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Abstract: Given a smooth-plane Jordan curve with bounded absolute curvature κ > 0, we determine
equivalence classes of distinctive disks of radius 1/κ included in both plane regions separated by
the curve. The bound on absolute curvature leads to a completely symmetric trajectory behaviour
with respect to the curve turning. These lead to a decomposition of the plane into a finite number of
maximal regions with respect to set inclusion leading to natural lower bounds for the length an area
enclosed by the curve. We present a “half version” of the Pestov-Ionin theorem, and subsequently
a generalisation of the classical Blaschke rolling disk theorem. An interesting consequence is that
we describe geometric conditions relying exclusively on curvature and independent of any kind of
convexity that allows us to give necessary and sufficient conditions for the existence of families of
rolling disks for planar domains that are not necessarily convex. We expect this approach would
lead to further generalisations as, for example, characterising volumetric objects in closed surfaces
as first studied by Lagunov. Although this is a classical problem in differential geometry, recent
developments in industrial manufacturing when cutting along some prescribed shapes on prescribed
materials have revived the necessity of a deeper understanding on disks enclosed by sufficiently
smooth Jordan curves.

Keywords: inclusion principle; Pestov-Ionin theorem; Blaschke rolling theorem; bounded curvature;
convex body

MSC: 52A10; 53C42; 53A04

1. Introduction

In this article, we prove the existence of distinguished disks enclosed by smooth plane
Jordan curves satisfying a bound on the absolute curvature κ > 0. Note that the boundary
of a disk corresponds to the epitome of symmetric behaviour since a circle has full rotational
symmetry. In consequence, a bound on absolute curvature leads to a completely symmetric
trajectory behaviour with respect to the curve turning. These distinguished disks have a
radius and quantity proportional to the curvature bound given by 1/κ. The best result
known in this direction is the classical inclusion theorem by Pestov and Ionin in the Ref. [1]
which was proven in 1959 establishing the existence of a single radius 1/κ disk in the
interior region separated by the curve.

The Blaschke rolling disk theorem is an inclusion principle first proven in 1916 by
Blaschke [2]. It states that a convex domain K ⊂ R2 whose boundary ∂K is a curve of class
C2 with curvature not exceeding a constant κ > 0 is such that for each point in ∂K there
exists a disk of radius 1/κ tangent to ∂K included in the closure of K.

The convexity of K implies that the curvature of ∂K is signed. That is, the curvature
of ∂K may be nonnegative or nonpositive, but not both. After dropping the convexity of
K, the curvature of ∂K may change in sign. Accordingly, we assume that the absolute
curvature of ∂K does not exceed κ > 0. Note the Blaschke rolling disk theorem is a local to
global result, since a local property as the bound on absolute curvature on ∂K allows us to
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conclude a global property of K as the existence of a radius 1/κ disk tangent at each point
at ∂K included in the closure of K.

By describing geometric conditions derived from the curvature of ∂K, we find neces-
sary and sufficient conditions for the existence of rolling disks for general domains K ⊂ R2.
Definition 2 is the key feature to identify the existence of arcs in ∂K whose end points,
called essential and inessential terminals, guarantee the existence of several geometric
objects. In particular, the existence of parallel tangents is key to characterising convexity
for plane curves.

The Blaschke rolling disk theorem has been extensively studied by researchers of
several mathematical communities with different levels of generalisations. We would like
to first highlight the monograph by Brooks and Strantzen in which they provide several
approaches and setups for the rolling problem [3]. Koutroufiotis generalised the Blaschke
rolling theorem for complete curves in R2 and for complete surfaces in R3 [4]. Rauch
proved the Blaschke rolling theorem for compact surfaces in Rn [5]. Additionally, Delgado
proved a similar result for complete surfaces [6]. For an approach to the rolling problem
without assuming smoothness of the boundary, refer to the Ref. [7–9]. Karakhanyan studied
the problem from the optimal transport theory point of view [10]. A modern insight into the
problem is presented by Révész, in which he proposed a discrete version of the problem [11].

Recent developments in industrial manufacturing when cutting along some prescribed
shapes on prescribed materials have revived the necessity of a deeper understanding of
curves enclosed by smooth Jordan curves [12–19]. The Blaschke rolling theorem for non-
convex sets is intimately linked with concepts in mathematical morphology and image
processing. For example, in the Ref. [20], Walther presented a geometric characterisation of
the Serra regular model in image analysis and mathematical morphology [21].

