

z0 = CLDM(zsr, zold) (8)

The details of CLDM are described later. Svoboda et al. [55] separate the latent code
z into the content part (z)C which contains the content information of the painting (e.g.,
objects, scale, etc.), and the style part (z)S which contains the style information presented
in the painting’s content (e.g., shapes of objects, textures, etc.). In the reconstruction branch,
the decoder D0 reconstructs the painting from z0, giving Xrec = D0(z0). In the style
perturbation branch, we separate the restored latent code z0 into the content part and style
part by the method proposed by Svoboda et al. [55]:

z0 = [(z0)C, (z0)S] (9)

Then, we feed the style features (z0)S into the decoder D1 to generate a positive style
perturbation Xsp, giving Xsp = D1((z0)S). Finally, the style perturbation Xsp and the
reconstruction image Xrec are combined to generate an artistic style-enhanced example Xse:

Xse = Xrec + λspXsp = D0(z0) + λspD1((z0)S) (10)

where λsp ∈ [0, 1] is the coefficient that affects the intensity of the style perturbation Xsp.
To ensure that SP-Net can successfully reconstruct artistic images, we use the adver-

sarial loss Ladv [55] and the perceptual loss Lper [56] to optimize the SP-Net:

Ladv = EXsr

[
(C(Xsr)−EXse C(Xse) + 1)2

]
+EXse

[
(EXsr C(Xsr)− C(Xse) + 1)2

] (11)

Lper = ∑
j

∥∥φj(Xsr)− φj(Xse)
∥∥2

2 (12)

where C(·) denotes the discriminator, which is used to determine whether Xsr and Xse
belong to the same artistic style. φj(·) is the activations of the jth layer of the pretrained
16-layer VGG network φ [57]. In addition, we introduce a style loss to guarantee the style
consistency of Xsr and Xse:

Lstyle = E(zsr)s

[
‖(E(Xse))S − (E(Xsr))S‖2

2

]
(13)

The above three losses compose the full objective of SP-Net, which is defined as follows:

L = Lper + Lstyle + λLadv (14)

where λ is the weight of the adversarial loss Ladv, which is calculated adaptively based on
the gradients of Lper and Ladv as follows [53]:

λ =
∇GL

[
Lper

]
∇GL [Ladv] + δ

(15)
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where∇GL [·] denotes the gradient of its input with respect to the last layer L of the decoder,
and δ is set to 10−6 for the stability of the values [53].

4.2. Conditional Denoising Diffusion Model

Diffusion Model. The neural network used in the reverse process can be interpreted
as a sequence of denoising autoencoders εθ(xt, t); t = 1 . . . T, which are trained to predict
the noise added to the current noisy input xt. According to the derivation of Ho et al. [20],
the training objective of the model can be simplified to the following equation:

LDDPM = Et,x0,ε[‖ε− εθ(xt, t)‖2
2] (16)

where ε ∼ N (0, I) and t ∼ Uni f orm({1, . . . , T}).
Conditional Latent Diffusion Model. We use a trained auto-encoder to transform

the input data into a valid low-dimensional latent space. The latent space is more suitable
for a likelihood-based diffusion model than the pixel space [25]. The latent representations
of Xsr and Xold are denoted by zsr and zold, respectively. z0 is the corresponding denoising
output of CLDM.

Similar to the diffusion model, the role of CLDM is to learn the parameter approxima-
tion of the conditional distribution p(z|zold). CLDM generates a target representation z0 in
T refinement steps. In the forward process, the pure noise representation zT is generated
by gradually adding Gaussian noise to the input zsr. Moreover, one can characterize the
distribution of zt at the arbitrary timestep t by the rewritten Equation (1) [20]:

q(zt|z0) = N (zt;
√

ᾱtz0, (1− ᾱt)I) (17)

where ᾱt is the same as the definition in Section 3. The model of the reverse process
starts from pure noise zT and iteratively optimizes the output to obtain a sequence
(zT−1, zT−2, · · · , z1, z0) according to learned conditional distributions pθ(zt−1|zt, zold), such
that z0 ∼ p(z|zold) [26]:

pθ(zt−1|zt, zold) = N (zt−1; µθ(zt, zold, t), Σθ(zt, zold, t)) (18)

where µθ(zt, zold, t) and Σθ(zt, zold, t) denote the mean and variance of pθ(zt−1|zt, zold),
respectively. The reverse process is implemented with a conditional denoising auto-encoder
εθ(zt, t, zold) [25], which takes a noisy representation zt and the conditional input zold as
inputs. Following [20], the expression of zt is given by:

zt =
√

ᾱtz0 +
√

1− ᾱtε (19)

where ε ∼ N (0, I). The loss function for training εθ(zt, t, zold) is:

