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Abstract: The topology structure of multi-layer networks is highly correlated with the robustness
of consensus. This paper investigates the influence of different interlayer edge connection patterns
on the consensus of the two-layer ring networks. Two types of two-layer ring network models are
first considered: one is a kind of two-layer ring network with two linked edges between layers
(Networks-a), and the other is a kind of two-layer ring network with three linked edges between
layers (Networks-b). Using the Laplacian spectrum, the consensus of the network model is derived.
The simulation experiments are used to demonstrate the influence of different interlayer edge
connection patterns on the consensus of networks. To determine the best edge connection pattern for
Networks-a and Networks-b, the number of nodes in a single-layer ring network is denoted by n. The
best edge connection pattern for Networks-a is 1 & [(n + 2)/2]. Furthermore, n is subdivided into
3k, 3k + 1, 3k + 2, and the best edge connection patterns of Networks-b are near 1 & k + 1 & 2k + 1.

Keywords: multi-layer ring network; topology structure; consensus; robustness; edge connection
patterns

1. Introduction

Complex networks have been widely used in fields such as earth sciences, robot control,
biological systems, and neuroscience [1–5]. With the deepening of the research, scholars
have found that most complex systems are not isolated, but are instead interdependent and
interactive. Researchers introduced the concept of multi-layer networks to describe such
networks and have made fruitful achievements in the field of research on multi-layer net-
works, such as accomplishing the synchronization of multi-layer complex networks [6–12],
structure identification of multi-layer networks [13], and cascading failures and consensus
of multi-layer networks [14–18].

Noise exists in the real environment. Not all nodes of the complex network may
achieve the common goal well under the interference of noise. Network coherence is used
to study the degree of consensus that can be achieved by all nodes of the network and
describes the deviation of the state of each node in the network from the average of the
current states of all nodes. Network coherence is determined by the Laplacian spectrum [19].
Ref. [20] discussed the robustness of a scale-free network consensus and discovered the
relationships between network coherence and average degree. Ref. [21] calculated the
Laplacian eigenvalues of a class of fractal networks using a recursive method and obtained
the first-order and second-order coherence of the networks. Ref. [22] designed a new
control protocol to study the consensus of multi-intelligent systems. Ref. [23] presented
an algorithm for approximating second-order coherence. Ref. [24] studied the robustness
of network coherence and found that asymmetric networks show higher coherence than
symmetric networks. The above literature has mainly studied the impact of control protocol
design and topology on network consensus but has not considered the impact of different
layer connection methods on network consensus.
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As the basic elements of the network, the ring structure, link structure, and star
structure play a very important role in the complex network. Unlike the link and star
structure, the ring structure brings redundant paths to its nodes, which greatly enhances
the connectivity of the network and becomes more robust. Research on the ring structure
can provide new ideas and methods for optimizing network connectivity and anti-attack
capability, quickly adjusting the network state. Therefore, a network based on a ring
structure has aroused great interest in scholars and has achieved some good results [25–27].

Consensus-based distributed algorithms have been widely studied in the field of
networked systems for achieving agreement among a group of agents with limited commu-
nication abilities [28,29]. A large-scale, many-objective deployment optimization algorithm
for edge servers in a networked system was proposed, which is relevant to the consensus
problem [28]. In a consensus problem, agents aim to reach a common decision based on
local interactions with their neighbors, which can be modeled as a network. One of the
most widely used network structures for consensus is the two-layer ring network, which
is robust and efficient at achieving agreement among a group of agents. However, the ro-
bustness of consensus in these networks is still an open research question [30,31]. A robust
identification method for highly nonlinear systems was proposed, which is important for
achieving consensus in the presence of noise and disturbances [30]. This paper takes the
two-layer ring networks as the research object and analyzes the influence of different inter-
layer edge-connection patterns on the consensus of the two-layer ring networks. The main
novelties and contributions of the paper are as follows:

1. A new network model is proposed that is different from the interlayer, fully connected
two-layer ring networks. This will save more costs in practical applications.