In Section 2 we introduce one of the main contributions of this paper corresponding to
the turning condition Definition 2. This is a local to global principle that is based on data be-
ing pair of points that decide on the convexity of the whole loop. From the turning condition
we can also infer lower and upper bounds for arcs in a loop. This definition is based on
the classification of κ-constrained curves and summarises several related results [22]. We
expect that a version of the turning condition for curves of three-space surfaces would lead
to further generalisations, such as, for example, characterising volumetric objects in closed
surfaces as first studied by Lagunov [23]. In Section 3 we use all the machinery presented
in Section 2 to present the rolling disk decomposition algorithm.

The most relevant contributions of this paper are:

• Theorem 5 which is a “half version” of the Pestov-Ionin theorem [1] in which we prove
the existence of a half disk for curves that are not close.

• Theorem 7 where we characterise convexity and non-convexity of a domain K ⊂ R2

in terms of the type of terminals its boundary ∂K admits.
• Theorem 8 gives necessary and sufficient conditions for a planar domain K to be

internally rolling, externally rolling, or both simultaneously.
• In Theorem 10 we provide an algorithm leading to a decomposition of any planar do-

main into a finite number of maximal rolling regions. As a consequence of Theorem 8,
we obtain an updated version for the Blaschke rolling disk theorem.

• The methods here presented allow natural adaptations in higher dimensions.

2. The Turning Condition

We consider a loop σ : S1 → R2 to be the homeomorphic image of the circle. The loops
are of class C1, regular, arc length parametrised, traversed clockwise with periods equal
to its length. A loop is called κ-constrained if is of piecewise class C2 and has bounded
absolute curvature i.e., ||σ′′|| ≤ κ, when defined, with r := 1/κ > 0 as a constant. Therefore,
κ-constrained loops have, almost everywhere, well-defined curvatures with respect to its
arc length parameter. We often refer to a loop instead to a κ-constrained loop.

We endow the space of κ-constrained loops with the C1 metric. The ambient space
of the loops is the Euclidean plane with the topology induced by the Euclidean metric.
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The interior, boundary, closure and complement of a set K ⊂ R2 are denoted by int(K), ∂K,
cl(K) and Kc, respectively. A planar domain is considered to be an open connected set in
R2. We regard a loop as either the map σ : S1 → R2 or its image when no confusion arises.

The Jordan curve theorem asserts that the complement of a loop in R2 corresponds to
two regions, each of which has a boundary of the loop. One region is a topological disk
enclosed by the loop and the other is unbounded [24].

Definition 1. Let T(t) and N(t) be a continuous choice of a tangent and normal line at σ(t),
t ∈ S1. A domain K ⊂ R2 is called internally rolling if its boundary ∂K = σ is a κ-constrained
loop such that for all t ∈ S1 there exist a disk D(t) of radius r = 1/κ tangent to T(t) with
D(t) ⊂ cl(K). A domain K ⊂ R2 is called externally rolling if its boundary ∂K = σ is a
κ-constrained loop such that for all t ∈ S1 there exist a disk E(t) of radius r = 1/κ tangent to T(t)
with E(t) ⊂ cl(Kc). A domain K ⊂ R2 is called rolling if it is internally and externally rolling,
see Figure 1.

Next we observe some simple equivalences of Definition that are worth noticing
Definition 1.

Observation 1 (Rolling equivalences). A domain is internal (external) rolling if there is an
embedded one-sided internal (external) neighbourhood of radius 2r of the loop. A domain is rolling
if there is an embedded neighbourhood of radius 2r of the loop.

Due to smoothness, a κ-constrained loop admits a pair of points whose chord is perpendicular
to the curve, the so-called double critical pair. For t1, t2 ∈ S1, we defined the doubly critical self
distance of ∂K = σ to be,

dcsd(σ) = min{||σ(t2)− σ(t1)|| : (σ(t1), σ(t2)) is a doubly critical pair}.

We say that ∂K is rolling if dcsd(σ) ≥ 2r.

Figure 1. Examples of planar domains and tangent disks of radius r = 1/κ. From left to right.
A domain that is internally rolling but not externally rolling. A domain that is externally rolling
but not internally rolling. A domain that is neither internal nor externally rolling. A domain that is
rolling. Clearly, none of these are convex.

Next we rewrite the well-known Blaschke rolling disk theorem whose proof in its
original form can be found in the Ref. [2].

Theorem 1. A convex domain K ⊂ R2 with boundary of class C2 and (signed) curvature not
exceeding a positive constant is internally rolling.

