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Abstract: The q-symmetric analogues of Hölder, Minkowski, and power mean inequalities are
presented in this paper. The obtained inequalities along with a Montgomery identity involving
q-symmetric integrals are used to extend some Ostrowski-type inequalities. The q-symmetric deriva-
tives of the functions involved in these Ostrowski-type inequalities are convex or s-convex. Moreover,
some Hermite–Hadamard inequalities for convex functions as well as for s-convex functions are also
acquired with the help of q-symmetric calculus in the present work. Some examples are included to
support the effectiveness of the proved results.
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1. Introduction

Convex functions play an important role in many areas of mathematics. They are
important for the study of optimization problems, where they are distinguished by a
number of convenient properties. Classical convex function have several extensions. Some
concepts in this regard include Pseudo-convex functions [1], E-convex functions [2], s-convex
functions [3], and m-convex functions [4]. Among others, the present study is restricted to
s-convex functions. W. Orlicz [5] introduced s-convexity in the first sense in 1961. In 1978,
Breckner [6] provided a slight modification to it, which is known as s-convexity in the second
sense. H. Hudzik and L. Maligranda discussed both of these two kinds of s-convexity in [3].
They showed that s-convexity in the second sense (0 < s ≤ 1) is stronger than s-convexity
in the original sense (first sense) whenever 0 < s < 1.

Quantum calculus, which is known as q-calculus (where q stands for quantum), was
introduced by Euler and Jacobi before F.H. Jackson in the early twentieth century. Numer-
ous mathematical fields, including number theory, combinatorics, orthogonal polynomials,
fundamental hyper-geometric functions, and other sciences, including physics and the
theory of relativity, have used it successfully [7–12].

Da Cruz et al. [13] introduced the concept of q-symmetric variational calculus.
The q-symmetric derivative has essential qualities for the q-exponential function. Many
researchers have applied the idea of q-symmetric calculus from different perspectives and
have established certain subclasses of analytic functions, geometric functions, and, most
particulary, quantum mechanics [14–16].

In many practical problems, it is necessary to restrict one quantity from another.
For this, classical inequalities, including Hermite-Hadamard-, Jensen-, and Ostrowski-type
inequalities are quite helpful. Many researchers have demonstrated various inequalities
with error estimates of the functions of bounded variation, Lipschitzian, monotone, abso-
lutely continuous, and convex functions, as well as n-times differentiable mappings [17–20].
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Additionally, the research on q-integral inequalities is quite significant, and several researchers
have explored integral inequalities in depth, whether in classical analysis or quantum me-
chanics. More precisely, some inequalities involving convexity or s-convexity [20–22] and
q-integrals are studied in [7,18,23–26].

The aim of the present work is the study of some Ostrowski and Hermite–Hadamard
inequalities in the framework of q-symmetric calculus. The paper is organized as follows.
In Section 2, convex functions, s-convex functions (in the second sense), and q-symmetric
derivatives and integrals are recalled along with their properties. In Section 3, Hölder,
Minkowski, and power mean inequalities are studied with the help of q-symmetric integrals.
In Section 4, some Ostrowski-type inequalities are proved with the help of a q-symmetric
analogue of the Montgomery identity together with the inequalities proved in Section 3.
Section 5 deals with q-symmetric Hermite–Hadamard inequalities for convex as well as
for s-convex functions (in the second sense). A summary of the findings is discussed
in Section 6.

2. Preliminaries

Some basic concepts of convexity, s-convexity, and q-symmetric derivatives and inte-
grals are recalled in this section, which have been used in rest of the paper.

Mid-Point Convex Function:

A function H1 : J1 → R is said to be mid-point convex function if

H1(θ1 + δ1)

2
≤ 1

2
(H1(θ1) + H1(δ1)), (1)

holds for all θ1, δ1 ∈ J1.

Convex Functions:

Assume that H1 : J1 ⊂ R+ → R is said to be a convex function if

H1(t1θ1 + (1− t1)δ1) ≤ t1H1(θ1) + (1− t1)H1(δ1), (2)

holds for all θ1, δ1 ∈ J1 and t1 ∈ [0, 1].
By choosing t1 = 1

2 in (2), one obtains (1).
The definition of an s-convex function in the second sense is defined by Breckner [6] as:

s-Convex Functions:

A function H1 : R+ → R is said to be an s-convex function in the second sense if

H1(t1θ1 + (1− t1)δ1) ≤ ts
1H1(θ1) + (1− t1)

s H1(δ1), (3)

for each θ1, δ1 ∈ R+ where t1 ∈ [0, 1] and s ∈ (0, 1]. Moreover, by choosing s ∈ (0, 1),
(3) defines s-convexity in the first sense [5]. By taking s = 1 in (3), one obtains (2). Therefore,
all convex functions are s-convex functions.

The following definitions and related properties are recalled from [9].
The q-derivative measures the rate of change with respect to a dilatation of its argument

by a factor q. It is clear that if H1 is differentiable at x1 6= 0, then

Dq H1(x1) = lim
q→1

H1(qx1)− H1(x1)

(q− 1)x1
.

q-Derivative:

For a continuous mapping H1 : [θ1, δ1] → R, the q-derivative at x1 ∈ [θ1, δ1] is
defined by
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θ1
DqH1(x1) =

H1(x1)− H1(qx1 + (1− q)θ1)

(1− q)(δ1 − θ1)
, x1 6= θ1. (4)

q-Symmetric Derivative:

Let H1 : [θ1, δ1] → R be a continuous function. Then, the q-symmetric derivative at
x1 ∈ [θ1, δ1] is

θ1
D̃q H1(x1) =

H1(q−1x1 + (1− q−1)θ1)− H1(qx1 + (1− q)θ1)

(q−1 − q)(δ1 − θ1)
, x1 6= θ1. (5)

The q-symmetric analogue of power (a1 − b1)
k1 , defined in [15], is

(a1 − b1)
k1 = ak1

1

∞
∏
i=0

(a1 − b1q2i+1)

∞
∏
i=0

(a1 − b1q2(i+k1)+1)
, a1 6= 0, k1 ∈ R, (6)

and for the real parameter q ∈ R+ \ {1}, the q-real number [n] is defined by

[n] =
1− q2n

1− q2 , n ∈ R. (7)

When n is a positive integer, we have

(θ1 − x1)
n
q̃ =

n−1

∏
i=0

(θ1 − q2i+1x1). (8)

For n ≥ 1, we have the following evaluation:

(θ1 − x1)
n
q̃ = (θ1 − qx1)(θ1 − q3x1)(θ1 − q5x1) · · · (θ1 − q2n−1x1);

θ1
D̃q(θ1 − x1)

n
q̃ = −[n]q(δ1 − qx1)

n−1
q̃ ;

(θ1 − qx1)
n
q̃ = − 1

q[n + 1] θ1
D̃q(θ1 − x1)

n+1
q̃ ;

∫
(θ1 − x1)

n
q̃ θ1

d̃qx1 = −
(θ1 − q−1x1)

n+1
q̃

[n + 1]
, (θ1 6= −1).

