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Abstract: The state feedback controller design for a class of Generalized Proportional Fractional
Order (GPFO) Nonlinear Systems is presented in this paper. The design is based on the combination
of the One-Sided Lipschitz (OSL) system class with GPFO modeling. The main contribution of this
study is that, to the best of the authors’ knowledge, this work presents the first state feedback control
design for GPFO systems. The suggested state feedback controller is intended to ensure the system’s
generalized Mittag Leffler (GML) stability and to deliver optimal performance. The findings of this
paper show that the proposed strategy is effective in stabilizing Generalized Proportional Fractional
Order Nonlinear Systems. A numerical example is presented to demonstrate the usefulness of the
stated theoretical conclusions.

Keywords: Generalized Proportional Fractional Differential Equations; Generalized Proportional
Fractional Derivative; state feedback controller; Lipschitz; One-Sided Lipschitz

1. Introduction

GPFDEs (Generalized Proportional Fractional Differential Equations) are a form of
mathematical equation that describes the temporal evolution of a system using fractional
derivatives of non-integer order. These equations are used to simulate a wide range of
physical and biological phenomena, such as anomalous diffusion, fractional oscillators, and
aging processes. GPFDEs are broader than classical differential equations and can describe
systems with memory and non-local interactions more accurately. In [1], the authors have
introduced a revolutionary fractional derivative. This new derivative, dubbed the “Gen-
eralized Proportional Fractional Derivative (GPFD)”, retains the semigroup feature while
embracing its nonlocality. As a result, under limiting cases, it easily transitions from the
original function to its derivative, as seen in [2]. A fractional derivative with a non-singular
kernel function and a non-local operator is known as a GPFD. When compared to tradi-
tional derivatives such as the integer-order derivative and the Caputo Fractional Derivative
(CFD), it is a more generic and versatile tool for describing complicated processes. GPFD
is very beneficial for dealing with memory and non-locality systems, such as diffusion
processes, viscoelasticity, and anomalous transport. Furthermore, the GPFD allows for the
consideration of varying order derivatives, allowing for the capture of various degrees of
smoothness or roughness in the underlying signal. Overall, the GPFD is an effective tool
for modeling and evaluating complex systems in physics, engineering, and finance [3–5].
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State Feedback Controller Design for Nonlinear Systems, on the other hand, is a
hard and active topic of study in control systems engineering. Because of nonlinearities,
uncertainties, and disturbances, nonlinear systems display complicated behaviors and are
frequently difficult to manage. Numerous research has been conducted in recent years with
the goal of establishing state feedback control techniques for nonlinear systems. Refs. [6–9]
are some recent references on this subject. These references highlight current attempts to
create nonlinear state feedback control techniques. Ref. [6] offers a state-feedback control
technique for nonlinear systems based on adaptive dynamic programming and feedback
linearization. Ref. [7] provides an adaptive state-feedback control approach for nonlinear
systems with time-varying delay, whereas [8] develops a state-feedback control technique
for nonlinear neural network systems. These recent breakthroughs in state feedback control
design for nonlinear systems emphasize ongoing research efforts in this subject and the
creation of new and improved control techniques for solving nonlinear system difficulties.
In [9], the authors have suggested an LMI-based study about state feedback stability for
Lipschitz uncertain systems, with time delay. On the other hand, some other works have
focused on output feedback control, rather than state feedback control. This is the case
in [10], where the authors have investigated the output-tracking problem of high-order
time-delayed nonlinear systems. Another interesting work [11] has tackled the output
feedback control problem for uncertain linear systems, using the separation principle.

