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Abstract: In this paper, we have considered surfaces with constant negative Gaussian curvature in
the simply isotropic 3-Space by defined Sauer and Strubeckerr. Firstly, we have studied the isotropic
I I-flat, isotropic minimal and isotropic I I-minimal, the constant second Gaussian curvature, and the
constant mean curvature of surfaces with constant negative curvature (SCNC) in the simply isotropic
3-space. Surfaces with symmetry are obtained when the mean curvatures are equal. Further, we have
investigated the constant Casorati, the tangential and the amalgamatic curvatures of SCNC.
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1. Introduction

Constant curvature for surfaces was one of the top subjects regarding differential
geometry in the 19th century (see [1,2]). Surfaces with curvature K = −1 are denoted
as K-surfaces, and this topic is one of the main studies in differential geometry. The
hyperbolic plane’s intrinsic geometry is provided on K-surfaces with a model [3,4] and the
pseudosphere is the oldest known example of that geometry [5,6].

One of the most substantial problems in differential geometry is to construct a surface
with constant negative Gaussian curvature in Euclidean space. From a known surface with
K = −1 [7], the Bäcklund’s theorem provides a geometrical method to build a family of
surfaces with Gaussian curvature. For the Gaussian K-surfaces, Bäcklund transformation is
given by Tian [8]. For pseudospherical surfaces, Bäcklund transformation can be limited to a
transformation on space curves [9]. Many studies have been conducted in other spaces, such
as Minkowski space [10,11]. K-surfaces in an isotropic 3-space were studied extensively by
K.Strubeckerr, as in [12–14]. Decu and Verstraelen defined isotropic Casorati curvature [15].
Suceava investigated the tangential and amalgamatic curvatures in Euclidean 3-space [16].

Casorati proposed the Casorati curvature over Gauss and mean curvatures since
this correlates better with the general intuition of curvature [16,17]. Human/computer
vision and geometry are investigated using Casorati curvature [18,19]. The idea behind the
amalgamatic curvature is to expand the ratio τ

κ to the higher dimensions [20]. This idea
can be traced back to papers [21,22], with the improvements provided in [23,24]. A recent
application can be found in [16]. An important development for the invariant curvature is
studied in [25] and named tangential curvature [16].

In this paper, we present the Gaussian, the second Gaussian, the mean, the second
mean, the Casorati, the tangential and the amalgamatic curvatures of surfaces with a
constant negative curvature defined by K.Strubeckerr and V.R.Sauer. The symmetry on the
surfaces can be seen in the figures below.

2. Preliminaries

An absolute figure is an ordered triple (w, f1, f2) consisting of an absolute plane w with
f1 and f2, which are its two complex–conjugate straight lines from the projective three-space
P(R3). These are required to define the simply isotropic space I1

3, which is a Cayley–Klein
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space. x0 = 0 give the absolute plane w and x0 = x1 + ix2 = 0 , x0 = x1 − ix2 = 0
are the absolute lines f1, f2. They are called the homogeneous coordinates or projective
coordinates inP(R3) [26]. Homogeneous coordinates played an important role in capturing
the projection of a 3D view for use in monitors, T.V., etc. [27] Further information about
Cayley–Klein spaces can be acquired from [28].

The absolute point F(0 : 0 : 0 : 1) is defined as the crossing node of these two lines. A
motion in I1

3 is a given with corresponding coordinates, as x = x1
x0

, y = x2
x0

, z = x3
x0

can be
found at [26] and given as

x′ = c1 + x cos α− y sin α

y′ = c2 + x sin α + y cos α (1)

z′ = c3 + c4x + c5y + z,

where c1, c2, c3, c4, c5, α ∈ R. These are named isotropic congruence transformations [26].
Isotropic congruence transformations looks like Euclidean motions (combination of a
translation and a rotation) in the projection onto the xy-plane. This projection is named as
a “top view” [29–31]. The combination of a Euclidean motion in the xy-plane and affine
transformation with shearing along the z-direction is called an isotropic motion [32].

The equation
ds2 = dx2 + dy2

is defined as the metric of I1
3. Let U = (u1, u2, u3) and V = (v1, v2, v3) be vectors in I1

3; then,
the inner product of U and V is defined as,

< U, V >i=

{
u3v3 if u1,2 = 0 and v1,2 = 0
u1v1 + u2v2 if otherwise

This metric is induced by the absolute figure. If a line is not parallel to the z-direction,
it is called non-isotropic; otherwise, it is isotropic. Isotropic planes are the planes that
contain an isotropic line. Consider a Cr-surface M, r ≥ 1, in I1

3 parameterized by

M : x(u, v) = (x(u, v), y(u, v), z(u, v)).