The definition below is based on the classification of the homotopy classes of κ-
constrained curves [22]. Therein, curves were used to denominate paths with bounded
absolute curvature connecting two points in the plane. In Observation 2 we explain the
connections between the results in the Ref. [22] and Definition 2.
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Definition 2 (Turning condition). Let σ : S1 → R2 be a κ-constrained loop. Consider σ :
[t1, t2] ⊂ S1 → R2. Let D1, D2 be radius r = 1/κ disks with σ(t1), σ(t2) ∈ ∂D1 ∩ ∂D2. A short
curve satisfies:

• ||σ(t1)− σ(t2)|| ≤ 2r;
• σ([t1, t2]) ⊂ D1 ∩ D2.

A long curve satisfies:

• ||σ(t1)− σ(t2)|| < 2r;
• σ([t1, t2]) has a point in (D1 ∩ D2)

c.

A curve is called simple if ||σ(t1)− σ(t2)|| ≥ 2r. By definition, an arc of a circle of radius r
is short, simple but never long. We refer to the points σ(t1), σ(t2) as terminals. Note that terminals
separate a loop into two complementary curves. Terminals are called essential if both complementary
curves are long. Terminals that are not essential are called inessential. A curve is said to be essential
or inessential depending on its terminals, see Figure 2.

Figure 2. Left: a κ-constrained loop with a pair of inessential terminals is decomposed into two
curves one long and one short. Short curves are always included in D1 ∩ D2. Centre: a κ-constrained
loop with a pair of essential terminals is decomposed into two long curves. Long curves always have
a point in (D1 ∩ D2)

c. Right: a κ-constrained curve whose terminals are distant apart less or equal to
2r cannot make a u-turn while defined in an open band of width 2r.

Two κ-constrained curves with fixed common terminals are said to be κ-constrained
homotopic if, at each stage of the deformation, the intermediate curves are κ-constrained
curves while keeping the terminals fixed. Next, we explain our main results in the Ref. [22]
and put Definition 2 into context.

Observation 2. Let D1, D2 be radius r = 1/κ disks. Let σ : [t1, t2] → R2 be a κ-constrained
curve with (fixed) terminals satisfying 0 < ||σ(t1)− σ(t2)|| < 2r with σ(t1), σ(t2) ∈ ∂D1 ∩ ∂D2.
Then, there are exactly two connected components of κ-constrained curves connecting these terminals.
One is an isotopy class of short curves. All the curves in this class are embedded and confined to be in
D1 ∩ D2, see Theorem 4.21 in the Ref. [22]. The curves in D1 ∩ D2 are κ-constrained homotopic to
the line segment connecting the terminals. The other is a homotopy class of long curves connecting
the same terminals. These curves are such that they are κ-constrained homotopic to a curve with
a point in (D1 ∩ D2)

c, see Theorem 4.22 in the Ref. [22]. There are two length-minimiser long
curves in this homotopy class. These are the longest arcs in the circles ∂D1 and ∂D2 connecting
the terminals.

Accordingly (for fixed terminals), a curve cannot be κ-constrained homotopic to a short and a
long curve simultaneously. Therefore a curve cannot be short and long simultaneously.

In addition, if ||σ(t1)− σ(t2)|| ≥ 2r, there is a single connected component of simple curves,
similarly as for homotopies between continuous plane paths. If σ(t1) = σ(t2) there is a single
connected component of closed curves allowing a kink. The bound on an absolute curvature as a
condition is so rigid that a curve with terminals σ(t1), σ(t2) ∈ ∂D1 ∩ ∂D2 being entirely defined
in D1 ∪ D2 cannot have a point in int(D1 ∪ D2) \ cl(D1 ∩ D2).
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Observation 3. A long curve can meander in between its terminals or spiral around them, see
Figure 3. If a long curve meanders in between its terminals, we consider the intersection between
the long curve and the line connecting its terminals. In this fashion, we split a meandering long
curve into several adjacent subcurves. For example, suppose a long curve intersects the line joining
the terminals at a point σ(t∗) other than its terminals. Then, we split the long curve into the two
adjacent long curves σ([t1, t∗]) and σ([t∗, t2]), see Figure 3. Note short curves can meander in
between terminals but clearly never spiral around them. In addition, a long curve that spirals
around its terminals always admits a point σ(t∗) in the line connecting its terminals such that
σ([t1, t2]) ⊂ σ([t1, t∗]).

Figure 3. A meandering long curve with terminals σ(t1), σ(t2) can be decomposed into two adjacent
long curves. A long curve that spirals around its terminals is a subcurve of a longer long curve with
terminals σ(t1), σ(t∗).

Definition 3. A κ-constrained curve σ : I → R2 is called an arc if the region enclosed by its
image and the line connecting its terminals σ(∂I) is homeomorphic to a disk. An arc with terminals
removed is called "open".

Theorem 2. A κ-constrained loop admits a long arc.