Stabilization has gained a lot of attention in recent years when it comes to Fractional
Order Nonlinear Systems (FONSs). Fractional calculus has shown to be a useful tool for
modeling complicated systems, with numerous applications in physics, engineering, and
biology. In a noteworthy study [3], the authors have investigated the stability of a class
of Fractional-Order delayed artificial neural networks. Control and design of FONSs rely
heavily on stability analysis. Several strategies for stabilizing FONSs have been presented
in recent years. One of the most recent references is Zhang et al. [12], where the authors
proposed a sliding mode control technique for the stabilization of fractional order chaotic
systems. The authors conducted a theoretical study of fractional order chaotic system
stability and demonstrated that the suggested sliding mode control rule may successfully
stabilize the system. Another recent reference is the work of Liu et al. [13], which presented
a backstepping control approach for the stabilization of FONSs with uncertainties. The
authors formulated necessary requirements for the stability of FONSs and demonstrated
that the suggested backstepping control rule may successfully stabilize the system even
when uncertainties exist. In a noteworthy study, Wang et al. [14] suggested a fuzzy control
approach for the stabilization of FONSs with uncertainties in their study. The authors
performed a stability analysis of FONSs and demon strated that the suggested fuzzy
control rule may successfully stabilize the system even when uncertainties exist. The recent
paper [15] investigated the synchronous control of a class of fractional chaotic systems. In
the end of this paragraph, it is important to highlight that more study is needed to solve
the issues of FONS stabilization and to create more efficient control approaches. Finally,
in [16], the authors have tackled the synchronization of a class of Fractional-Order delayed
artificial neural networks.

Some criteria may be taken into account while stabilizing nonlinear systems. Regard-
ing the linearity aspect, writers typically utilize the nonlinear Lipschitz condition or the
One-sided Lipschitz (OSL) condition. The OSL system class is a large category of nonlinear
systems. The OSL constant can be smaller than the Lipschitz constant, and this difference
can have a major influence even in basic nonlinear systems [17–19]. The importance of
the OSL condition arises from its capacity to ensure the stability of nonlinear systems.
This condition establishes constraints on the system’s behavior, allowing predictions and
preventing instability. The OSL condition is frequently used in the field of control and opti-
mization because it provides a helpful tool for constructing stable nonlinear control systems.
Furthermore, the combination of fractional order modeling with the OSL condition can
improve the stability of nonlinear systems, making it a viable alternative for dealing with
complicated control and optimization issues. The OSL condition is a feature of particular
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functions that can provide varied benefits in specific applications. The advantages of the
OSL class of systems include, first and foremost, a broader range of systems than the stan-
dard Lipschitz category. Second, =algorithm convergence should be considered: because
many optimization techniques rely on the Lipschitz continuity of the gradient or Jacobian
function to ensure convergence, the OSL condition can help ensure the convergence of
these algorithms.

The combination of the OSL class of systems with the Generalized Proportional (GP)
Fractional Order modeling to solve the stabilization challenge for a wide variety of FONSs
is this work’s main contribution. No previous study, to the best of our knowledge, has
addressed the state feedback control problem for Generalized Proportional FONSs.

2. Preliminaries and System Description

In this part, the basic Definitions and Lemmas are presented, as well as some Remarks
related to the GPFD and the Generalized Fractional Proportional Integral (GFPI).

Thus, we remember that the GP fractional operators of the function ∈ AC([a, b],R),
a < b, are defined as follows (see [20]):

- The GFPI:

I α,λ
t0,tv(t) =

1
λαΓ(α)

t∫
t0

e
λ−1

λ (t−s)(t− s)α−1v(s)ds, f or t ∈ (a, b], α > 0, 0 < λ ≤ 1.

- The GPFD:

CDα,λ
t0,tv(t) = I1−α,λ

t0,t D1,λ
t v(t) =

1
λ1−αΓ(1− α)

t∫
t0

e
λ−1

λ (t−s)(t− s)−αD1,λ
t v(s)ds, f or t

∈ (a, b], 0 < α < 1, 0 < λ ≤ 1,

where D1,λ
t v(s) = (1− λ)v(s) + λv′(s).

The previous equation defines the GPFD as an extension of the CFD (λ = 1).

Lemma 1 [21]. Let 0 < α < 1, 0 < λ ≤ 1 and S be a constant and symmetric, definite positive
matrix. Then,

CDα,λ
0,t vTSv(t) ≤ 2vT(t)SCDα,λ

0,t v(t).