2. Compared with solving the Laplacian spectrum of the fully connected network,
the Laplacian spectrum of the partially connected two-layer ring networks is dif-
ficult to calculate. The consensus of the two-layer ring networks is obtained by using
the relationships among the network coherence, eigenvalues, and characteristic poly-
nomial coefficients.

3. Based on the formula of network coherence, the optimal and worst edge-connected
patterns of two-layer ring networks are found, and the results are revealed through
simulation experiments.

The paper is organized as follows. The preliminaries are given in Section 2. The con-
sensus is derived in Section 3. Section 4 presents the numerical simulation results.

2. Preliminaries
2.1. Network Coherence

The research on consensus not only helps to better understand the general mechanism
of consensus in nature but also helps to reveal the essence of some practical engineering
operations, such as the coordination and control of distributed sensors and the control of
multi-robot formations.

The network dynamics model with q nodes is described as follows [32]:

ẋ(t) = −Lx(t) + ε(t), (1)

where L ∈ Rq×q is the Laplacian matrix of the network and ε(t) ∈ Rq represents the
interference of white noise. Network coherence is defined as robustness to noise:

H1 =
1
q

q

∑
i=1

lim
t→∞

var

(
xi(t)−

1
q

q

∑
j=1

xj(t)

)
. (2)

The output of system (1) is written as follows:

y = Px, (3)
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where P is the projection operator, P = I − 1
q 11T and 1 is the q-vector of all ones.

Using Formula (1)–(3),

H1 =
1
q

tr
(∫ ∞

0
e−LT tPe−Ltdt

)
. (4)

According to [33], the first-order coherence can be expressed in terms of Laplacian
eigenvalues,

H1 =
1
2q

q

∑
ν=2

1
λν

. (5)

2.2. Two-Layer Ring Network Models

A kind of two-layer ring network with two linked edges between layers (Networks-a) is
shown in Figure 1a. Due to the symmetry of the ring network, we assume that there are two
edges between node pairs 1 and p(2 ≤ p ≤ n), where n is the number of nodes in the ring
network. We denote the edge connection pattern as 1 &p. A kind of two-layer ring network
with three linked edges between layers (Networks-b) is shown in Figure 1b. We assume
that there are three edges between node pairs 1, i(2 ≤ i ≤ n− 1), and j(i + 1 ≤ j ≤ n), and
we denote the edge connection pattern as 1 & i & j.

(a) (b)

Figure 1. (a) Schematic diagram of Networks-a. (b) Schematic diagram of Networks-b.

3. Theoretical Calculation and Conjectures

In this section, we calculate the coherence of Networks-a and Networks-b and make
some conjectures about the influence of different edge connection patterns on the consensus.

3.1. The Coherence H1a of Networks-a

This section will use the relationships between the eigenvalues and coefficients in
characteristic polynomial theory to obtain the coherence of Networks-a. To solve this
problem, the coefficients of a class of characteristic polynomials are as follows:

Lemma 1 ( [20]). Let Rn(0), Rn(1), Rn(2) be the constant term, first-order coefficient and quadratic
coefficient of the characteristic polynomial Rn(λ),

Rn(λ) =

∣∣∣∣∣∣∣∣∣∣

λ− 2 1
1 λ− 2 1

1 λ− 2 1
1 λ− 2

. . .
λ− 2 1

1 λ− 2 1
1 λ− 2

∣∣∣∣∣∣∣∣∣∣
n×n

,
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then, Rn(0) = (−1)n(n + 1), Rn(1) = (−1)n−1 n(n+1)(n+2)
6 , Rn(2) = (−1)n−2

(n−1)n(n+1)(n+2)(n+3)
120 .