(9)

Properties of q-Symmetric Derivative:

Let H1 and G1 be q-symmetric differentiable functions on J1. Let α, β ∈ R, and t1 ∈ J1;
then,
(i) θ1

D̃q[H1] ≡ 0 if H1 is constant on J1;
(ii) θ1

D̃q[αH1 + βG1](t1) = αθ1
D̃q[H1](t1) + βθ1

D̃q[G1](t1);
(iii) θ1

D̃q[H1G1](t1) = H1(qt1)θ1
D̃q[G1](t1) + G1(q−1t1)θ1

D̃q[H1](t1);

(iv) θ1
D̃q

[
H1
G1

]
(t1) =

G1(q−1t1)θ1
D̃q [H1](t1)−H1(q−1t1)θ1

D̃q [G1](t1)

G(qt1)G(q−1t1)
if G(qt1)G(q−1t1) 6= 0.

q-Symmetric Antiderivative:

Suppose that H1 : [θ1, δ1]→ R is a continuous function. Then, the q-symmetric definite
integral on [θ1, δ1] is defined as
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∫ x1

θ1

H1(t1)θ1
d̃qt1 = (q−1 − q)(x1 − θ1)

∞

∑
n=0

q2n+1H1(q2n+1x1 + (1− q2n+1)θ1)

= (1− q2)(x1 − θ1)
∞

∑
n=0

q2n H1(q2n+1x1 + (1− q2n+1)θ1),
(10)

for x1 ∈ [θ1, δ1].

Formula for Integration by Parts:

Let H1, G1 : [θ1, δ1]→ R be continuous mappings θ1 ∈ R with x1, x2 ∈ [θ1, δ1]; then,∫ x2

x1

H1(qt1 + (1− q)θ1)G1(t1)θ1
d̃qt1 = H1(x2)G1(x2)− H1(x1)G1(x1)

−
∫ x2

x1

G1(q−1t1 + (1− q−1)θ1)θ1
D̃q H1(t1)d̃qt1.

(11)

3. Some q-Symmetric Preliminary Inequalities

In this section, Hölder, Minkowski, and power mean inequalities are established using
q-symmetric integrals. These act as helpful tools to prove Ostrowski-type inequalities in
the next section.

Theorem 1 (q-Symmetric Hölder’s Inequality). Suppose that H1 and G1 are q-symmetric
integrable functions on [θ1, δ1], 0 < q < 1 and 1

n + 1
m = 1 with m > 1; then,

∫ δ1

θ1

|H1(t1)G1(t1)|θ1
d̃qt1 ≤

{ ∫ δ1

θ1

|H1(t1)|nθ1
d̃qt1

} 1
n
{ ∫ δ1

θ1

|G1(t1)|mθ1
d̃qt1

} 1
m

. (12)

Proof. Consider ∫ δ1

θ1

|H1(t1)G1(t1)|θ1
d̃qt1 =

∫ δ1

θ1

|H1(t1)||G1(t1)|θ1
d̃qt1.

Apply the definition of a q-symmetric integral to obtain

∫ δ1

θ1

|H1(t1)||G1(t1)|θ1
d̃qt1

= (1− q2)(δ1 − θ1)
∞

∑
n=0

q2n|H1(q2n+1δ1 + (1− q2n+1)θ1)||G1(q2n+1δ1 + (1− q2n+1)θ1)|. (13)

Using the discrete Hölder’s inequality, one obtains

∞

∑
n=0

(1− q2)(δ1 − θ1)q2n|H1(q2n+1δ1 + (1− q2n+1)θ1)||G1(q2n+1δ1 + (1− q2n+1)θ1)|

≤ (1− q2)(δ1 − θ1)
∞

∑
n=0

q2n
(
|H1(q2n+1δ1 + (1− q2n+1)θ1)|n

) 1
n

× (1− q2)(δ1 − θ1)
∞

∑
n=0

q2n
(
|G1(q2n+1δ1 + (1− q2n+1)θ1)|m

) 1
m

. (14)

Using (14) in (13), one obtains

∫ δ1

θ1

|H1(t1)||G1(t1)|θ1
d̃qt1 =

( ∫ δ1

θ1

|H1(t1)|nθ1
d̃qt1

) 1
n
( ∫ δ1

θ1

|G1(t1)|mθ1
d̃qt1

) 1
m

. (15)
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Hence, we obtain the result.

Theorem 2 (q-Symmetric Minkowski Inequality). Assume that θ1, δ1 ∈ R and H1, G1 :
[θ1, δ1] → R are continuous functions, where n and m are positive real numbers and n > 1
such that 1

n + 1
m = 1. Therefore,

{ ∫ δ1

θ1

|H1(t1) + G1(t1)|nθ1
d̃qt1

} 1
n

≤
{ ∫ δ1

θ1

|H1(t1)|nθ1
d̃qt1

} 1
n

+

{ ∫ δ1

θ1

|G1(t1)|nθ1
d̃qt1

} 1
n

. (16)

Proof. Consider the following expression and apply the properties of absolute value,
as follows:

∫ δ1

θ1

|H1(t1) + G1(t1)|nθ1
d̃qt1 =

∫ δ1

θ1

|(H1 + G1)(t1)|n−1|(H1 + G1)(t1)|θ1
d̃qt1

≤
∫ δ1

θ1

|(H1 + G1)(t1)|n−1|H1(t1)|θ1
d̃qt1 +

∫ δ1

θ1

|(H1 + G1)(t1)|n−1||G1(t1)|θ1
d̃qt1. (17)

Apply the discrete Hölder’s inequality on the right hand side of (17) to obtain

∫ δ1

θ1

|(H1 + G1)(t1)|n−1|H1(t1)|θ1
d̃qt1 +

∫ δ1

θ1

|(H1 + G1)(t1)|n−1||G1(t1)|θ1
d̃qt1

≤
{ ∫ δ1

θ1

|(H1 + G1)(t1)|m(n−1)|θ1
d̃qt1

} 1
m
{ ∫ δ1

θ1

|H1(t1)|nθ1
d̃qt1

} 1
n

+

{ ∫ δ1

θ1

|(H1 + G1)(t1)|m(n−1)|θ1
d̃qt1

} 1
m
{ ∫ δ1

θ1

|G1(t1)|nθ1
d̃qt1

} 1
n

=

[{ ∫ δ1

θ1

|H1(t1)|nθ1
d̃qt1

} 1
n

+

{ ∫ δ1

θ1

|G1(t1)|nθ1
d̃qt1

} 1
n
]

×
{ ∫ δ1

θ1

|(H1 + G1)(t1)|m(n−1)|θ1
d̃qt1

} 1
m

. (18)

Therefore, (17) together with (18) gives

{ ∫ δ1

θ1

|H1(t1)+G1(t1)|nθ1
d̃qt1

} 1
n

≤
{ ∫ δ1

θ1

|H1(t1)|nθ1
d̃qt1

} 1
n

+

{ ∫ δ1

θ1

|G1(t1)|nθ1
d̃qt1

} 1
n

.