Proof. Every κ-constrained loop admits a short arc since terminals can be chosen to be
arbitrarily close. Consider a short arc α : [0, s] → R2 in an arc length parametrised loop
σ : [0, `]→ R2 with σ(0) = σ(`). Suppose that this loop does not admit a long arc. In this
case, the terminals of α split the loop into two complementary short arcs α : [0, s] → R2,
β : [s, `]→ R2.

Since α is short, Theorem 4.21 in the Ref. [22] implies that α([0, s]) ⊂ D1 ∩ D2 where
D1, D2 are the radius r disks with α(0), α(s) ∈ ∂D1 ∩ ∂D2, see Figure 4 left. Since β is
also short, Theorem 4.21 in the Ref. [22] implies that β([s, `]) ⊂ D1 ∩ D2 with β(s), β(`) ∈
∂D1 ∩ ∂D2. Let L1 and L2 be the lines tangent to ∂D1 and ∂D2 at α(s) = β(s) respectively,
see Figure 4. These lines divide the plane into four quadrants. Since α([0, s]) ⊂ D1 ∩ D2,
the bound on curvature implies that α′(s) can only range in quadrant I. On the other hand,
since β([s, `]) ⊂ D1 ∩ D2, we have that β′(s) can only range in quadrant III. We conclude
that α′(s) 6= β′(s) implying that σ′(s) is not of class C1, contradicting the smoothness of σ.
Therefore, β must have a point in (D1 ∩D2)

c concluding that it is a long curve. We conclude
the proof by noting that this long curve can be split or completed as in Observation 3 to
obtain the desired long arc.
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´ ´´

´

Figure 4. From left to right. The notation for Theorem 2. A long arc with a distinguished end
characterised by Ĉ ∈ S in Theorem 3. An end does not intersect the half disk H supporting its
terminals, otherwise it would admit essential terminals. An illustration of a cross-section.

Definition 4. Consider σ : (t1, t2) ⊂ S1 → R2 such that σ(t), σ(t′) are not essential terminals
for any t, t′ ∈ (t1, t2). Then σ : [t1, t2]→ R2 is called an end. An end is called essential if this is a
subset of an arc whose terminals are essential. An end that is not essential is called inessential.

Theorem 3. A long arc admits an end. The terminals of an end are distant and apart by 2r.

Proof. Let σ : [t∗1 , t∗2 ]→ R2 be a long arc with terminals σ(t∗1), σ(t∗2).
Let S be the set of radius r circles C ⊂ R2 such that σ(t1), σ(t2) ∈ C are the terminals

of an arc σ : [t1, t2]→ R2 satisfying:

• ||σ(t1)− σ(t2)|| ≤ 2r;
• σ([t1, t2]) ⊂ σ([t∗1 , t∗2 ]) has a point above C.

It is easy to see that S is closed and bounded, considered as a subset of the plane
consisting of the centres of the circles C ∈ S. Due to compactness, there exists a circle
Ĉ ∈ S such that σ(t̂1), σ(t̂2) ∈ Ĉ are the terminals of an arc σ : [t̂1, t̂2] → R2 having the
smallest length amongst all the circles in S, see Figure 4. If σ : (t̂1, t̂2)→ R2 admits essential
terminals, then the minimality of the length of σ : [t̂1, t̂2] → R2 is contradicted, since the
existence of essential terminals in σ : (t̂1, t̂2)→ R2 would imply the existence of a shorter
long arc. We conclude that σ : [t1, t2]→ R2 admits an end.

Suppose that the terminals of an end σ(t̂1), σ(t̂2) ∈ Ĉ satisfy ||σ(t̂1)− σ(t̂2)|| < 2r.
Then a small perturbation of Ĉ would reduce the length of the end contradicting the
minimality of the end. The terminals of an end are antipodes in Ĉ ∈ S, concluding the
proof.

Corollary 1. A κ-constrained loop admits an end.

Proof. By Theorem 2 a κ-constrained loop admits a long arc. The result follows by Proposi-
tion 3.

Ends are objects that uniquely characterise families of long arcs. Suppose that σ :
[t̂1, t̂2] → R2 is an end. Then this end may also be the end of the family of long arcs
σ : [t̂1 − ε, t̂2 + ε]→ R2 for some ε > 0. In particular, σ([t̂1, t̂2]) ⊂ σ([t̂1 − ε, t̂2 + ε]).

The detection of essential terminals implies the existence of a long arc, and therefore
the existence of an end. The next result gives to a lower bound for the length of the loop in
between essential terminals.

Theorem 4. A long arc has a length of at least πr.