According to the topology structure of Networks-a, the Laplacian characteristic polynomial is
|λIn − A1 − B1||λIn − A1 + B1|.

|λIn − A1 − B1| =

∣∣∣∣∣∣∣∣∣
λ− 2 1 0 0 · · · 0 1

1 λ− 2 1 0 · · · 0 0
0 1 λ− 2 1 · · · 0 0
0 0 1 λ− 2 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 0 0 · · · λ− 2 1
1 0 0 0 · · · 1 λ− 2

∣∣∣∣∣∣∣∣∣
n×n

,

|λIn − A1 + B1| =

∣∣∣∣∣∣∣∣∣∣∣

λ− 4 1 0 · · · 0 0 · · · 1
1 λ− 2 1 · · · 0 0 · · · 0
0 1 λ− 2 · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
0 0 0 · · · λ− 4 1 · · · 0
0 0 0 · · · 1 λ− 2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.
1 0 0 · · · 0 0 · · · λ− 2

∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Let |λIn − A1 − B1| be Cn(λ); Cn(λ) is the Laplacian characteristic polynomial of the ring
network Cn. We expand |λIn − A1 − B1| using the first row,

Cn(λ) = (λ− 2)Rn−1(λ)− 2Rn−2(λ) + 2(−1)n+1. (6)

|λIn − A1 + B1| can be obtained by changing the 1st and pth diagonal elements to λ− 4 on
the basis of |λIn − A1 − B1|. Let |λIn − A1 + B1| be Sn(λ); combining the relationships between
Sn(λ) and Cn(λ), we have

Sn(λ) =Cn(λ)− 2Rp−1(λ)Rn−p(λ) + 2Rp−2(λ)Rn−p−1(λ)

− 2Rn−1(λ) + 4Rp−2(λ)Rn−p(λ).
(7)

We will use Lemma 1 to obtain the sum of the reciprocals of the non-zero characteristic eigenval-
ues of Cn(λ) and Sn(λ), respectively. For the convenience of description, let Cm(i), Sm(i), Rm(i)
(i = 0, 1, 2) be the i degree coefficients of Cm(λ), Sm(λ), Rm(λ), respectively.

Lemma 2. Let 0 = γ1 < γ2 ≤ · · · ≤ γn be the eigenvalues of Cn(λ); then,

n

∑
l=2

1
γl

=
n2 − 1

12
.

Proof. From the Vieta theorem [21], ∑n
l=2

1
γl

= −Cn(2)
Cn(1)

, using Lemma 1,

n

∑
l=2

1
γl

= −Rn−1(1)− 2Rn−1(2)− 2Rn−2(2)
Rn−1(0)− 2Rn−1(1)− 2Rn−2(1)

=
(−1)n−1 (n−1)n(n+1)

6 + (−1)n−1 (n−2)(n−1)n(n+1)
12

(−1)n−1n− (−1)n−2 (n−1)n(n+1)
3 − (−1)n−3 (n−2)(n−1)n

3

=
n2 − 1

12
.

(8)
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Lemma 3. Let 0 < κ1 ≤ κ2 ≤ · · · ≤ κn be the eigenvalues of Sn(λ); then,

n

∑
r=1

1
κr

=
n3 + 3n2 − n + (p− 1)p(2np− 2p2 + 4p− n− 3)

12n + 12(p− 1)(n− p + 1)
+

(n− p)(n− p + 1)(2np− 2p2 + 8p− n− 5)
12n + 12(p− 1)(n− p + 1)

.

Proof. From the Vieta theorem, ∑n
r=1

1
κr

= − Sn(1)
Sn(0)

, using Lemma 1,

n

∑
r=1

1
κr

= − Cn(1)− 2 f1(0, 1) + 2 f2(0, 1)− 2Rn−1(1) + 4 f3(0, 1)
−2Rp−1(0)Rn−p(0) + 2Rp−2(0)Rn−p−1(0)− 2Rn−1(0) + 4Rp−2(0)Rn−p(0)

,

where

f1(0, 1) = Rp−1(1)Rn−p(0) + Rp−1(0)Rn−p(1)

= (−1)n−2 p(n− p + 1)
6

[(p− 1)(p + 1) + (n− p)(n− p + 2)],

f2(0, 1) = Rp−2(1)Rn−p−1(0) + Rp−2(0)Rn−p−1(1)

= (−1)n−4 (p− 1)(n− p)
6

[(p− 2)p + (n− p− 1)(n− p + 1)],

f3(0, 1) = Rp−2(1)Rn−p(0) + Rp−2(0)Rn−p(1)

= (−1)n−3 (p− 1)(n− p + 1)
6

[(p− 2)p + (n− p)(n− p + 2)],

Rp−1(0)Rn−p(0) = (−1)n−1 p(n− p + 1),

Rp−2(0)Rn−p−1(0) = (−1)n−3(p− 1)(n− p),

Rp−2(0)Rn−p(0) = (−1)n−2(p− 1)(n− p + 1),

then
n

∑
r=1

1
κr

=
n3 + 3n2 − n + (p− 1)p(2np− 2p2 + 4p− n− 3)

12n + 12(p− 1)(n− p + 1)

+
(n− p)(n− p + 1)(2np− 2p2 + 8p− n− 5)

12n + 12(p− 1)(n− p + 1)
.