Let an arbitrary surface in I1
3 be called M. If a surface has no isotropic tangent

planes, then it is called an admissible surface. The first and second forms I and II, called
fundamental forms, of M, have the coefficients E, F, G and L, N, M, respectively, which can
be easily stated with the induced matrix, given by [32] as,

I =Edu2 + 2Fdudv + Gdv2,

I I =Ldu2 + 2Mdudv + Ndv2,

where (with δ =
√

EG− F2)

E = < xu, xu >i, F =< xu, xv >i, G =< xv, xv >i,

L =
det(xu, xv, xuu)

δ
, M =

det(xu, xv, xuv)

δ
, N =

det(xu, xv, xvv)

δ
.

Then, K and H , the isotropic Gaussian curvature and mean curvature, can be defined as

K = k1k2 =
LN −M2

EG− F2 , 2H = k1 + k2 =
EN − 2FM + GL

EG− F2 , (2)

where k1, k2 are principal curvatures.Therefore, the extrema of the normal curvatures,
k1 and k2, are determined with the non-isotropic section of the surface. Here, when
K = 0, and H = 0, the surfaces M are called, respectively, isotropic flat and isotropic
minimal [26]. Isotropic II-flat and isotropic II-minimal are named after the moment when
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a non-developable surface’s second Gaussian curvature and second mean curvature are
zero, respectively. The second Gaussian curvature KII of M is given by

KII=
1

(LN −M2)
2



∣∣∣∣∣∣∣
− Luu

2 + Muv − Nvv
2

Lu
2 Mu − Lv

2
Mv − Nu

2 L M
Nv
2 M N

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣
0 Lv

2
Nu
2

Lv
2 L M

Nu
2 M N

∣∣∣∣∣∣∣


. (3)

The second mean curvature for a surface in simply isotropic 3-space is given by [15]

HII= H− 1

2
√

LN −M2

2

∑
i,j=1

∂

∂ui

(√
LN −M2Lij ∂

∂ui

(
ln
√
|K|
))

, (4)

where u1 = u, u2 = v and
(

Lij) is the inverse of the matrix Lij of the second fundamental
form [33]. The isotropic Casorati curvature is defined by

C =
k2

1 + k2
2

2
= 2H2 −K (5)

The tangential curvature and the amalgamatic curvature are given by

τ =
|k1k2| − 1 +

√(
1 + k2

1
)(

1 + k2
2
)

|k1|+ |k2|
=
|K| − 1 +

√
(K−1)2 + 4H2

H
, (6)

A =
2k1k2

k1 + k2
=

K
H

, (7)

respectively [16].

3. Curvatures of SCNC in I1
3

In this chapter, we provide the curvatures of SCNC in I1
3. The general form of SCNC

can be derived as follows. Let x be a surface with

x(u, v) = (x1(u, v), x2(u, v), x3(u, v))

when we have
x1(u, v) = f1 + g1

x2(u, v) = f2 + g2

where f ′1g′2− f ′2g′1 6= 0 with f1, f2 and g1, g2 are twice continuous differentiable functions of
u and v, respectively. The parametric curves are asymptotic if and only if the two conditions∣∣∣∣∣∣

f ′1 f ′2 x3u
g′1 g′2 x3v
f ′′1 f ′′2 x3uu

∣∣∣∣∣∣ = 0,

∣∣∣∣∣∣
f ′1 f ′2 x3u
g′1 g′2 x3v
g′′1 g′′2 x3vv

∣∣∣∣∣∣ = 0

are fulfilled. From the above equations with f ′1g′2 − f ′2g′1 6= 0 condition, the existence of
two functions a(u, v) and b(u, v) can be uniquely determined by x3(u, v), which satisfy the
equations

x3u = a f ′1 + b f ′2, x3v = ag′1 + bg′2,

x3uu = a f ′′1 + b f ′′2 , x3vv = ag′′1 + bg′′2 .
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By solving these equations, we can obtained

auv = buv = 0, a = Φ1(u) + Ψ2(v), b = Φ2(u) + Ψ2(v).