Proof. By Theorem 3 a long arc admits an end. The result follows after proving that
an end has a length of at least πr. Consider a long arc whose end σ : [0, `] → R2 has
been reparametrised by its arc length given by σ(t) = (−ρ(t) cos θ(t), ρ(t) sin θ(t)) with
ρ, θ : [0, `]→ R2.
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By Theorem 3, the terminals of an end satisfy ||σ(0)− σ(`)|| = 2r. Set a coordinate
system in which the x-axis passes through σ(0) = (−r, 0) and σ(`) = (r, 0) with the origin
being the midpoint between them. We obtain that ρ(0) = ρ(`) = r and θ(0) = 0 and
θ(`) = π. Note that,∫ `

0
||σ′(t)|| dt =

∫ `

0

√
||ρ′(t)||2 + ρ(t)2 ||θ′(t)||2 dt ≥

∫ `

0
ρ(t)||θ′(t)|| dt.

Let H be the radius r half disk with nonnegative ordinates centred at the origin, see
Figure 4. Clearly, the end cannot intersect a point of positive ordinates in ∂H unless the end
coincides with the semicircle ∂H. If so, σ would admit essential terminals and no longer be
an end. We conclude that ρ(t) ≥ r for points in the upper half of the plane. Since θ(`) = π,
we have that ∫ `

0
||σ′(t)|| dt ≥

∫ `

0
ρ(t)||θ′(t)|| dt ≥ πr.

The next result is an inclusion principle for long κ-constrained arcs. This can be viewed
as a half of the Pestov-Ionin theorem [1].

Theorem 5 (Half disk). The region enclosed by a long arc and the line segment connecting its
terminals encloses a half disk of radius r.

Proof. By Theorem 3 a long arc admits an end. In the proof of Theorem 4, we determined
that the end cannot intersect ∂H in a point other than its terminals unless the end coincides
with the semicircle ∂H. In addition, the end cannot intersect the points in ∂H of zero
ordinates other than its terminals, otherwise essential terminals are obtained, contradicting
the definition of end. We conclude that H in Theorem 4 is the desired half disk.

Corollary 2. A κ-constrained loop has length at least 2πr.

Proof. Suppose the loop admits a pair of essential terminals. Then, we apply Theorem 4 to
each of the two long arcs with common essential terminals to conclude that the loop has a
length of at least 2πr.

If the loop admits only inessential terminals, the boundary of a radius r disk D
tangent to the loop cannot intersect the loop transversally. Otherwise, a pair of essential
terminals is obtained. Consider the centre of D to be the origin. We proceed similarly as in
Theorem 4. Consider the arc length parametrised loop σ : [0, `]→ R2 in polar coordinates
σ(t) = (−ρ(t) cos θ(t), ρ(t) sin θ(t)) with ρ, θ : [0, `]→ R2. Since D is enclosed by the loop,
we have that ρ(t) ≥ r. Since θ(`) = 2π, we conclude that

∫ `

0
||σ′(t)|| dt ≥

∫ `

0
ρ(t)||θ′(t)|| dt ≥ 2πr.

Theorem 6. A κ-constrained loop finitely has many essential ends and infinitely has many inessen-
tial ends.

Proof. A loop admitting no essential terminals has an empty set of essential ends, being
finite of cardinality zero.

By Theorem 2 a loop admits a long arc. If the terminals of the long arc are essential,
then two long arcs share these terminals. By applying Theorem 3 to both arcs, we establish
the existence of distinct ends. By Theorem 4 a long arc has a length of at least πr. Therefore,
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there must be a finite number of essential ends. Otherwise, the rectifiability of the loop
would be contradicted.

If the long arc obtained by Theorem 2 is inessential, its terminals are also the terminals
of a short arc. In addition, every pair of inessential terminals has a unique inessential end.
Since loops are parametrised in a continuum, there are infinitely many choices of inessential
terminals, concluding the proof.

Definition 5. An arc σ : I → R2 has parallel tangents if there exist t1, t2 ∈ I, with t1 < t2, such
that σ′(t1) and σ′(t2) are parallel and pointing in opposite directions.

Definition 6. Let L1 and L2 be the lines x = −r and x = r, respectively. A line joining two points
in σ : [t1, t2]→ R2 is distant and apart by at least 2r; one to the left of L1 and the other to the right
of L2 is called a cross-section, see Figure 4 on the right.

Next we prove the existence of a cross-section and parallel tangents as in Corollary 3.4
in the Ref. [22], but here using the existence of ends.

Corollary 3. A long arc has a cross-section, parallel tangents and length of at least 2r.