(9)

Theorem 1. Let the number of single-layer network nodes in Networks-a be n. If there are two
linked edges between the node pairs 1 and p(2 ≤ p ≤ n), then the coherence H1a of Networks-a is
as follows:

H1a =
1

4n
[
n2 − 1

12
+

n3 + 3n2 − n + (p− 1)p(2np− 2p2 + 4p− n− 3)
12n + 12(p− 1)(n− p + 1)

+
(n− p)(n− p + 1)(2np− 2p2 + 8p− n− 5)

12n + 12(p− 1)(n− p + 1)
].

Proof. Using Formula (5),

H1a =
1

4n

[
n

∑
l=2

1
γl

+
n

∑
r=1

1
κr

]
(10)

By substituting the results of Equations (8) and (9) into Equation (10), Theorem 1 can
be easily obtained.
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3.2. The Coherence H1b of Networks-b

Similar to Section 3.1, this section will use the coefficients of the characteristic polyno-
mial to obtain the coherence of Networks-b.

According to the topology of Networks-b, the Laplacian characteristic polynomial can
be written as follows:∣∣ λIn − A2 −B2

−B2 λIn − A2

∣∣ = |λIn − A2 − B2||λIn − A2 + B2|.

|λIn − A2 + B2| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 4 1 · · · 0 0 · · · 0 0 · · · 1
1 λ− 2 · · · 0 0 · · · 0 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 · · · λ− 4 1 · · · 0 0 · · · 0
0 0 · · · 1 λ− 2 · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
0 0 · · · 0 0 · · · λ− 4 1 · · · 0
0 0 · · · 0 0 · · · 1 λ− 2 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.
1 0 · · · 0 0 · · · 0 0 · · · λ− 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

|λIn − A2 + B2| can be obtained by changing the 1st, ith, and jth diagonal elements to
λ− 4 on the basis of |λIn − A2 − B2|. Let |λIn − A2 + B2| be Qn(λ); using the Laplacian
theorem, we get Qn(λ) = Cn(λ)− 2Rn−1(λ)− 2Ri−1(λ)Rn−i(λ) + 2Ri−2(λ)(Rn−i−1(λ) +
2Rn−i(λ))− 2Rj−1(λ)Rn−j(λ) + 2Rj−2(λ)(Rn−j−1(λ) + 2Rn−j(λ)) + 4Rj−i−1(λ)(Ri−1(λ)
Rn−j(λ)− Ri−2(λ)Rn−j−1(λ)− 2Ri−2(λ)Rn−j(λ)).

Theorem 2. Let the number of single-layer network nodes in Networks-b be n. If there are three
linked edges between the node pairs 1, i(2 ≤ i ≤ n− 1), and j(i + 1 ≤ j ≤ n), then the coherence
H1b of Networks-b is as follows:

H1b =
1

4n

[
n2 − 1

12
+

f1(n, i, j)
f2(n, i, j)

]
,

where f1(n, i, j) = n3 + 3n2− n + (j− 1)j(2nj− 2j2 + 4j− n− 3) + (n− j)(n− j + 1)(2nj−
2j2 + 8j− n− 5) + (i− 1)i(2ni− 2i2 + 4i− n− 3) + (n− i)(n− i + 1)(2ni− 2i2 + 8i− n−
5) + 2(i − 1)i(j− i)(2ni − 2ij + 3i + j− n− 3) + 2(j− i − 1)(j− i)(j− i + 1)(2ni − 2ij +
3i + j− n− 2) + 2(j− i)(n− j)(n− j + 1)(2ni− 2ij + 7i + j− n− 5),

f2(n, i, j) = 48i− 6n + 24ij + 24ni− 24ij2 + 24i2 j− 24i2n− 48i2 + 24ijn− 24.