For the arbitrary functions Φ1, Φ2, Ψ1, Ψ2, from the solution of the previous equation,
we obtain,

Φ′1 f ′1 + Φ′2 f ′2 = 0, Ψ′1g′1 + Ψ′1g′2 = 0,

results in
Φ′1 = Λ(u) f ′2, Φ′2 = −Λ(u) f ′1, Ψ′1 = M(v)g′2, Ψ′2 = −M(v)g′1.

Then,
x3uv = M(v)(g′2 f ′1 − g′1 f ′2),

x3vu = Λ(u)(g′1 f ′2 − g′2 f ′1)

by choosing
Λ(u) = −M(v) = const. = k1

we obtain
a = k1( f2 − g2) + k2, b = −k1( f1 − g1) + k3

by using these in the equations,

x3u = k1( f ′1 f2 − f1 f ′2) + k1( f ′2g1 − f ′1g2) + k2 f ′1 + k3 f ′2,

x3v = k1(g′2g1 − g′1g2) + k1(g′1 f2 − g′2 f1) + k2g′1 + k3g′2.

The integrability condition x3uv = x3vu is fulfilled and, from integration, results in x3 =
k1{( f ′2g1 − f ′1g2) +

∫
( f ′1 f2 − f1 f ′2)du +

∫
(g′2g1 − g′1g2)dv} + k2( f1 + g1)

+ k3( f2 + g2)+ k4, from this, k1 = 1, k2 = k3 = k4 = 0, we can obtained x(u, v) = (x1, x2, x3)
as

x(u, v) =


f1 + g1,
f2 + g2,

( f2g1 − f1g2) +
∫ (

f ′1 f2 − f ′2 f1
)
du

+
∫ (

g1g′2 − g2g′1
)
dv

 (8)

where f1, f2, f are functions of u and g1, g2, g are functions of v [12,34]. The isotropic
curvature K and the mean curvature H of the surface (8) is given by

K = −1, H =
f ′1g′1 + f ′2g′2
f ′2g′1 − f ′1g′2

. (9)

Assume the mean curvature of (8) is constant. Then,

H0 =
f ′1g′1 + f ′2g′2
f ′2g′1 − f ′1g′2

, (10)

where H0 ∈ R. If we use the separation of variables method, the mean curvature and the
mean curvature H0 6= 0 ∈ R if and only if

f ′2
f ′1

=
g′1 + H0g′2
H0g′1 − g′2

,

where u, v are independent variables and both sides of the Equation (10) are constant. If we
show that this constant is equal to p, we can obtain
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f ′2
f ′1

= p =
g′1 + H0g′2
H0g′1 − g′2

. (11)

Hence, we can write 
f1 = c1 +

f2
p

f2 = c2 + p f1

g1 = c3 +
(H0+p)g2

H0 p−1

g2 = c4 +
(H0 p−1)g1

H0+p

, (12)

where ci ∈ R.
If the surface (8) is isotropic minimal, then, from (10), we have

f ′1g′1 + f ′2g′2 = 0

and as a result of the solution of this equation,
f1 = c1 + p f2

f2 = c2 +
f1
p

g1 = c3 − g2
p

g2 = c4 − pg2

.

Figures 1 and 2 are drawn for Equation (12); their functions are shown in their respec-
tive figures.

-2

-1

0

1

2

0

2

4

-2

0

2

Figure 1. f1 =sin u and g1 =cos v with c2 = c4 =1, H0 =5/2, p=2.

0

5

10

15

10
20

0

10

20

30

Figure 2. f1 = eu and g1 = ev with c2 = c4 =1, H0 =5/2, p=2.

If we choose 
f1 = u
f2 = f ′

g1 = v
g2 = g′

, (13)

the surface (8) turns into the following form

x(u, v) =
(
u + v, f ′ + g′, 2( f − g) + (v− u)

(
f ′ + g′

))
. (14)
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The Figure 3 with symmetry is drawn for (14) as an example where the constants
c2, c4, H0 and p are from Equation (12) and f1, g1 are from (13) [12–14].

-5

0

5

-5

0

5

10
-10

0

10

Figure 3. f1 =u and g1 =v with c2 = c4 =1, H0 =5/2, p=2.