Proof. By Theorem 3 a long arc admits an end σ : [t̂1, t̂2]→ R2. Since ||σ(t̂1)− σ(t̂2)|| = 2r,
the long arc admits a cross-section. Therefore, the end has a length of at least 2r, and also
the long arc containing it.

According to the proof of Theorem 3 the terminals of an end are antipodes in Ĉ ∈ S

and the end is of minimal length amongst all the choices for terminals in C ∈ S. Let L be
the line joining the terminals and L1, L2 be the perpendicular lines to L at each terminal.
The maximality of Ĉ implies that locally, the trajectory of the end after the first terminal
must be to the left of L1 (or coincides with L1) and the trajectory of the end before the
second terminal must be to the right of L2 (or coincides with L2). Otherwise, we find
essential terminals, leading to a contradiction.

If the trajectories coincide with the parallels, then there exist parallel tangents. If none
of the trajectories coincides with the parallels, by continuity, the end intersects L1 and L2 at
points other than the terminals, see Figure 4 on the right. By the mean value theorem, there
exist t1, t2 ∈ [t̂1, t̂2] such that σ′(t1) and σ′(t2) are parallel pointing in opposite directions.
The case when only one trajectory coincides with a parallel runs similarly.

Observation 4. Let σ : S1 → R2 be a κ-constrained loop. In Corollary 2 we proved that
length(σ) ≥ 2πr. In Theorem 2 we proved that σ admits a long arc. In Theorem 3 we proved that a
long arc admits an end. Ends by definition are proper subsets of long arcs. In Theorem 4 we proved
that length(long arc) ≥ πr. From Corollary 3 we have that a long arc admits a cross-section with
length(cross-section) ≥ 2r. We derive the following:

length(σ) > length(long arc) > length(end) > length(cross-section).

The following result establishes that a κ-constrained curve whose terminals are distant
and apart less than 2r cannot make a U-turn while defined in the open band of width 2r
without violating the curvature bound, see Figure 2 on the right.

Lemma 1 (Lemma 3.1 in [22]). A κ-constrained curve σ : [t1, t2]→ B where,

B = {(x, y) ∈ R2 | − r < x < r , y > 0}

cannot satisfy both:

• σ(t1), σ(t2) are points on the x-axis;
• If C is a radius r circle with the centre on the nonpositive y-axis and σ(t1), σ(t2) ∈ C, then

some point in σ([t1, t2]) lies above C.
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Observation 5. Lemma 1 remains valid if we consider ||σ(t1)− σ(t2)|| = 2r. However, in this
case, we must consider σ : (t1, t2)→ B, see Figure 2 on the right.

The next result provides a characterisation of convexity through curvature. A regular
closed plane curve is convex if and only if it is the boundary of a convex set K ⊂ R2 [24].
Next we assert on the convexity of ∂K to conclude on the convexity of K.

Theorem 7. If K ⊂ R2 is a domain with boundary ∂K = σ a κ-constrained loop admitting a
pair of essential terminals. Then, K is not convex. If K ⊂ R2 is a convex domain with boundary
∂K = σ a κ-constrained loop. Then, ∂K = σ admits only inessential terminals.

Proof. Since a regular simple closed convex plane curve always has two and only two
parallel tangents to any given direction [25], we contradicted convexity by searching for a
third one. We borrowed the notation from Corollary 3.

Consider a long arc with essential terminals. By Corollary 3 this long arc admits two
parallel tangents located somewhere at an end whose existence is guaranteed by Theorem 3.
Next, we analyse the trajectory for the loop before and after the terminals of the end. Let
σ(t̂1 − ε) and σ(t̂2 + ε) be points sufficiently close to the terminals of the end, ε > 0, see
Figure 5. We have some cases:

1. σ(t̂1 − ε), σ(t̂2 + ε) lie in between L1 and L2.
2. σ(t̂1 − ε) lies to the right of L1 and σ(t̂2 + ε) lies to the right of L2.
3. σ(t̂1 − ε) lies to the left of L1 and σ(t̂2 + ε) lies to the left of L2.
4. σ(t̂1 − ε) lies to the left of L1 and σ(t̂2 + ε) lies to the right of L2.

Proof of (1). Note these are the terminals of two long arcs, from one of which we
already obtained a pair of parallel tangents. By Lemma 1 the second long arc cannot be
entirely defined in the open band in between L1 and L2, see Figure 5 on the left. Therefore,
the loop must abandon the band and reenter it. Suppose the loop leaves and reenters
the band intersecting L2 twice, see the second illustration in Figure 5. By the mean value
theorem, there exists another pair of parallel tangents implying that the loop has three
parallel tangents, concluding that it cannot be the boundary of a convex set. The case
where the loop leaves and reenters the band intersecting L1 twice is analogous. If the loop
intersects L1 and L2, we obtain four parallel tangents, so it cannot be the boundary of a
convex set, see the third illustration in Figure 5.