Theorem 3 (q-Symmetric Power Mean Inequality). Suppose that 1
n + 1

m = 1, where n, m > 1
are real numbers. If θ1, δ1 ∈ R and H1, G1 : [θ1, δ1]→ R are continuous functions, then

∫ δ1

θ1

|H1(t1)G1(t1)|θ1
d̃qt1 ≤

{ ∫ δ1

θ1

|H1(t1)|θ1
d̃qt1

}1− 1
m
{ ∫ δ1

θ1

|H1(t1)||G1(t1)|mθ1
d̃qt1

} 1
m

. (19)

Proof. Consider the following integral and apply the property of absolute value along
with the definition of q-symmetric integrals to find

∫ δ1

θ1

|H1(t1)G1(t1)|θ1
d̃qt1 =

∫ δ1

θ1

|H1(t1)||G1(t1)|θ1
d̃qt1

= (1− q2)(δ1 − θ1)
∞

∑
n=0

q2n|H1(q2n+1δ1 + (1− q2n+1)θ1)||G1(q2n+1δ1 + (1− q2n+1)θ1)|.
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Using the discrete power mean inequality, we have

(1− q2)(δ1 − θ1)
∞

∑
n=0

q2n|H1(q2n+1δ1 + (1− q2n+1)θ1)||G1(q2n+1δ1 + (1− q2n+1)θ1)|

≤ (1− q2)(δ1 − θ1)
∞

∑
n=0

q2n
(
|H1(q2n+1δ1 + (1− q2n+1)θ1)|

)1− 1
m

× (1− q2)(δ1 − θ1)
∞

∑
n=0

q2n
(
|H1(t1)||G1(q2n+1δ1 + (1− q2n+1)θ1)|m

) 1
m

=

( ∫ δ1

θ1

|H1(t1)|θ1
d̃qt1

)1− 1
m
( ∫ δ1

θ1

|H1(t1)||G1(t1)|mθ1
d̃qt1

) 1
m

.

4. q-Symmetric Ostrowski-Type Inequalities

In this section, some Ostrowski-type inequalities are extended for those functions
whose derivatives are either convex or s-convex in the second sense. For this purpose, first,
we have to establish the following Montgomery identity for q-symmetric integrals.

Lemma 1 (q-Symmetric Montgomery identity). Let H1 : J1 ⊂ R → R be a q-symmetric
differentiable function on Jo

1 and θ1, δ1 ∈ J1 for θ1 < δ1. If θ1
D̃q H1 ∈ L1[θ1, δ1]. Then, the

following q-symmetric integral equality is valid:

1
q

(
H1(x1)−

q
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)
=

(x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)θ1)0d̃qt1

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)δ1)0d̃qt1. (20)

Proof. Denote

I1 + I2 =
(x1 − θ1)

2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)θ1)0d̃qt1 +
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)δ1)0d̃qt1. (21)

Using the definition of a q-symmetric derivative, one can write

θ1
D̃qH1(t1x1 + (1− t1)θ1) =

H1(qt1x1 + (1− qt1)θ1)− H1(q−1t1x1 + (1− q−1t1)θ1)

(q− q−1)(x1 − θ1)t1
.

First, we simplify the integrals I1 and I2 as follows:

I1 =
(x1 − θ1)

2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)θ1)0d̃qt1

=
(x1 − θ1)

2

δ1 − θ1

∫ 1

0
t1

(
H1(qt1x1 + (1− qt1)θ1)− H1(q−1t1x1 + (1− q−1t1)θ1)

(q− q−1)(x1 − θ1)t1

)
0d̃qt1

=
(x1 − θ1)

δ1 − θ1

∫ 1

0

(
H1(qt1x1 + (1− qt1)θ1)− H1(q−1t1x1 + (1− q−1t1)θ1)

(q− q−1)

)
0d̃qt1

=
(x1 − θ1)

δ1 − θ1

[ ∫ 1

0

H1(qt1x1 + (1− qt1)θ1)

q− q−1 0d̃qt1 −
∫ 1

0

H1(q−1t1x1 + (1− q−1t1)θ1)

q− q−1 0d̃qt1

]
=

(x1 − θ1)

(δ1 − θ1)

[
(q−1 − q)
(q− q−1)

∞

∑
n=0

q2n+1H1(q2n+2x1 + (1− q2n+2)θ1)−
(q−1 − q)
(q− q−1)

∞

∑
n=0

q2n+1H1(q2nx1 + (1− q2n)θ1)

]
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=
(x1 − θ1)

(δ1 − θ1)

[
− 1

q

∞

∑
n=0

q2n+2H1(q2n+2x1 + (1− q2n+2)θ1) + q
∞

∑
n=0

q2n H1(q2nx1 + (1− q2n)θ1)

]
=

(x1 − θ1)

(δ1 − θ1)

[
− 1

q

∞

∑
n=1

q2n H1(q2nx1 + (1− q2n)θ1) + q
∞

∑
n=0

q2n H1(q2nx1 + (1− q2n)θ1)

]
=

(x1 − θ1)

(δ1 − θ1)

[
− 1

q

∞

∑
n=0

q2n+1H1(q2n+1x1 + (1− q2n+1)θ1) + q
∞

∑
n=0

q2n+1H1(q2n+1x1 + (1− q2n+1)θ1) +
1
q

H1(x1)

]
.

Therefore,

I1 =
(x1 − θ1)

(δ1 − θ1)

[(
q− 1

q

) ∞

∑
n=0

q2n+1H1(q2n+1x1 + (1− q2n+1)θ1) +
1
q

H1(x1)

]
=

(x1 − θ1)

(δ1 − θ1)

[(
q2 − 1

q

)
1

(q−1 − q)(x1 − θ1)

∫ x1

θ1

H1(t1)θ1
d̃qt1 +

1
q

H1(x1)

]
=

(x1 − θ1)

(δ1 − θ1)q
H1(x1)−

1
(δ1 − θ1)

∫ x1

θ1

H1(t1)θ1
d̃qt1.

(22)

In a similar fashion, we have

I2 =
(δ1 − x1)

(δ1 − θ1)q
H1(x1)−

1
(δ1 − θ1)

∫ δ1

x1

H1(t1)θ1
d̃qt1. (23)

Substituting (22) and (23) in (21), we have

cI1 + I2 =
(x1 − θ1)

(δ1 − θ1)q
H1(x1)−

1
(δ1 − θ1)

∫ x1

θ1

H1(t1)θ1
d̃qt1 +

(δ1 − x1)

(δ1 − θ1)q
H1(x1)−

1
(δ1 − θ1)

∫ δ1

x1

H1(t1)θ1
d̃qt1

=
1
q

H1(x1)−
1

(δ1 − θ1)

[ ∫ x1

θ1

H1(t1)θ1
d̃qt1 +

∫ δ1

x1

H1(t1)θ1
d̃qt1

]
=

1
q

H1(x1)−
1

(δ1 − θ1)

[( ∫ x1

0
H1(t1)0d̃qt1 −

∫ θ1

0
H1(t1)0d̃qt1

)
+

( ∫ δ1

0
H1(t1)0d̃qt1

−
∫ x1

0
H1(t1)θ1

d̃qt1

)]
=

1
q

H1(x1)−
1

(δ1 − θ1)

( ∫ δ1

0
H1(t1)0d̃qt1 −

∫ θ1

0
H1(t1)0d̃qt1

)
=

1
q

H1(x1)−
1

(δ1 − θ1)

∫ δ1

θ1

H1(t1)θ1
d̃qt1 =

1
q

[
H1(x1)−

q
(δ1 − θ1)

∫ δ1

θ1

H1(t1)θ1
d̃qt1

]
. (24)

Hence, (24) completes the proof.