Proof. Let 0 = ν1 < ν2 ≤ · · · ≤ νn be the eigenvalues of Qn(λ); using the Formula (5),

H1b =
1

4n

[
n

∑
l=2

1
γl

+
n

∑
q=1

1
νq

]
. (11)

Similar to the proof of Lemma 3, we have ∑n
q=1

1
νq

= f1(n,i,j)
f2(n,i,j) . Theorem 2 can be easily

obtained.

3.3. Conjecture

Conjecture 1. The impact of edge connection pattern 1 & p on the consensus of Networks-a is
as follows:

(1) When n is odd, the edge connection patterns 1 & (n + 1)/2 and 1 & (n + 3)/2 have the best
network consensus.

(2) When n is even, the edge connection pattern 1 & (n + 2)/2 has the best network consensus.
(3) Whether n is odd or even, the edge connection patterns 1 & 2 and 1 & n have the worst network

consensus.

Conjecture 2. The impact of edge connection pattern 1 & i & j on the consensus of Networks-b is
as follows:
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(1) The edge connection patterns 1 & 2 & 3, 1 & 2 & n, and 1 & n − 1 & n have the worst
network consensus.

(2) When i is fixed, i + 1 ≤ j ≤ n, and the edge connection patterns 1 & i & i + 1 and 1 & i & n
have the worst network consensus. When n + i + 1 is odd, the edge connection patterns 1 & i
& (n + i)/2 and 1 & i & (n + i + 2)/2 have the best network consensus. When n + i + 1 is
even, the edge connection pattern 1 & i & (n + i + 1)/2 has the best network consensus.

Conjecture 3. The impact of the number of single-layer network nodes n on the consensus of
Networks-b is as follows:

When n = 3k, the edge connection pattern 1 & k + 1 & 2k + 1 has the best network consensus.
When n = 3k + 1, the edge connection patterns 1 & k + 1 & 2k + 1, 1 & k + 1 & 2k + 2, and 1 &
k + 2 & 2k + 2 have the best network consensus. When n = 3k + 2, the edge connection patterns 1
& k + 1 & 2k + 2, 1 & k + 2 & 2k + 2, and 1 & k + 2 & 2k + 3 have the best network consensus.

4. Numerical Simulation Experiment

In this section, the relationships between the edge connection patterns and consensus
are numerically simulated to demonstrate the rationality of the three conjectures mentioned
in the previous section.

4.1. The Influence of Edge Connection Pattern 1 & p on H1a

When n = 15, 20, 25, 30, 35, through the traversal simulation of all edge connection
patterns 1 & p, Figure 2 shows the change in H1a with p. When 2 ≤ p ≤ (n + 2)/2, H1a

decreases with the increase in p. When (n + 2)/2 < p ≤ n, H1a increases with the increase
in p. As p can only be a positive integer, H1a obtains the maximum value at p = 2 and
p = n and obtains the minimum value at p = [(n + 2)/2]. The smaller the first-order
coherence is, the stronger the consensus is. The edge connection pattern 1 & [(n + 2)/2]
has the best consensus, and the edge connection patterns 1 & 2 and 1 & n have the worst
network consensus; this result is consistent with the conclusion of Conjecture 1.

p

0 5 10 15 20 25 30 35

H
1

a

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

n=15

n=20

n=25

n=30

n=35

Figure 2. The influence of edge connection position p on H1a.

4.2. The Influence of Edge Connection Pattern 1 & i & j on H1b

When n = 20, through the traversal simulation of all edge connection patterns 1 & i &
j, Figure 3 shows the change in H1b with i, j. When i = 2, j = 3; i = 2, j = n; i = n− 1, j = n,
H1b reaches the maximum value. The edge connection patterns 1 & 2 & 3, 1 & 2 & n, and 1
& n− 1 & n have the worst network consensus.