LCLDM = Et,E(Xsr),ε,E(Xold)
[‖ε− εθ(zt, t, zold)‖2

2] (20)

where E(·) denotes the encoder of SP-Net. The denoising model εθ is trained to estimate
the noise added to the current noisy representation zt. As reported by Saharia et al. [26],
we can parameterize the mean µθ(zt, zold, t) of pθ(zt−1|zt, zold) as:

µθ(zt, zold, t) =
1√
αt

(
zt −

βt√
1− ᾱt

εθ(zt, t, zold)

)
(21)

where αt and βt are the same as the definition in Section 3. We set the variance of
pθ(zt−1|zt, zold) to βtI. Thus, each iteration of CLDM can be implemented by the following
equation [26]:

zt−1 =
1√
αt

(
zt −

βt√
1− ᾱt

εθ(zt, t, zold)

)
+
√

βtεt (22)
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where εt ∼ N (0, I). By iterating over T timesteps, we can transform the low-quality
features zold into high-quality features z0 and achieve feature restoration in the latent space.

In this section, we provide detailed descriptions of our proposed approach. Sub-
sequently, we will construct a series of experiments to demonstrate the effectiveness of
our method.

5. Experiments and Discussions

In this section, we experimentally evaluate the proposed EDM. As artistic style en-
hancement is a relatively unexplored area, the proposed method is compared with other
state-of-the-art methods for old photo restoration. We illustrate the effectiveness of our
approach based on extensive quality analyses and quantitative evaluations. Furthermore,
to support the choice of architecture and style perturbations, ablation experiments are
performed to demonstrate the effectiveness of various components and how they impact
the results.

5.1. Implementation
5.1.1. Datasets

The source paintings are sampled from the Wikiart dataset. Since it is difficult to collect
a large number of representative degraded artistic paintings, we synthesize low-quality
paintings using paintings sampled from the Wikiart dataset. To generate realistic defects,
we follow the data generation method used by Wan et al. [50] and added Gaussian blur,
Gaussian white noise, JPEG compression, and paper texture to the original high-quality
paintings. In addition, we collected a small number of real degraded artistic drawings
which are used to test the generalization of the model.

5.1.2. Training Details

In our work, we separated the training process into two distinct phases: first, SP-Net is
trained to compress the data into the latent representation and generate style perturbations.
Then, CDLM is trained to restore low-quality artistic features in the learned latent space.
Both training processes are implemented on a GeForce RTX 3090 GPU.

Training of SP-Net. The training dataset of SP-Net is the original high-quality paint-
ings sampled from the Wikiart dataset. These paintings are cropped and resized to 256× 256.
The size of the latent representation is 64× 64. SP-Net uses the Adam optimizer [58] with
an initial learning rate of 4.5× 10−6 and a batch size of 2. We chose the batch size of 2 only
due to limited computing resources.

Training of CLDM. The latent representations of the source paintings and the old
paintings are the training datasets of CLDM, where the latent representations of the old
paintings participate in the training of the reverse process as conditions. In the latent space,
the size of the inputs and conditions are 64× 64. The neural backbone of the diffusion
model is implemented by a time-conditional UNet [59], which uses the Adam optimization
scheme [58] with a learning rate of 1× 10−6 and a batch size of 16. Moreover, we set
T = 1000 timesteps in our work.