Remark 1. Lemma 1 extends Lemma 3.1 of [25]. If we choose q = 1 in Lemma 1, it becomes
Lemma 1 of [21].

Now, we are ready to construct the following Ostrowski-type inequalities with the
help of Lemma 1.

Theorem 4. Suppose that H1 : J1 ⊂ R → R is q-symmetric differentiable for (θ1, δ1) and

θ1
D̃q H1 ∈ L1[θ1, δ1], in which θ1, δ1 ∈ J1 for θ1 < δ1. If |θ1

D̃qH1(x1)| is a convex function
on [θ1, δ1] for some q ∈ (0, 1) and |θ1

D̃qH1(x1)| ≤ M, then the following q-symmetric integral
inequality is obtained:∣∣∣∣1q

(
H1(x1)−

q
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

δ1 − θ1

[
(x1 − θ1)

2 + (δ1 − x1)
2

1 + q2

]
, (25)

for each x1 ∈ [θ1, δ1].
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Proof. Using (20), we have

c
1
q

(
H1(x1)−

q
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)
=

(x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)θ1)0d̃qt1 +
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1θ1

D̃q(t1x1 + (1− t1)δ1)0d̃qt1. (26)

Taking the modulus on both sides of (26), we have∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣
≤ (x1 − θ1)

2

δ1 − θ1

∫ 1

0
|t1θ1

D̃q(t1x1 + (1− t1)θ1)0d̃qt1|+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
|t1θ1

D̃q(t1x1 + (1− t1)δ1)0d̃qt1|

≤ (x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1|θ1

D̃q(t1(x1) + (1− t1)θ1)|0d̃qt1 +
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1θ1
|D̃q(t1x1 + (1− t1)δ1)|0d̃qt1.

Using the convexity of q-symmetric derivatives, we obtain

|θ1
D̃q(t1x1 + (1− t1)θ1)| ≤ t1|θ1

D̃q H1(x1)|+ (1− t1)|D̃q H1(θ1)|

≤ (x1 − θ1)
2

δ1 − θ1

∫ 1

0

[
t2
1|θ1

D̃qH1(x1)|+ t1(1− t1)|θ1
D̃q H1(θ1)|

]
0d̃qt1

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0

[
t2
1|θ1

D̃qH1(x1)|+ t1(1− t1)|D̃q H1(δ1)|
]

0d̃qt1

≤ M1(x1 − θ1)
2

δ1 − θ1

[ ∫ 1

0
t2
10d̃qt1 +

∫ 1

0
t1(1− t1)0d̃qt1

]
+

M1(δ1 − x1)
2

δ1 − θ1

[
t2
10d̃qt1 +

∫ 1

0
t1(1− t1)0d̃qt1

]
= M1

(
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

)[ ∫ 1

0
t10d̃qt1

]
=

M1

δ1 − θ1

[
(x1 − θ1)

2 + (δ1 − x1)
2

1 + q2

]
.

Remark 2. Theorem 4 extends Theorem 3.1 of [25].

Example 1. Set H(x1) = 1− x1, δ1 = 1, θ1 = 2, q = 1/2, and M = 2 in Theorem 4 to obtain
the following estimate:∣∣∣∣2((1− x1)−

1
2

∫ 2

1
(1− t1)0d̃qt1

)∣∣∣∣ ≤ 2
(
(x− 1)2 + (2− x1)

2

1 + (1/2)2

)
∣∣∣∣2((1− x1) +

1
2

∣∣∣∣ (1− q−1t1)
2
q̃

[2]

∣∣∣∣2
1

)∣∣∣∣ ≤ (8(2x1
2 − 6x1 + 5)

5

)

∣∣∣∣2((1− x1)−
1
5

)∣∣∣∣ ≤ 8
(

2x1
2 − 6x1 + 5

5

)
∣∣∣∣25 (4− 5x1)

∣∣∣∣ ≤ 8
5
(2x1

2 − 6x1 + 5).
(27)

However, using the same substitution, Theorem 3.1 of [25] yields∣∣∣∣2((1− x1)−
∫ 2

1
(1− t1)0dqt1

)∣∣∣∣ ≤ 2
(
(x− 1)2 + (2− x1)

2

1 + (1/2)

)
∣∣∣∣2((1− x) +

∣∣∣∣ q(1− q−1t1)
2
q̃

[2]

∣∣∣∣2
1

)∣∣∣∣ ≤ (6(2x1
2 − 6x1 + 5)

3

)
∣∣∣∣(4− 2x1)

∣∣∣∣ ≤ 6
(

2x1
2 − 6x1 + 5

3

)
.

(28)
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Clearly, Figure 1a shows that Inequality (27) gives a better approximation than In-
equality (28).

Righthand side of inequality H4.8L
Lefthand side of inequality H4.8L
Righthand side of inequality H4.9L
Lefthand side of inequality H4.9L

1.2 1.4 1.6 1.8 2.0
x

-2

-1

1

2

(a)

Righthand side of inequality H4.12L
Leftthand side of inequality H4.12L
Righthand side of inequality H4.13L
Leftthand side of inequality H4.13L

1.2 1.4 1.6 1.8 2.0
x

-15

-10

-5

5

10

(b)

Figure 1. (a) presents comparsion of (27) with (28); (b) presents comparison of (31) with (32).

Theorem 5. Assume that H1 : J1 ⊂ R→ R is a q-symmetric differentiable mapping on (θ1, δ1),
and θ1

D̃qH1 ∈ L1[θ1, δ1], where θ1, δ1 ∈ J1, and θ1 < δ1. If |θ1
D̃q H1|m is a convex function

on [θ1, δ1] for some static q ∈ (0, 1), m > 1, n = m/m− 1, and |D̃qH1(x1)| ≤ M1, then the
following inequality is valid:∣∣∣∣1q

(
H1(x1)−

q
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

([n + 1])
1
n

[
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

]
, (29)

for each x1 ∈ [θ1, δ1].

Proof. From (20), we have∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ (x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1|θ1

D̃q(t1(x1) + (1− t1)θ1)|0d̃qt1

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1|θ1

D̃q(t1x1 + (1− t1)δ1)|0d̃qt1.