The cases (2) and (3) run similarly. The case (4) is illustrated in Figure 5 on the
right, and also runs similarly. In general, any possible way of connecting the terminals
σ(t̂1 − ε), σ(t̂2 + ε) would lead to at least a third parallel tangent, concluding the proof.

Figure 5. The first three figures illustrate case (1) below. The last figure illustrates case (4).

Definition 7. Consider the domain delimited by a long arc and the line segment connecting its
terminals. If this is included in the bounded plane region separated by a κ-constrained loop, we call
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it internal. If this is included in the unbounded region separated by a κ-constrained loop, we call it
external. Certain domains are neither internal nor external.

We can easily determine whether domains are internal or external by the means of a
parity function counting the number of times a ray based at a point in the domain crosses a
the loop.

The next result gives necessary and sufficient conditions for the existence of rolling
disks for planes, not necessarily convex domains, whose boundaries are κ-constrained curves.

Observation 6. If K is internally rolling, then ∂D(t) ∩ ∂K with D(t) ⊂ cl(K) can only be a
singleton, a pair of antipodal points in D(t), or an arc in D(t), see Definition 1.

Theorem 8. Let K ⊂ R2 be a domain with boundary ∂K = σ a κ-constrained loop. Then,

1. K is internally rolling if and only if ∂K does not admit a pair of essential terminals for
complementary internal long arcs.

2. K is externally rolling if and only if ∂K does not admit a pair of essential terminals for
complementary external long arcs, one bounded and the other unbounded.

3. K is rolling if and only if K admits only inessential terminals. Here, K is not necessarily
convex.

Proof. (1) Suppose K is internally rolling. Then, for each σ(t) ∈ ∂K there exists a radius
r disk D(t) ⊂ cl(K). Suppose ∂K admits a pair of essential terminals for complementary
internal long arcs. Since the distance between essential terminals is less than 2r we have that
no disk tangent to an essential terminal can be included in cl(K) leading to a contradiction.

Conversely, suppose ∂K does not admit a pair of essential terminals for complementary
internal long arcs. If K is not internally rolling, then there exists a radius r disk D(t) tangent
to ∂K at σ(t) such that ∂D(t) ∩ ∂K has an element different from the ones in Observation 6.
Let σ(t∗) be such an element. Since D(t) is tangent at σ(t) Lemma 1 implies that the arc
σ : [t, t∗]→ R2 as a point above ∂D(t), implying this arc is long, concluding that σ(t), σ(t∗)
are essential terminals, leading to a contradiction.

Case (2) runs similarly as (1) after replacing the internal with the external. The existence
of an unbounded long arc comes from the non-compactness of R2. In Figure 1 on the left we
show a non-externally rolling domain admitting a pair of essential terminals, in this case,
the line joining the terminals decomposes the plane into one external region homeomorphic
to a disk, and one unbounded region. Note that by adding a point at the infinite to R2 the
unbounded long arc becomes bounded.

(3) Since K is rolling if and only if it is internally and externally rolling, the proof
follows by combining (1) and (2). Note that sets admitting only inessential terminals are
not necessarily convex.

We present an updated version for the Blaschke rolling disk theorem [2] for C1 and
piecewise C2 simple closed curves satisfying a bound on absolute curvature.

Theorem 9. Suppose that a convex domain K ⊂ R2 has boundary ∂K = σ a κ-constrained loop.
Then K is rolling.

Proof. By Theorem 7 a convex domain with a boundary with a κ-constrained loop admits
only inessential terminals. The result follows by (3) in Theorem 8.

3. Rolling Disk Decomposition

In Theorem 8 we established that a domain K ⊂ R2 is rolling if and only if ∂K does
not admit essential terminals. Next, we propose a method for obtaining a finite collection of
maximal (internal or external) rolling regions for a domain that is not necessarily internally
or externally rolling.
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Theorem 10. Suppose a domain K ⊂ R2 has boundary ∂K = σ with a κ-constrained loop. Then
there exists a decomposition of R2 \ ∂K into a finite number of maximal (internal or external) rolling
regions and certain excluded regions.

Proof. Suppose ∂K = σ is a loop with only inessential terminals. Then, Theorem 8 implies
that K is rolling. The decomposition of R2 \ ∂K consists exactly of the two planar regions
separated by the loop.

Suppose ∂K = σ is a loop admitting a pair of essential terminals.