When i is fixed, H1b reaches its maximum value at j = i + 1 and j = n. When
i + 1 ≤ j ≤ (n + i + 1)/2, H1b decreases as j increases. When (n + i + 1)/2 < j ≤ n, H1b

increases as j increases. As j can only be a positive integer, H1b obtains the minimum value
at j = [(n + i + 1)/2]. The edge connection patterns 1 & i & i + 1 and 1 & i & n have the
worst network consensus, and the edge connection pattern 1 & i & [(n + i + 1)/2] has the
best network consensus. This result is consistent with the conclusion of Conjecture 1.
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j

2 4 6 8 10 12 14 16 18 20

H
1

b

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=9

i=10

i=11

i=12

i=13

i=14

i=15

i=16

i=17

i=18

i=19

Figure 3. The influence of edge connection position j on H1b when edge connection position i is fixed.

4.3. The Influence of the Number of Single-Layer Network Nodes n on H1b

In this section, we calculate the best edge connection patterns 1 & i & j for 6 ≤ n ≤ 98.
When n = 3k + x(2 ≤ k ≤ 32, x = 0, 1, 2), Figure 4 gives an intuitive linear fitting line

among i, j, and n.
As seen from Figure 4a, when n = 3k, the best edge connection pattern 1 & i & j

is unique, and i and j are respectively distributed on the straight lines i = k + 1 and
j = 2k + 1. Therefore, when n = 3k, the edge connection pattern 1 & k + 1 & 2k + 1 has the
best consensus.

As seen from Figure 4b, when n = 3k + 1, there are three types of best edge connection
patterns; i and j are distributed on lines i = k + 1, j = 2k + 1, i = k + 1, j = 2k + 2, and
i = k + 2, j = 2k + 2, respectively. Therefore, when n = 3k + 1, the edge connection patterns
1 & k + 1 & 2k + 1, 1 & k + 1 & 2k + 2 and 1 & k + 2 & 2k + 2 have the best consensus.

As seen from Figure 4c, when n = 3k + 2, there are three types of best edge connection
patterns; i and j are distributed on lines i = k + 1, j = 2k + 2, i = k + 2, j = 2k + 2, and
i = k + 2, j = 2k + 3, respectively. Therefore, when n = 3k + 2, the edge connection patterns
1 & k + 1 & 2k + 2, 1 & k + 2 & 2k + 2, and 1 & k + 2 & 2k + 3 have the best consensus.
The above simulation results are consistent with the conclusion of Conjecture 3.
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Figure 4. The relationships among the optimal edge connection positions i, j, and n. (a) n = 3k;
(b) n = 3k + 1; (c) n = 3k + 2.

5. Conclusions

The research on the optimization of the interlayer connection of two-layer networks
is still in the preliminary stage; the results of the theoretical method are few, and most
of the results are still using the numerical method. In this study, the coherence of a
Networks-a model with two linked edges between layers and a Networks-b model with
three linked edges between layers were deduced using the coefficients of tridiagonal matrix
characteristic polynomials and the Laplacian theorem. Furthermore, the conjectures of
different edge connection patterns on the consensus of the two types of networks were
obtained, which were revealed through simulation experiments. In the case of Networks-a,
the best edge connection pattern is 1 & [(n + 2)/2], and the worst edge connection patterns
are 1 & 2 and 1 & n. In the case of Networks-b, the worst edge connection patterns are 1 &
2 & 3, 1 & 2 & n, and 1 & n− 1 & n. The best edge connection patterns are related to the
parameter n. When n = 3k, the edge connection patterns are unique; when n = 3k + 1 and
n = 3k + 2, there are three cases of edge connection patterns, and they are all near 1 & k + 1
& 2k + 1.

The study of the effect of different interlayer connection patterns on the dynamics
of two-layer networks is still at a preliminary stage, and the research results are mostly
obtained using numerical methods, which is difficult to prove theoretically. This study
obtained the best edge connection patterns of the networks using numerical simulations for
the two-layer ring networks with two or three linked edges. However, when the number
of interlayer edges is greater than or equal to four, what is the change in the best/worst
edge connection patterns of the two-layer ring networks? In the case of fully connected
two-layer ring networks, which edges can be reduced to obtain the best consensus? These
questions are worthy of our in-depth study.
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