Using the q-symmetric Hölder inequality (12) on the right-hand side, we have

≤ (x1 − θ1)
2

δ1 − θ1

[( ∫ 1

0
tn
1 0d̃qt1

) 1
n
( ∫ 1

0
|θ1

D̃q(t1(x1) + (1− t1)θ1)|m0d̃qt1

) 1
m
]

+
(δ1 − x1)

2

δ1 − θ1

[( ∫ 1

0
tn
1 0d̃qt1

) 1
n
( ∫ 1

0
|θ1

D̃q(t1(x1) + (1− t1)δ1)|m0d̃qt1

) 1
m
]

. (30)
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From (16), the right-hand side of (30) satisfies the following:

(x1 − θ1)
2

δ1 − θ1

[(
1

n + 1

) 1
n
( ∫ 1

0
|θ1

D̃q(t1(x1) + (1− t1)θ1)|m0d̃qt
1
m
1

)]

+
(δ1 − x1)

2

δ1 − θ1

[(
1

n + 1

) 1
n
( ∫ 1

0
|θ1

D̃q(t1(x1) + (1− t1)δ1)|m0d̃qt1

) 1
m
]

≤ (x1 − θ1)
2

δ1 − θ1

[(
1

n + 1

) 1
n
( ∫ 1

0
|θ1

t1|D̃q(x1)|m + |(1− t1)D̃q(θ1)|m0d̃qt1

) 1
m
]

+
(δ1 − x1)

2

δ1 − θ1

[(
1

n + 1

) 1
n
( ∫ 1

0
|t1θ1

D̃q(x1)|m + |(1− t1)D̃q(δ1)|m0d̃qt1

) 1
m
]

≤ (x1 − θ1)
2

δ1 − θ1

[
1

[n + 1]
1
n

(
Mm

1

∫ 1

0
10d̃qt1

) 1
m
]
+

(δ1 − x1)
2

δ1 − θ1

[
1

[n + 1]
1
n

(
Mm

1

∫ 1

0
10d̃qt1

) 1
m
]

=
(x1 − θ1)

2

δ1 − θ1

[
1

[n + 1]
1
n
(Mm

1 )
1
m

]
+

(δ1 − x1)
2

δ1 − θ1

[
1

[n + 1]
1
n
(Mm)

1
m

]
=

M1

[n + 1]
1
n

[
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

]
.

Hence, we obtain the result.

Remark 3. Theorem 5 extends Theorem 3.2 of [25].

Example 2. Set H(x1) = (1− x1)
2, δ1 = 1, θ1 = 2, q = 1/2, n = 1, and M = 3 in Theorem 5

to obtain the following:∣∣∣∣2((1− x1)
2 − 1

2

∫ 2

1
(1− t1)

2
0d̃qt1

)∣∣∣∣ ≤ 3
(
(x1 − 1)2 + (2− x1)

2

[2]1/2

)
∣∣∣∣2((1− x2

1) +
1
2

∣∣∣∣ (1− q−1t1)
3
q̃

[3]

∣∣∣∣2
1

)∣∣∣∣ ≤ 3
(

2x1
2 − 6x1 + 5
(5/4)1/2

)
∣∣∣∣(6x1

2 − 12x1 + 5
3

)∣∣∣∣ ≤ 3
(

2x1
2 − 6x1 + 5
(5/4)1/2

)
.

(31)

Using the same substitution in Theorem 3.2 of [25] yields∣∣∣∣2((1− x1)
2 − 1

2

∫ 2

1
(1− t1)

2
0dqt1

)∣∣∣∣ ≤ 3
(
(x1 − 1)2 + (2− x1)

2

[2]1/2

)
∣∣∣∣2((1− x2

1) +
1
2

∣∣∣∣ (1− q−1t1)
3
q

[3]

∣∣∣∣2
1

)∣∣∣∣ ≤ 3
(

2x1
2 − 6x1 + 5
(3/2)1/2

)
∣∣∣∣2(x1

2 − 2x1 + 1)
∣∣∣∣ ≤ 3

(
2x1

2 − 5x1 + 5
(3/2)1/2

)
.

(32)

The validity and a comparison of (31) and (32) can be seen in Figure 1b.

Theorem 6. Assume that H1 : J1 ⊂ R+ → R is a q-symmetric differentiable function on J1
0 and

θ1
D̃q H1 ∈ L1[θ1, δ1] for θ1, δ1 ∈ J1 with θ1 < δ1. If the absolute value of D̃q H1(x1) is s-convex in

the second sense on [θ1, δ1], and if a static s ∈ (0, 1] and θ1
D̃qH1(x1) are bounded by M1, then for

x1 ∈ [θ1, δ1], the following inequality is valid:∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

(
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

)
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×
[
− 1

[s + 1]

(
(1− q−1)s+1

q̃ +
(1− q−1)s+2

q̃

[s + 2]
− 1

[s + 2]

)
+

1
[s + 2]

]
. (33)

Proof. Since |θ1
D̃q H1| is an s-convex function in the second sense on [θ1, δ1], therefore,

using (20), we have the following:∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ (x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1|θ1

D̃q H1(t1(x1) + (1− t1)θ1)|0d̃qt1

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1|θ1

D̃q H1(t1(x1) + (1− t1)δ1)|0d̃qt1

≤ (x1 − θ1)
2

δ1 − θ1

[ ∫ 1

0
(t1)

s+1
q̃ |θ1

D̃q H1(x1)|0d̃qt1 +
∫ 1

0
t1(1− t1)

s
q̃|θ1

D̃q H1(θ1)|0d̃qt1

]
+

(δ1 − x1)
2

δ1 − θ1

[ ∫ 1

0
(t1)

s+1
q |θ1

D̃q H1(x1)|0d̃qt1 +
∫ 1

0
t1(1− t1)

s
q̃|θ1

D̃q H1(δ1)|0d̃qt1

]
=

M1(x1 − θ1)
2

δ1 − θ1

[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ δ1

θ1

t1(1− t1)
s
q̃0d̃qt1

]
+

M1(δ1 − x1)
2

δ1 − θ1

[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1

]

= M1
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1

]
. (34)

Since ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 =

1
[s + 2]

, (35)

and

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1 = − 1

[s + 1]

∫ 1

0
t1θ1

D̃q(1− q−1t1)
s+1
q̃ 0d̃qt1

= − 1
[s + 1]

[∣∣∣∣t1(1− q−1t1)
s+1
q̃

∣∣∣∣1
0
−
∫ 1

0
t1(1− q−1t1)

s+1
q̃ (1)0d̃qt1

]

= − 1
[s + 1]

[
(1− q−1)s+1

q̃ +
(1− q−1)s+2

q̃

[s + 2]
− 1

[s + 2]

]
, (36)

therefore, by substituting (35) and (36) in (34), we have

M1
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1

]
= M1

(
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

)
[
− 1

[s + 1]

(
(1− q−1)s+1

q̃ +
(1− q−1)s+2

q̃

[s + 2]
− 1

[s + 2]

)
+

1
[s + 2]

]
.

Remark 4. Theorem 6 is an extension of Theorem 15 of [18].
If we set q = 1 in Inequality (33), then Theorem 6 leads to Theorem 2 of [21].
If we set s = 1 in Inequality (33), then it becomes Inequality (25) of Theorem 4.

Example 3. If we set H(x1) = 1− x2
1, δ1 = 1, θ1 = 2, q = 1/2, s = 1, and M = 1 in Theorem 6,

we have the following estimate:
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∣∣∣∣2(1− (x1)
2)− 1

2

∫ 2

1
(1− t2

1)0d̃qt1

)∣∣∣∣ ≤ ( ((x1)− 1)2 + (2− (x1))
2

2− 1

)
×
[
− 1

[2]

(
(1− q−1)2

q̃ +
(1− q−1)3

q̃

[3]
− 1

[3]

)
+

1
[3]

]
∣∣∣∣2(1− (x1)

2)− 1
2
+

1
2

∣∣∣∣ t3
1
[3]

∣∣∣∣2
1

)∣∣∣∣ ≤ (2x1
2 − 6x1 + 5

)(
− 4

5

(
− 16

21

)
+

16
21

)
∣∣∣∣14− 6x2

1
3

∣∣∣∣ ≤ 189
(

2x1
2 − 6x1 + 5

80

)
.