5.2. Experimental Results

We propose an enhanced example diffusion model EDM for low-quality paintings, and
this work consists of two core tasks: artistic image restoration and artistic style enhancement.
Therefore, the visual effect of the results and the style accuracy are two important metrics to
evaluate the performance of our proposed method. However, to the best of our knowledge,
there are fewer studies similar to ours. To demonstrate the effectiveness of our method,
we compare EDM with image-to-image translation (denoted as Pix2pix [60], Palette [24]),
old photo restoration (denoted as Wan et al. [50]), and the commercial tool (denoted as
Meitu [61], Photoshop). For fair comparisons, we train all methods (except the commercial
tool) with the same dataset (Wikiart), and test them on our synthesized old artistic images.
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5.2.1. Quality Analysis

Theoretically, our method will produce high-quality artistic images, whose artistic
styles are visually similar to the source paintings. To prove the effectiveness of our method
to enhance the appearance of low-quality paintings, we design experiments on the Wikiart
test images with the size of 512× 512. As the old paintings for the test here are synthetic,
we use the corresponding source paintings as references. Figure 2 shows the old paintings,
source paintings, and the restoration results of all methods. The Pix2pix method can restore
the degradation to some extent, however, it is not very effective in removing the obvious
noise. Moreover, this method generates some undesirable artifacts, which leads to the
destruction of the original texture. Palette also uses the diffusion model, but is visually
inferior to our method. Some degradations remain in the results. This is due to the fact
that their method is performed in the pixel domain. The method proposed by Wan et al.
and Meitu can realize image restoration better. However, the results produced by both
methods are too smooth, which leads to the loss of the fine structure. Moreover, the method
proposed by Wan et al. may change the color of the artistic image. The results produced
by Photoshop are similar to those of Meitu. Photoshop can repair images better. However,
for artistic images, the results are too smooth and the style characteristics of the original
painting are lost. In comparison, our method generates clean, clear artistic images with rich
texture details. In addition to successfully addressing synthetic degradations, our method
also enhances the style of the artistic image appropriately. In general, our method produces
visually pleasant results.

Figure 2. Style-enhanced results of our method and all comparison methods. From the first to the last
column, in order, are old paintings, source paintings, the results generated by Pix2pix [60], Palette [24],
Wan et al. [50], Meitu [61], Photoshop, and our method. It shows that the results generated by our
method are more similar to the style of the source images and have clearer texture details than
other methods.
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5.2.2. Quantitative Analysis

Artistic images are characterized by unique styles, such as Van Gogh’s style and
Monet’s style. The proposed EDM is designed to improve the accuracy of deep learning-
based style classifiers for degraded artistic images. Therefore, we test different methods
on the synthetic paintings from the Wikiart dataset and adopt style accuracy and the peak
signal-to-noise ratio (PSNR) as evaluation metrics for comparison. The style accuracy is
measured by an artistic style classifier, which indicates the proportion of paintings that
are correctly classified with respect to their styles. We collect paintings from nine artists
with about 5000 high-quality paintings as the training dataset and train the style classifier
with two, four, and seven classes of paintings, respectively. For each artist’s style, we
synthesize about 1000 low-quality artistic images as the test set for the classifier. Table 1
shows the quantitative comparison results. PSNR is used to compare low-level differences
between the enhanced output and ground truth. Meitu unsurprisingly achieves the best
PSNR score since this method generates smooth and noiseless paintings. Our method
ranks second-best. The method proposed by Wan et al. also obtains a good score. The
style accuracy is used to evaluate whether the results can improve the performance of
the classifier. Our method achieves the best scores. Conversely, the method proposed
by Wan et al. and Meitu perform poorly in terms of style accuracy since their results are
overly smooth, which destroys the artistic style of the paintings to some extent. In all, the
results generated by our method have a better quality and can significantly improve the
performance of the classification model.

Table 1. Quantitative comparison on the different number of style categories. For brevity, the
style accuracy is abbreviated to “acc”. Upward arrows indicate that a higher score denotes a better
enhancement performance or image quality.