1. Rolling algorithm: We proceed to construct a domain such that for each element on
its boundary, there exist disks of radius r = 1/κ tangent to the boundary included in
the domain.
By the Pestov-Ionin theorem [1] the bounded region delimited by the loop encloses a
radius r disk D0 that can be chosen to be tangent to ∂K. With Definition 1 in mind,
proceed to roll clockwise D0 until it first intersects the loop at a point other than the
tangent point at ∂K. If the first intersecting point is one of the types described in
Observation 6, we continue the rolling process until we obtain a pair of essential
terminals tangent to the boundary of a rolling disk, see Figure 6. Let D1 be the rolling
disk containing such essential terminals on its boundary and let λ1 be the shortest arc
in ∂D1 connecting these terminals. Replace one of the two long arcs by λ1. The long
arc replaced was chosen to be the one having a point to the “above” (to the left) of λ1,
see Lemma 1.
We continued this rolling and replacing process until cyclically we returned to the
starting replacement λ1 = λk+1. Since each of the detected essential terminals char-
acterise a unique long arc and those loops are rectifiable, the replacing process must
be finite. Let R1 be the domain enclosed by the cyclic concatenation of the portions
of ∂K rolled by {Dj}k

j=1 together with the replacing arcs {λj}k
j=1, see Figure 6 on the

right. Clearly, R1 is maximal with respect to the set inclusion. Note that the piecewise
smooth curve traced by the center of the rolling disks uniquely determines R1.

Figure 6. An example of the rolling algorithm for k = 3. The grey region depicts R1.

2. Necks: In the previous step we exchanged k long arcs by k (replacing) arcs. Now, we
concentrate on each of the replaced long arcs. Consider the rolling disk Dj containing
the replacing arc λj whose terminals σ(t1j), σ(t2j) are also the (essential) terminals of
the replaced long arc.
By continuously sweeping along the long arc σ : [t1j, t2j] → R2 with a family of
circles C ∈ S (similarly as in Theorem 3), we determine the existence of an end, see
Corollary 1. Let D0

j be a radius r disk tangent to one of the terminals of the end, see

Figure 7. The case where D0
j intersects ∂K = σ transversally is treated in (3). Roll

D0
j towards the line connecting the terminals of the end to obtain a pair of essential

terminals. Let D1
j be the radius r disk containing on its boundary such terminals

denoted by σ(t3j), σ(t4j).
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Figure 7. An example of the process described in (2) for j = 2 according to Figure 6. The coloured
"parallel arcs" depict a neck. The loop intersects transversally ∂D0

2 at several points.

Due to the continuous circle sweeping each of the arcs, σ : [t1j, t3j] → R2 and σ :
[t4j, t2j] → R2 may be short or simple, but never long. Let a neck be conformed by
the two "parallel arcs" in a loop obtained as above. In this case, we obtained the neck
σ([t1j, t3j]) ∪ σ([t4j, t2j]), see the third illustration in Figure 7. Note that a neck is a set
of "parallel essential terminals". The regions enclosed by a neck and their respective
replacement arcs are clearly (excluded) not the rolling domain.

3. Disk intersections: If D0
j transversally intersects the loop, then D0

j encloses a portion
on a (excluded) not rolling domain. In this case, we consider pairs of elements in
∂D0

j ∩ ∂K and apply to them the turning condition in Definition 2 to determine the arc

type, see Figure 7 on the right. Select the essential terminals in ∂D0
j ∩ ∂K and proceed

to apply the procedure in (2) to determine their associated necks. Note some excluded
regions may have as part of its boundary a replacement arc.
If D1

j only intersects the loop according to Observation 6 and at the detected essential
terminals, we then apply the rolling algorithm in (1) to obtain another rolling domain.
By recursively applying this process, we obtained a decomposition of R2 \ ∂K into a
finite number of excluded regions and a finite number of rolling regions. It is easy
to see that this decomposition is unique and maximal with respect to set inclusion,
concluding the proof.

4. Conclusions

In conclusion, we have conducted a thorough examination of the relationship between
the absolute curvature bound of a smooth plane Jordan curve and the presence of equivalent
classes of distinctive disks with a radius of 1/κ. Our results include a “half version” of the
Pestov-Ionin theorem and proof of the existence of half disks for curves that are not close.
We also established the convexity and non-convexity of a domain based on its boundary
terminals. Our analysis provides necessary and sufficient conditions for a planar domain
to exhibit internally rolling, externally rolling, or both. Additionally, we have developed an
algorithm for dividing a planar domain into a finite number of maximal rolling regions
and updated the classical Blaschke rolling disk theorem.
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