(37)

However, using the same substitution, Theorem 15 of [18] yields∣∣∣∣2(1− (x1)
2)− 1

2

∫ 2

1
(1− t2

1)dqt1

)∣∣∣∣ ≤ ( ((x1)− 1)2 + (2− (x1))
2

2− 1

)
×
[
− 1

[2]

(
(1− q−1)2

q +
(1− q−1)3

q

[3]
− 1

[3]

)
+

1
[3]

]
∣∣∣∣2(1− (x1)

2)− 1
2
+

1
2

∣∣∣∣ t3
1
[3]

∣∣∣∣2
1

)∣∣∣∣ ≤ (2x1
2 − 6x1 + 5

)(
− 2

3

(
− 4

7

)
+

4
7

)
∣∣∣∣2(4− 2x2

1)

∣∣∣∣ ≤ 20
(

2x1
2 − 6x1 + 5

21

)
.

(38)

Figure 2a shows that new estimates are better than existing ones.

Righthand side of inequality H4.18L
Leftthand side of inequality H4.18L
Righthand side of inequality H4.19L
Leftthand side of inequality H4.19L

1.2 1.4 1.6 1.8 2.0
x

-6

-4

-2

2

4

(a)

Righthand side of inequality H4.24L
Lefthand side of inequality H4.24L
Righthand side of inequality H4.25L
Lefthand side of inequality H4.25L

1.2 1.4 1.6 1.8 2.0
x

-6

-4

-2

2

(b)

Figure 2. (a) presents comparsion of (37) with (38); (b) presents comparison of (43) with (44).

Theorem 7. Let H1 : J1 ⊂ R+ → R be a q-symmetric differentiable function on Jo
1 and θ1

D̃q H1 ∈
L1[θ1, δ1], in which θ1, δ1 ∈ J1 for θ1 < δ1. If |θ1

D̃qH1(x1)|m is an s-convex function in the second
sense on [θ1, δ1] for a unique s ∈ (0, 1], and if m > 1, n = m/m− 1, and θ1

D̃q H1(x1) is bounded
by M1, then the inequality∣∣∣∣1q

(
H1(x1)−

q
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

[n + 1]
1
n

[
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

]
×

[2− (1− q−1)s+1
q̃ )

[s + 1]

]1/m

, (39)

is valid for each x1 ∈ [θ1, δ1].

Proof. From (20) and using the q-symmetric analogue of the Hölder inequality, we obtain



Symmetry 2023, 15, 1169 13 of 20

∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ (x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1|θ1

D̃qH1(t1(x1) + (1− t1)θ1)|0d̃qt1

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1|θ1

D̃q H1(t1(x1) + (1− t1)δ1)|0d̃qt1

From (12), the right-hand side of the above inequality becomes

≤ (x1 − θ1)
2

δ1 − θ1

( ∫ 1

0
(t1)

n
q 0d̃qt1

) 1
n
( ∫ 1

0
|θ1

D̃q H1(t1(x1) + (1− t1)θ1|m0d̃qt1

) 1
m

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
(t1)

n
q d̃qt1

) 1
n
( ∫ 1

0
|θ1

D̃qH1(t1(x1) + (1− t1)δ1)|m0d̃qt1

)1/m

. (40)

Additionally, using the definition of an s-convexity,∫ 1

0
|θ1

D̃qH1(t1(x1) + (1− t1)θ1)|m0d̃qt1 ≤
∫ 1

0
(t1)

s
q̃|θ1

D̃qH1(t1(x1))|m0d̃qt1

+
∫ 1

0
(1− t1)

s
q̃|θ1

D̃q H1(t1(θ1))|m0d̃qt1

≤ M1
m
[∣∣∣∣ (t1)

s+1
q̃

[s + 1]

∣∣∣∣1
0
−
∣∣∣∣ (1− q−1t1)

s+1
q̃

[s + 1]

∣∣∣∣1
0

]

= M1
m
[

1
[s + 1]

−
(1− q−1)s+1

q̃

[s + 1]
+

1
[s + 1]

]
= M1

m
[2− (1− q−1)s+1

q̃ )

[s + 1]

]
.

(41)

In a similar fashion, we have∫ 1

0
|θ1

D̃qH1(t1(x1) + (1− t1)δ1)|m0d̃qt1 ≤ M1
m
[2− (1− q−1)s+1

q̃ )

[s + 1]

]
. (42)

Substituting (41) and (42) in (40), we obtain∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

(
1

[n + 1]

) 1
n
[2− (1− q−1)s+1

q̃ )

[s + 1]

]1/m

×
[
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

]
.

Remark 5. Theorem 7 extends Theorem 16 of [18].
For q = 1, Theorem 7 reduces to Theorem 3 of [21].
For s = 1, then Inequality (39) reduces to Inequality (29) of Theorem 5.

Figure 2b shows a comparison of (43) and (44) in Example 4.

Example 4. Consider H(x1) = x2
1, δ1 = 1, θ1 = 2, q = 1/2, s = 1, m = 2, n = 1, and M = 3 in

Theorem 7 to obtain the following:
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∣∣∣∣2((x1)
2)− 1

2

∫ 2

1
t2
10d̃qt1

)∣∣∣∣ ≤ 3
(
(x1 − 1)2 + (2− x1)

2

([2])1/2

)[2− (1− q−1)2
q̃)

[2]

]1/2

∣∣∣∣2(x2
1 −

1
2

∣∣∣∣ t3
1
[3]

∣∣∣∣2
1

)∣∣∣∣ ≤ 3
(

2x2
1 − 6x1 + 5
(5/4)1/2

)
(2)1/2

∣∣∣∣2(x2
1 −

8
3

)∣∣∣∣ ≤ 12
(

2x2
1 − 5x1 + 5
(5/2)1/2

)
∣∣∣∣23 (3x2

1 − 8)
∣∣∣∣ ≤ 12

(
2x2

1 − 6x1 + 5
(5/2)1/2

)
.

(43)

Using the above substitution in Theorem 16 of [18], we have∣∣∣∣2((x1)
2)− 1

2

∫ 2

1
t2
1dqt1

)∣∣∣∣ ≤ 3
(
(x1 − 1)2 + (2− x1)

2

([2])1/2

)[2− (1− q−1)2
q)

[2]

]1/2

∣∣∣∣2(x2
1 −

1
2

∣∣∣∣ t3
1
[3]

∣∣∣∣2
1

)∣∣∣∣ ≤ 3
(

2x2
1 − 6x1 + 5
(3/2)1/2

)
(2)1/2

∣∣∣∣2(x2
1 − 4

)∣∣∣∣ ≤ 6
(

2x2
1 − 6x1 + 5
(3/2)1/2

)
∣∣∣∣2(x2

1 − 4)
∣∣∣∣ ≤ 6

(
2x2

1 − 6x1 + 5
(3/2)1/2

)
.