Definition 1 [2]. The Mittag-Leffler (ML) functions can be defined with one or two parameters,
respectively, as follows:

Eα(z) =
∞

∑
k=0

zk

Γ(1 + kα)
and Eα,β(z) =

∞

∑
k=0

zk

Γ(β + kα)
.

Consider the system:

CDα,λ
0,t w(t) = φ(w, t) for t ≥ 0, λ ∈ (0, 1), α ∈ (0, 1] (*)

Definition 2 [22]. Let α ∈ (0, 1) and λ ∈ (0, 1]. The equilibrium point w = 0 of (*) is called
GML stable if ∃ h, µ, γ > 0 such that for ∀ w(·) of (*), the inequality.

‖w(t)‖ ≤ m(‖(w(0)‖)eh λ−1
λ t(Eα(−µtα))γ, t ≥ 0,

is satisfied, where Eα(z) is the ML function with one parameter, m(s) ≥ 0, m(0) = 0, is a given
locally Lipschitz function.

Lemma 2 [9,10]. (Schur Complement Lemma): Given constant matrices M, N, and Q, of appro-
priate dimensions, where M and Q are symmetric, then:



Symmetry 2023, 15, 1168 4 of 10

{
Q > 0

M + NTQ−1N < 0
if and only if

[
M NT

N −Q

]
< 0

Lemma 3 [20]. For any matrices x ∈ Rn and y ∈ Rn and any P ∈ Rn×n
+ the following is true:

2xTy ≤ xT Px + yT P−1y

Talking about nonlinearity, most of published research works use the classical Lipschitz
nonlinearity (given in Definition 3). In this work, we rather assume that the system
nonlinearity verifies the OSL condition and the “Quadratically Inner Bounded” condition,
as detailed in the next lines.

Definition 3. A nonlinear function f (x) is a Lipschitz in Rn with a Lipschitz constant α̃, i.e.,

‖ f (x1)− f (x2)‖ ≤ α̃‖x1 − x2‖ (1)

Assumption 1. The nonlinear function f (x, u) is OSL in Rn with a OSL constant ρ, i.e.,

〈 f (x1, u)− f (x2, u), x1 − x2〉 ≤ ρ‖x1 − x2‖2 (2)

Assumption 2. The nonlinear function f (x, u) is Quadratically Inner Bounded (QIB) in Rn, i.e.,

‖ f (x1, u)− f (x2, u)‖2 ≤ β‖x1 − x2‖2 + γ〈 f (x1, u)− f (x2, u), x1 − x2〉 (3)

This study focuses on the examination of the nonlinear fractional order system pre-
sented below: {

CDα,λ
0,t x(t) = Ax(t) + Bu(t) + f (x(t)),

y(t) = Cx(t),
(4)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n

are assumed to be known constant matrices. Additionally, it is supposed that (A, B) is
stabilizable and f (·) : Rn → Rn .

3. State Feedback Controller Design for Lipschitz Fractional Order Nonlinear System

In this section, the nonlinear part is assumed to be Lipschitz satisfying the condition (2).
A state feedback controller is proposed. Regarding this objective, the state feedback control
input is considered to be:

u(t) = −Kx(t), (5)

where K ∈ Rm×n is the constant matrix gain as determined by Theorem 1.

Theorem 1. Consider the system described in Equation (4) with the control input described in
Equation (5). Under condition (1), if a constant positive scalar ζ, a matrix G ∈ Rm×n, and a
symmetric positive definite matrix Q ∈ Rm×n exist, then the origin of the system of Equation (1) is
GML stable if : AQ + QAT − GT BT − BG +

1
ζ

In Q

Q − 1
α̃2ζ

 < 0, (6)

where the gain K is obtained from K = GQ−1.