Let us consider that the surface (14). Then, using the surface (14), the coefficients of
the first and the second fundamental forms are given by

E = 1 + f ′′
2
, G = 1 + g′′

2
, F = 1 + f ′′g′′, (15)

and

L = 0, N = 0, M = −
(

f ′′ − g′′
)
, (16)

respectively. The isotropic Gaussian curvature K, KII and the mean curvatures H, HII , the
isotropic Casorati curvature, the tangential curvature and the amalgamatic curvature of the
surface (14) are given by

K = −1, KII =
f ′′′g′′′

( f ′′ − g′′)3 , (17)

H = HII =
1 + f ′′g′′

f ′′ − g′′
, (18)

C = 1 +
2(1 + f ′′g′′)2

( f ′′ − g′′)2 , (19)

τ =

√
(1 + f ′′)2(1 + g′′)2

1 + f ′′g′′
, (20)

A =

√
(1 + f ′′)2(1 + g′′)2

1 + f ′′g′′
, (21)

respectively. Let us assume that the surface (14) has a constant mean curvature. Then,

1 + f ′′g′′

f ′′ − g′′
= H0, (22)

where H0 ∈ R. If we use the separation of variables method, the mean curvature H0 is a
constant but 0, if and only if

1−H0 f ′′

−(H0 + f ′′)
= p1 = g′′, (23)

where p1 6= 0 ∈ R. We can easily obtain
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 f = c1 + uc2 +
u2
2 (1+H0 p1)

H0−p1

g = c3 + vc4 +
p1v2

2

, (24)

where ci ∈ R.
We can obtain the next Figure 4 by choosing c1 = c2 = c3 = c4 = 1, H0 = 5/2 and

p1 = 2 at (24) and by using (14).

-2
-1
0
1
2

-10

0

10

0

10

20

30

Figure 4. f = 1 + u + 6u2 and g = 1 + v + v2.

Suppose that the mean curvature H of the constant negative curvature surface vanishes
identically; then, from (22), we have

1 + f ′′g′′ = 0. (25)

Here, u and v are independent variables, so each side of (25) is equal to a constant,
called p2. Hence, the two equations are

− 1
f ′′

= p2 = g′′. (26)

With appropriate solutions to these differential equations, we have{
f = c1 + uc2 − u2

2p2

g = c3 + vc4 +
p2v2

2

, (27)

where ci ∈ R.

Thus, we have the following results:

Theorem 1. Let M be the isotropic surface (14) with the constant isotropic mean curvature H 6= 0
in I1

3. Then, the functions f and g are given by (24).

Theorem 2. Let M be the isotropic surface (14) with zero isotropic mean curvature (isotropic
minimal H 6= 0) in I1

3. Then, the functions f and g are given by (27).

Theorem 3. If the isotropic surface parametrized by (14) in I1
3 has KII = 0, then{

f = c1 + c2u + c3u2

g = c4 + c5v + c6v2 , (28)

and if KII is a non-zero constant, f =
4
√

2(u+c7)
√
−c2(u+c7)−3puc8(u+2c7)

6c2
+ c9 + uc10

g = c11 + vc12 − pv2

2

,

where ci, p ∈ R where c2 6= 0 and c2(u + c7) ∈ R+.
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Proof. From (14), we have
f ′′′g′′′

( f ′′ − g′′)3 = c, (29)

where c ∈ R.
If KII = 0, from the solution of the Equation (29), we have

f ′′′g′′′ = 0. (30)

By solving (30), the functions f and g are obtained as follows{
f = c1 + c2u + c3u2

g = c4 + c5v + c6v2 ,

where ci ∈ R.
When we choose the constants at (28) as c1 = c2 = c3 = c4 = c5 = c6 = 1, we can

obtain the figure with two different intervals as Figure 5.
Now, suppose that the second Gaussian curvature KII = c is a non-zero constant. The

partial derivative of (29) with respect to u gives

g′′′
(
− 3 f ′′′

2

f ′′ − g′′
+ f (IV)

)
= 0. (31)

Therefore, either, i.e., g′′′ = 0 or(
− 3 f ′′′

2

f ′′ − g′′
+ f (IV)

)
= 0. (32)

If g′′′ = 0, then we have
g = c1 + c2v + c3v2,

where ci ∈ R. If
(
− 3 f ′′′

2

f ′′−g′′ + f (IV)

)
= 0, then we have

−g′′ =
3 f ′′′

2 − f ′′ f (IV)

f (IV)
. (33)