(44)

Theorem 8. Let H1 : J1 ⊂ R+ → R be a q-symmetric differentiable mapping on J1
0 with

θ1
D̃q H1 ∈ L1[θ1, δ1], in which θ1, δ1 ∈ J1 for θ1 < δ1. If the absolute value of (θ1

D̃qH1(x1))
m

is an s-convex mapping in the second sense on [θ1, δ1], some unique s ∈ (0, 1], m ≥ 1, and
|θ1

D̃q H1(x1)| ≤ M1, then

∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

(
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

)
×

(
1
[2]

)1− 1
m
[
− 1

[s + 1]

(
(1− q−1)s+1

q̃ +
(1− q−1)s+2

q̃

[s + 2]
− 1

[s + 2]

)
+

1
[s + 2]

] 1
m

(45)

holds for each x1 ∈ [θ1, δ1].

Proof. Using (20) and using the q-symmetric-analogue of the power mean inequality,
we obtain∣∣∣∣1q

(
H1(x1)−

q
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ (x1 − θ1)
2

δ1 − θ1

∫ 1

0
t1|θ1

D̃qH1(t1(x1) + (1− t1)θ1)|0d̃qt1

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t1|θ1

D̃qH1(t1(x1) + (1− t1)δ1)|0d̃qt1,

≤ (x1 − θ1)
2

δ1 − θ1

( ∫ 1

0
t10d̃qt1

)1−(1/m)( ∫ 1

0
t1|θ1

D̃qH1(t1(x1) + (1− t1)θ1|m0d̃qt1

) 1
m

+
(δ1 − x1)

2

δ1 − θ1

∫ 1

0
t10d̃qt1

)1−(1/m)( ∫ 1

0
t1|θ1

D̃qH1(t1(x1) + (1− t1)δ1)|m0d̃qt1

)1/m

. (46)
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We use the definition of s-convexity in the second sense and (16) to obtain∫ 1

0
t1|θ1

D̃q H1(t1(x1) + (1− t1)θ1)|m0d̃qt1 ≤
∫ 1

0
(t1)

s+1
q̃ |θ1

D̃q H1(x1)|m0d̃qt1

+
∫ 1

0
t1(1− t1)

s
q̃|θ1

D̃qH1(θ1)|m0d̃qt1

≤ M1
m
[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1

]
,

(47)

and∫ 1

0
t1|θ1

D̃q H1(t1(x1) + (1− t1)δ1|m0d̃qt1 ≤ M1
m
[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1

]
. (48)

We use (47) and (48) in (46) to obtain∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

( ∫ 1

0
t10d̃qt1

)1− 1
m

[ ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 +

∫ 1

0
t1(1− t1)

s
q̃0d̃qt1

] 1
m

×
(
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

)
. (49)

Since ∫ 1

0
(t1)

s+1
q̃ 0d̃qt1 =

1
[s + 2]

,

and

− 1
[s + 1]

∫ 1

0
t1θ1

D̃q(1− q−1t1)
s+1
q̃ 0d̃qt1 = − 1

[s + 1]

[∣∣∣∣t1(1− q−1t1)
s+1
q̃

∣∣∣∣1
0
−
∫ 1

0
(1− t1)

s+1
q̃ 0d̃qt1

]

= − 1
[s + 1]

[
(1− q−1)s+1

q̃ +
(1− q−1)s+2

q̃

[s + 2]
− 1

[s + 2]

]
,

therefore, (49) becomes∣∣∣∣1q
(

H1(x1)−
q

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)∣∣∣∣ ≤ M1

(
(x1 − θ1)

2 + (δ1 − x1)
2

δ1 − θ1

)(
1
[2]

)1− 1
m

×
[
− 1

[s + 1]

(
(1− q−1)s+1

q̃ +
(1− q−1)s+2

q̃

[s + 2]
− 1

[s + 2]

)
+

1
[s + 2]

] 1
m

.

Remark 6. Theorem 8 extends Theorem 17 of [18].
If we set q = 1, then Theorem 8 becomes Theorem 4 of [21].

5. q-Symmetric Hermite–Hadamard Inequalities

In this section, we present q-symmetric analogues of Hermite–Hadamard inequalities
for convex as well as for s-convex functions.

Theorem 9. Suppose that H1 : J1 → R is a q-symmetric differentiable function, θ1
D̃q H1 is

continuous on [θ1, δ1], and 0 < q < 1. Then, we have

H1

(
θ1 + δ1

2

)
≤ 1

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1 ≤

qH1(δ1) + (1− q + q2)H1(θ1)

1 + q2 . (50)
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Proof. Using the definition of convexity, we have

H1(t1δ1 + (1− t1)θ1) ≤ t1H1(δ1) + (1− t1)H1(θ1), (51)

Taking the q-symmetric integral of (51) with respect to t1, where t1 ∈ (0, 1), we have∫ 1

0
H1(t1δ1 + (1− t1)θ1)0d̃qt1 ≤ H1(δ1)

∫ 1

0
t10d̃qt1 + H1(θ1)

∫ 1

0
(1− t1)0d̃qt1. (52)

Using the q-symmetric Jackson’s integral [15], we obtain

∫ x

0
t10d̃qt1 = (1− q2)x

∞

∑
n=0

q2n(q2n+1x) =
qx

1 + q2 . (53)

Therefore, ∫ 1

0
t10d̃qt1 =

q
1 + q2 ,

and ∫ 1

0
(1− t1)0d̃qt1 =

1− q + q2

1 + q2 .

Hence, (52) implies

∫ 1

0
H1(t1δ1+(1− t1)θ1)0d̃qt1 ≤ H1(δ1)

(
q

1 + q2

)
+ H1(θ1)

(
1− q + q2

1 + q2

)
=

qH1(δ1) + (1− q + q2)H1(θ1)

1 + q2 .
(54)

Now consider∫ 1

0
H1(t1δ1+(1− t1)θ1)0d̃qt1 = (1− q2)

∞

∑
n=0

q2nH1(q2n+1θ1 + (1− q2n+1)δ1)

=
1

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1.

(55)

Equations (54) and (55) imply

1
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1 ≤

qH1(δ1) + (1− q + q2)H1(θ1)

1 + q2 . (56)

Using the definition of mid-convexity, we have

H1

(
t1δ1 + (1− t1)θ1 + t1θ1 + (1− t1)δ1

2

)
≤ 1

2

[
H1(t1δ1 + (1− t1)θ1) + H1(t1θ1 + (1− t1)δ1)

]
H1

(
θ1 + δ1

2

)
≤ 1

2

[
H1(t1δ1 + (1− t1)θ1) + H1(t1θ1 + (1− t)δ1)

]
.

Integrating from 0 to 1 with respect to t1, we obtain

∫ 1

0
H1

(
θ1 + δ1

2

)
0d̃qt1 ≤

1
2

[ ∫ 1

0
H1(t1δ1 + (1− t1)θ1)0d̃qt1 +

∫ 1

0
H1(t1θ1 + (1− t1)δ1)0d̃qt1

]
.