Proof. The closed-loop dynamical system is obtained from substitution of Equation (5) in
Equation (4) as:

CDα,λ
0,t x(t) = (A− BK)x(t) + f

(
x(t)

)
(7)
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One selects the Lyapunov candidate function V(t, x) = xT Px where P ∈ Rn×n such as
P = PT > 0. Using Lemma 1, and substituting f

(
x(t)

)
by f , the derivative of V along (6)

is obtained:

CDα,λ
0,t V(t, x) ≤ xT

[
(A− BK)T P + P(A− BK)

]
x + 2 f Px

≤ xT
[
(A− BK)T P + P(A− BK) + α̃2ζ In +

1
ζ P2

]
x

= xTΛx,

(8)

where ζ > 0 and Λ = (A− BK)T P + P(A− BK) + α̃2ζ In +
1
ζ P2.

Note that, according to Lemma 3, the following fact was utilized:

2 f Px ≤ 2‖ f ‖‖Px‖
≤ 2α̃‖x‖‖Px‖

≤ xT
[
α̃2ζ In +

1
ζ P2

]
x,

(9)

To ensure the stability of the controlled system, we must have Λ < 0. This matrix
inequality may be rewritten as:

AQ + QAT − GT BT − BG + α̃2ζQ2 +
1
ζ

In < 0, (10)

where Q = P−1 and G = KQ.
In this case, ∃r > 0 such that CDα,λ

0,t V(t, x) < −rV(t, x). Using Lemma 2, inequal-
ity (10) is equivalent to (6). Therefore, it follows from Corollary 2 in [22] that the origin of
the system is GML stable. �

Remark 1. Theorem 1 presents a fundamental extension of the classical feedback control law for
Lipschitz nonlinear systems [23], providing a comprehensive generalization. Specifically, in the
context of Generalized Proportional Fractional order nonlinear systems, this unique generalization
has not been addressed in existing literature.

4. State Feedback Controller Design for OSL Fractional Order Nonlinear System

In this section, the nonlinear part is assumed to be OSL and QIB satisfying condi-
tions (2) and (3). The same state feedback controller is proposed (5).

The following Theorem shows our main result for this section:

Theorem 2. One considers the system (4). Under conditions (2) and (3), the control law (5)
stabilizes system (4) if there exist matrices Q = QT > 0, W and positive scalars τ1, τ2 and ε, such
that the following LMI holds:

QAT + AQ−WBT − BWT P + 2(τ2γ− τ1)I Q
∗ −2τ2 I 0

∗ ∗ − 1
µ + ε

I

 < 0, (11)

where Q = P−1 and W = P−1KT , and µ = 2τ1ρ + 2τ2β.

Proof. Let: V(t, x) = xT Px. Using (4), (5), and Lemma 1, and substituting f (x(t)) by f ,
we obtain:

CDα,λ
0,t V(t, x) ≤ CDα,λ

0,t xT Px + xT pCDα,λ
0,t x

≤
(
(A− BK)x + f

)T Px + xT P
(
(A− BK)x + f

)
≤ xT((A− BK)T P + P(A− BK)

)
x + 2 f T Px

(12)
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From (2), it follows that, for any τ1 ≥ 0:

2τ1

(
ρxTx− xT f

)
≥ 0 (13)

From (3), we receive for any τ2 ≥ 0:

2τ2

(
βxTx + γxT f − f T f

)
≥ 0. (14)

Using (12)–(14), it can be concluded that:

CDα,λ
0,t V ≤ xT((A− BK)T P + P(A− BK)

)
x + 2 f T Px + 2τ1

(
ρxTx− xT f

)
+2τ2

(
βxTx + γxT f − f T f

)
≤ xT((A− BK)T P + P(A− BK) + 2τ1ρ + 2τ2β)x + 2 f T(P + 2(τ2γ− τ1)I)x− 2τ2 f T f

≤ xT((A− BK)T P + P(A− BK) + µ+ ε)x + 2 f T(P + 2(τ2γ− τ1)I)x− 2τ2 f T f − εxTx

(15)

Let Ω = xT((A− BK)T P + P(A− BK)+ µ+ ε)x+ 2 f T(P + 2(τ2γ− τ1)I)x− 2τ2 f T f
If Ω < 0, then: CDα,λ