Class Metric

Two Four Seven

Old-
acc (%)↑

Enhanced-
acc (%)↑ PSNR↑ Old-

acc (%)↑
Enhanced-

acc (%)↑ PSNR↑ Old-
acc (%)↑

Enhanced-
acc (%)↑ PSNR↑

Pix2pix [60]

75.31

77.50 21.02

57.95

64.77 21.32

49.86

53.14 21.88
Palette [24] 77.30 21.86 62.53 22.62 54.76 22.76
Wan et al. [50] 72.43 23.26 65.91 23.56 45.24 23.53
Meitu [61] 61.57 24.89 42.05 24.18 44.64 25.03
Ours 88.65 23.58 76.14 23.85 57.14 23.89

5.3. Ablation Studies

There are two key components of our method. The first one is that we use the diffusion
model in the latent space rather than pixel space to achieve the restoration of low-quality
paintings. Another one is that we introduce a style perturbation branch in our framework
for generating positive style perturbations to enhance the robustness of the style classifier.
We verify their effectiveness in the overall model architecture by removing or replacing
these components.

5.3.1. Space Conversion

In this work, we first convert the input into the latent space with an auto-encoder and
then enhance the low-quality paintings into high-quality ones with the diffusion model.
According to the theory of Wan et al. [50], converting low-quality paintings into latent
space can better generalize the method to real old artistic images. We collect some old and
real paintings and apply them in the pixel space-based and latent space-based diffusion
models. As shown in Figure 3, the diffusion model in the latent space can better enhance
the low-quality artwork, and the model in the pixel space can only remove some obvious
noise. Furthermore, the application of the diffusion model in the latent space can reduce the
complexity. We test the training and sampling times of both models on a single GeForce RTX
3090 GPU, and Table 2 reports the training time in hours per epoch and test time in minutes
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per sample at resolution 256× 256. We observe a speedup of at least 1.4× for training and
at least 12.7× for testing between pixel space-based and latent space-based models.

Figure 3. Visual comparisons of latent space and pixel space on real old data. It shows that enhancing
the low-quality paintings in the latent space can better generalize to the real old paintings.

Table 2. Efficiency comparison of pixel space-based and latent space-based diffusion models. Down-
ward arrows indicate that less time corresponds to higher efficiency.

Model Training
(hours/epoch)↓

Test
(minutes/sample)↓

Pixel space-based 0.706 1.53
Latent space-based 0.504 0.12

5.3.2. Style Perturbation

Our method in this paper aims to enhance the artistic style of low-quality paintings to
produce good visual effects while improving the robustness of the style classifier. We intro-
duce CLDM to generate high-quality artistic images and add positive style perturbations to
the paintings, which form artistic style-enhanced examples to improve the accuracy of the
style classifiers. Figure 4 demonstrates that the positive style perturbation can enhance the
texture details of the artistic image. Table 3 shows that the enhanced examples can improve
the classification accuracy of the style classifier. Overall, it is effective to add positive style
perturbations to the artistic images in improving texture details and style accuracy.

Table 3. Style accuracy of results with/without style perturbation (SP) on a different number of
style categories.

Model
Acc (%)↑

Two Four Seven

EDM without SP 85.37 74.28 55.69
EDM with SP 88.65 76.14 57.14



Symmetry 2023, 15, 1074 12 of 15

Figure 4. Visual comparison of enhanced results with/without style perturbation. The details of
the paintings in row 1 are shown in the rightmost column. It shows that the results with style
perturbations have richer texture details.

6. Conclusions

We propose an enhanced example diffusion model called EDM, an effective way to
significantly enhance the artistic style of low-quality paintings and improve the robustness
of the style classification model. The overall system contains a style perturbation network
SP-Net and a conditional latent diffusion model CLDM. SP-Net transforms the inputs into
the latent space and extracts the artistic style to produce positive style perturbations. CLDM
denoises low-quality inputs in the latent space to generate high-quality artistic features.
The combination of high-quality paintings and positive style perturbations forms artistic
style-enhanced examples, which can further enhance the artistic style and improve the
robustness of the deep learning-based models without degrading the quality of restored
paintings. Furthermore, our approach can be generalized to real degraded paintings.
Experimental results show that the accuracy of style-enhanced examples generated by our
approach improves by about 13% on average on the style classifier compared to degraded
paintings. Moreover, EDM performs exceptionally well in terms of visual quality. In the
future, we will explore other ways to enhance artistic images, and study enhancement
problems in more scenes to further improve the robustness of the classification model.
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