Exploration of Quantum Milne–Mercer-Type Inequalities with Applications
Abstract
:1. Introduction
2. Main Results
2.1. Milne–Mercer Identity
- If we take , then we have
- If we take and in Lemma 3, a new identity results in establishing Milne-type inequalities.
2.2. Quantum Estimates of Milne–Mercer Inequality
- If we take and in Theorem 3, then a new estimate of Milne-type inequality results.
- If we take in Theorem 3, then we have
- If we take and in Theorem 4, then a new estimate of Milne-type inequality results.
- If we take , then
- If we take and in Theorem 5, then a new estimate of Milne-type inequality results.
- If we take , then
- If we take and in Theorem 6, then a new estimate of Milne-type inequality results.
- If we take , then
- If we take and in Theorem 7, then a new estimate of Milne-type inequality results.
- If we take , then
3. Applications
- The arithmetic mean:
- The generalized log-mean:
Error Bounds
4. Graphical Illustrations
- If we take with and in Theorem 3, thenThe following Figure 1 shows the visual analysis of Theorem 3.If we take in above expression, then we have .
- If we take with and in Theorem 4 then weThe following Figure 2 shows the visual analysis of Theorem 4.If we take from the above expression, then we have
- If we take with and in Theorem 5 thenThe following Figure 3 shows the visual analysis of Theorem 5.If we take from the above expression, then we have .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Budak, H.; Kosem, P.; Kara, H. On new Milne-type inequalities for fractional integrals. J. Inequalities Appl. 2023, 2023, 10. [Google Scholar] [CrossRef]
- Meftah, B.; Lakhdari, A.; Saleh, W.; Kiliçman, A. Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications. Fractal Fract. 2023, 7, 166. [Google Scholar] [CrossRef]
- Ali, M.A.; Zhang, Z.; Feckan, M. On Some Error Bounds for Milne’s Formula in Fractional Calculus. Mathematics 2023, 11, 146. [Google Scholar] [CrossRef]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002; Volume 113. [Google Scholar]
- Alanazi, A.M.; Ebaid, A.; Alhawiti, W.M.; Muhiuddin, G. The falling body problem in quantum calculus. Front. Phys. 2020, 8, 43. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef]
- Bermudo, S.; Korus, P.; Valdes, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Ogulmus, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Butt, S.I.; Kashuri, A.; Umar, M.; Aslam, A.; Gao, W. Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k -fractional integrals. AIMS Math. 2020, 5, 5193–5220. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Budak, H. Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Math. 2021, 6, 9397–9421. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Awan, M.U.; Javed, M.Z.; Kashuri, A.; Noor, M.A.; Noor, K.I. Some new generalized k-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications. AIMS Math. 2022, 7, 3203–3220. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some Quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M. (q1,q2)-Ostrowski-Type Integral Inequalities Involving Property of Generalized Higher-Order Strongly n-Polynomial Preinvexity. Symmetry 2022, 14, 717. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Feckan, M.; Khan, S. A new version of q-Hermite-Hadamard’s midpoint and trapezoid type inequalities for convex functions. J. Math. Slovaca 2023, 73, 369–386. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Quantum Hermite-Hadamard inequality by means of A Green function. Adv. Differ. Equ. 2020, 2020, 1–20. [Google Scholar]
- Saleh, W.; Meftah, B.; Lakhdari, A. Quantum dual Simpson type inequalities for q-differentiable convex functions. Int. J. Nonlinear Anal. Appl. 2023. [Google Scholar]
- Erden, S.; Iftikhar, S.; Kumam, P.; Thounthong, P. On error estimations of Simpson’s second type quadrature formula. Math. Methods Appl. Sci. 2020, 1–13. [Google Scholar] [CrossRef]
- Raees, M.; Anwar, M. New Estimation of Error in the Hadamard Inequality Pertaining to Coordinated Convex Functions in Quantum Calculus. Symmetry 2023, 15, 301. [Google Scholar] [CrossRef]
- Jain, S.; Goyal, R.; Agarwal, P.; Momani, S. Certain Saigo type fractional integral inequalities and their q-analogues. Int. J. Optim. Control Theor. Appl. 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Kunt, M.; Aljasem, M. Fractional quantum Hermite-Hadamard type inequalities. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qυ2-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Al-Sa’di, S.U.; Bibi, M.; Muddassar, M. Some Hermite-Hadamard’s type local fractional integral inequalities for generalized γ-preinvex function with applications. Math. Methods Appl. Sci. 2023, 46, 2941–2954. [Google Scholar] [CrossRef]
- Chasreechai, S.; Ali, M.A.; Ashraf, M.A.; Sitthiwirattham, T.; Etemad, S.; Sen, M.D.L.; Rezapour, S. On New Estimates of q-Hermite-Hadamard Inequalities with Applications in Quantum Calculus. Axioms 2023, 12, 49. [Google Scholar] [CrossRef]
- Teklu, B.; Olivares, S.; Paris, M.G. Bayesian estimation of one-parameter qubit gates. J. Phys. At. B Mol. Opt. Phys. 2009, 42, 035502. [Google Scholar] [CrossRef]
- Brivio, D.; Cialdi, S.; Vezzoli, S.; Gebrehiwot, B.T.; Genoni, M.G.; Olivares, S.; Paris, M.G. Experimental estimation of one-parameter qubit gates in the presence of phase diffusion. Phys. Rev. A 2010, 81, 012305. [Google Scholar] [CrossRef]
- Xu, K.; Heo, J. New functional glasses containing semiconductor quantum dots. Phys. Scr. 2010, 2010, 014062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Khan, A.G.; Cesarano, C.; Noor, M.A. Exploration of Quantum Milne–Mercer-Type Inequalities with Applications. Symmetry 2023, 15, 1096. https://doi.org/10.3390/sym15051096
Bin-Mohsin B, Javed MZ, Awan MU, Khan AG, Cesarano C, Noor MA. Exploration of Quantum Milne–Mercer-Type Inequalities with Applications. Symmetry. 2023; 15(5):1096. https://doi.org/10.3390/sym15051096
Chicago/Turabian StyleBin-Mohsin, Bandar, Muhammad Zakria Javed, Muhammad Uzair Awan, Awais Gul Khan, Clemente Cesarano, and Muhammad Aslam Noor. 2023. "Exploration of Quantum Milne–Mercer-Type Inequalities with Applications" Symmetry 15, no. 5: 1096. https://doi.org/10.3390/sym15051096
APA StyleBin-Mohsin, B., Javed, M. Z., Awan, M. U., Khan, A. G., Cesarano, C., & Noor, M. A. (2023). Exploration of Quantum Milne–Mercer-Type Inequalities with Applications. Symmetry, 15(5), 1096. https://doi.org/10.3390/sym15051096