0,t V ≤ −εxTx. Then, using Corollary 2 in [16], x = 0 is GML stable.
On the other hand,

Ω < 0
⇔[(

A− BK)T P + P(A− BK
)
+ (µ+ ε)I P + 2(τ2γ− τ1)I

∗ −2τ2 I

]
< 0

(16)

By multiplying (16) on the left and on the right by
[

P−1 0
0 0

]
, we can find:

[
P−1((A− BK)T P + P(A− BK

)
+ (µ+ ε)I

)
P−1 P + 2(τ2γ− τ1)I

∗ −2τ2 I

]
< 0 (17)

Let W = P−1KT and Q = P−1. Then (16) will become:[
QAT + AQ−WBT − BWT + (µ+ ε)Q2 P + 2(τ2γ− τ1)I

∗ −2τ2 I

]
(18)

Using Lemma 2, (18) is equivalent to:QAT + AQ−WBT − BWT P + 2(τ2γ− τ1)I Q
∗ −2τ2 I 0
∗ ∗ − 1

µ+ε I

 < 0 (19)

This ends the proof. �

Remark 2. Theorem 2 introduces a significant expansion of the scope covered by Theorem 1. In
particular, the class of systems considered in Theorem 2 is broader than the initial class in Theorem 1.
Furthermore, the chosen class pertains to OSL nonlinear systems. Moreover, the extension of the
feedback control law to encompass the class of Generalized Proportional Fractional order nonlinear
systems is distinctive and has not been addressed in the existing literature.
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5. Simulation Results

This section includes a simulation study featuring a numerical illustrative example,
which aims to verify the effectiveness of the suggested method for stabilizing the proposed
class of FONSs. The system presented in Equation (4) can be described as follows:

A =

[
−3 1
1 1

]
, B =

[
3
0

]

f (x, u) = 0.1
[

sin(x2)
sin(x1)

]
,

By setting ρ = 0.1, β = 0.01, and γ = 0, conditions (2) and (3) are adequately met. We
utilize the MATLAB LMI toolbox to solve the LMI (11), which yields the following outcome:

Q =

[
0.438 −0.1018
−0.1018 0.515

]

W =

[
0.0756
0.1145

]
,

P =

[
4.2266 8.3593
8.3593 35.9537

]
,

K =
[
1.2771 4.7503

]
,

(A− BK) =
[
−6.2301 −12.5678

1 1

]
,

The simulation is initialized with the condition x0 = (0.2 − 0.3). Using different
values of α and λ, we have generated simulations of the trajectories of x1 and x2 for the
interval [0 1.5], with a time step of 2−10. These simulations are visually represented in
Figures 1–4.
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The figures presented, namely Figures 1–4, showcase the convergence of the system
states towards zero with various values of α and λ. Specifically, the Mittag-Leffler conver-
gence of the system states is observed through these figures. The results presented in the
figures provide strong evidence for the efficacy of the proposed control approach.

6. Conclusions

In this work, a state feedback controller has been designed for a category of GPFO
Nonlinear Systems. The design has been based on the integration of the OSL class of
systems and GPFO modeling. This study aims to stabilize a broad range of fractional order
nonlinear systems, which has not been tackled in prior research. The stabilization method
has been designed to guarantee the GML stability of the system and achieve desirable
performance. The outcomes of this work showcase the feasibility and efficiency of the
suggested approach in stabilizing GPFO nonlinear systems. To guarantee the practicality
of the proposed theoretical results, an illustrative numerical example has been presented.
As a future outlook, this work can be expanded to include other control techniques such as
fuzzy control, sliding mode control, backstepping control, etc. Furthermore, the inclusion
of a practical example would offer an opportunity to showcase the real-world applicability
of our theoretical framework, enabling practitioners to witness firsthand its effectiveness in
solving practical problems. Moreover, incorporating a practical example in future research
endeavors would not only serve as a means of validating our theoretical findings but also
facilitate the identification of potential challenges, limitations, and avenues for further
improvement, ultimately enhancing the practical value and impact of our work.
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