By solving (33), we find f =
4
√

2(u+c1)
√
−c2(u+c1)−3p3uc2(u+2c1)

6c2
+ c3 + uc4

g = c5 + vc6 − p3v2

2

, (34)

where ci, p3 ∈ R, where c2 6= 0 and c2(u + c7) ∈ R−.
As we choose c1 = −c2 = c3 = c4 = c5 = c6 = p3 = 1 and H0 = 5/2, we can obtain

the Figure 6, shown from two different angles.
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-4
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Figure 5. f = 1 + u + u2 and g = 1 + v + v2.
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0

1
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-2

0

2

-5

0

Figure 6. f = 1 + u− 1
6 (4
√

2(1 + u)
3
2 + 3u(2 + u)) g = 1 + v− v2

2 .

Now, we consider the isotropic surface (14) in I1
3 as satisfying C = 2H2−K as constant.

From (21), we have

1 +
2(1 + f ′′g′′)2

( f ′′ − g′′)2 = C0, (35)

where C0 ∈ R. Taking the partial derivative of (35) with respect to u gives(
(1 + C0)g′′ + f ′′(1− C0 + 2g′′

2
)
)

f ′′′ = 0. (36)

If f ′′′ = 0, then we have
f = c1 + c2u + c3u2, (37)

where ci ∈ R. If (1 + C0)g′′ + f ′′(1− C0 + 2g′′
2
) = 0, then we have

f = c4 + c5u− p4
u2

2

g = c6 + c7v +

(
1+C0−

√
(1+C0)

2+8p2
4(C0−1)

)
v2

8p4

, (38)

where ci, p4 6= 0, C0 ∈ R, where (1 + C0)
2 + 8p2

4(C0 − 1) is positive.

c4 = c5 = c6 = c7 = p4 = 1 and C0 = 5/2 are chosen for a Figure 7 at Equation (38).

-505

-2
0
2
4
6

-40

-20

0

20
-5 0 5

-2

0

2

4

6

-40

-20

0

20

Figure 7. f = 1 + u− u2/2 and g = 1 + v + 1/8(7/2−
√

97/2)v2.
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If the surface (14) has zero Casorati curvature (C = 0), then, by using a similar
technique for the solution, we have f = c4 + c5u + p5

u2

2

g = c6 + c7v +

(
−1+
√

1−8p2
5

)
v2

8p5

, (39)

where ci, p5 ∈ R.
c4 = c5 = c6 = c7 = 1 and p5 = 0.35 values are provided for the Figure 8 at

Equation (39).

-20

-10

0

10

20

-5
0

5
10

-200

-100

0

-20

-10

0

10

20

-50510

-200

-100

0

Figure 8. f = 1 + u− 0.175u2 and g = 1 + v + 0.306635v2.

Let us assume that the isotropic surface (14) has a constant tangential curvature. Then
from (22), we have

τ0 =

√
(1 + f ′′)2(1 + g′′)2

1 + f ′′g′′
, (40)

where τ0 ∈ R. By solving (22) we can find
f = c1 + c2u + c3u2

f = c4 + c5u + p6
u2

2

g = c7 ± v
(

c8 +
vp6

τ2
0 +
√
−4p2

6+4τ2
0 p2

6+τ4
0

) , (41)

where ci, p6 ∈ R where −4p2
6 + 4τ2

0 p2
6 + τ4

0 ≥ 0
Figure 9 for (41) is constructed with the constants c4 = c5 = c6 = c7 = c8 = 1, p6 = 0.8

and τ0 = 1.
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0.4
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-0.1

0.0

0.1

0.2

Figure 9. f = 1 + u + 0.4u2 and g = 1 + v + 0.4v2.

If the (14) has the constant amalgamatic curvature. Then, from (40), we obtain

A0 =

√
(1 + f ′′)2(1 + g′′)2

1 + f ′′g′′
, (42)
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where A0 ∈ R. By solving (42), we find{
f = c1 + c2u + p7

u2

2

g = c3 + c4v− v2(2p7+A0)
2(p7A0−2)

, (43)

where ci, p7 ∈ R with p7A0 − 2 6= 0.
The Figure 10 is for Equation (43), where the constants are c1 = c2 = c3 = c4 = A0 = 1

and p7 = 0.8.
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Figure 10. f = 1 + u + 0.4u2 and g = 1 + v + 1.08333v2.
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