=
∫ 1

0
H1(t1δ1 + (1− t1)θ1)0d̃qt1 =

1
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1. (57)

From (56) and (57), we obtain the desired inequalities.
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Remark 7. Theorem 9 is a suitable extension of Theorem 3.2 of [26].
If we put q = 1, then inequalities (50) are reduced to classical Hermite–Hadamard inequalities.

Example 5. Choose H1(t1) = 1− t1, q ∈ (0, 1), θ1 = 0, and δ1 = 1 in Theorem 9 to obtain
the following:

H1

(
0 + 1

2

)
≤
∫ 1

0
H1(t1)0d̃qt1 ≤

qH1(1) + (1− q + q2)H1(0)
1 + q2

H1

(
1
2

)
≤ (1− q2)

∞

∑
n=0

q2nH1(q2n+1) ≤ (1− q + q2)

1 + q2

1
2
≤ 1− q + q2

1 + q2 ≤ (1− q + q2)

1 + q2 .

Remark 8. Note that it is shown in Example 5 of [7] that the left-hand inequality of Theorem 3.2
in [26] does not hold for q = 1/2. From Example 5, it is clear that q-symmetric analogues (both
left and right) of Hermite–Hadamard inequalities are valid for the functions H(t1) = 1− t1 and
[θ1, δ1] = [0, 1], which are chosen in Example 5 of [7].

In Example 5, the right-hand inequality becomes an equality for the function H1(t1) =
(1− t1) and t1 ∈ [0, 1]. Now, by choosing t1 ∈ [0, 2], we have the following inequalities:

Example 6. Let us set H1(t1) = 1− t1, q ∈ (0, 1), θ1 = 0, and δ1 = 2 in Theorem 5.1 to obtain
the following:

H1

(
0 + 2

2

)
≤
∫ 2

0
H1(t1)0d̃qt1 ≤

qH1(2) + (1− q + q2)H1(0)
1 + q2

H1(1) ≤ (1− q2)
∞

∑
n=0

q2nH1(2q2n+1) ≤ −q− (1− q + q2)

1 + q2

0 ≤ 1− q + q2

2(1 + q2)
≤ (1− 2q + q2)

1 + q2 .

Theorem 10. Let H1 : R+ → R be an s-convex mapping in the second sense, for which
s, q ∈ (0, 1), and let θ1, δ1 ∈ R+, and θ1 < δ1. If θ1

D̃qH1 ∈ L1([θ1, δ1]), then the following
inequality is valid:

2s−1H1

(
θ1 + δ1

2

)
≤ 1

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1 ≤

H1(δ1)(1− (1− q−1)s+1) + H1(θ1)

[s + 1]
. (58)

Proof. From the definition of s-convex functions,

H1(t1θ1 + (1− t1)δ1) ≤ ts
1H1(θ1) + (1− t1)

sH1(δ1),∫ 1

0
H1(t1θ1 + (1− t1)δ1)0d̃qt1 ≤ H1(t1)

∫ 1

0
ts
10d̃qt1 + H1(t1)

∫ 1

0
(1− t1)

s
0d̃qt1. (59)

∫ 1

0
H1(t1θ1 + (1− t1)δ1)0d̃qt1 =

(1− q2)(δ1 − θ1)

δ1 − θ1

∞

∑
n=0

q2n H1(q2n+1δ1 + (1− q2n+1)θ1)

=
1

δ1 − θ1

∫ 1

0
H1(t1)0d̃qt1,

(60)

Additionally,

∫ 1

0
ts
10d̃qt1 =

1
[s + 1]

,
∫ 1

0
(1− t1)

s
0d̃qt1 =

(1− (1− q−1))s+1

[s + 1]
. (61)
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Substituting (60) and (61) in (59), we have

1
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1 ≤

H1(θ1) + (1− (1− q−1))s+1H(δ1)

[s + 1]
. (62)

Let us consider x1 = t1θ1 + (1− t1)δ1, x2 = t1δ1 + (1− t1)θ1 and substitute in

H1

(
x1 + x2

2

)
≤ H1(x1) + H1(x2)

2s ,

to obtain

H1

(
t1θ1 + (1− t1)δ1 + t1δ1 + (1− t1)θ1

2

)
≤ H1(t1θ1 + (1− t1)δ1) + H1(t1δ1 + (1− t1)θ1)

2s .

This gives

H1

(
θ1 + δ1

2

)
≤ 1

2s

( ∫ 1

0
H1(t1θ1 + (1− t1)δ1)0d̃qt1 +

∫ 1

0
H1(t1δ1 + (1− t1)θ1)0d̃qt1

)
=

1
2s

(
1

θ1 − δ1

∫ θ1

δ1

H1(t1)θ1
d̃qt1 +

1
δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)
=

1
2s−1

(
1

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1

)
.

Hence,

2s−1H1

(
θ1 + δ1

2

)
≤ 1

δ1 − θ1

∫ δ1

θ1

H1(t1)θ1
d̃qt1. (63)

Inequality (62) together with Inequality (63) complete the proof.

Remark 9. Theorem 10 is an extension of Theorem 15 of [18].
If we set q = 1 in (58), we obtain Hermite–Hadamard inequalities for the s-convex function given
in [22].

Example 7. We can set H1(t1) = ts, s = 1/2, q ∈ (0, 1), θ1 = 0, and δ1 = 1 in Theorem 10
to obtain

21/2−1H1

(
0 + 1

2

)
≤
∫ 1

0
H1(t1)0d̃qt1 ≤

H1(1)(1− (1− q−1)3/2) + H1(0)
[3/2]

2−1/2H1

(
1
2

)1/2

≤ (1− q2)
∞

∑
n=0

q2nH1(q2n+1) ≤ (1− (1− q−1)3/2)

[3/2]

1
2
≤ (1 + q)q1/2

1 + q + q2 ≤
1 + q2

(1 + q + q2)
.

Figure 3a,b is a graphical representation of Example 6 and Example 7, respectively.
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Right inequality

Left inequality
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0.2 0.4 0.6 0.8
q

0.5

1.0

1.5

(a)

Left expression

Right expression
Middle expression

0.2 0.4 0.6 0.8
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0.4

0.6

0.8

(b)

Figure 3. (a) presents graphical representation of Example 6; (b) presents graphical representation
of Example 7.

6. Conclusions

In this paper, q-symmetric Hölder, Minkowski, and power mean inequalities and the
q-symmetric Montgomery identity are proved, which are keys to finding q-symmetric
Ostrowski-type inequalities. Some Hermite–Hadamar-type inequalities are also established
in this paper. The present results extend the Montgomery identities of [21,25]. Ostrowski-
type inequalities for convex functions are proved in [18,25], and Ostrowski-type inequalities
for s-convex functions are given in [18,21]. Hermite–Hadamar-type inequalities for convex
functions are provided in [18,26], and Hermite–Hadamar-type inequalities for s-convex
functions are provided in [18,22]. Several examples are included to show that the present
results give better approximations in comparison with existing results in the literature.
It can be seen from graphs that the differences in the left- and right-hand sides of the
present inequalities are smaller than the differences in the left- and right-hand sides of the
existing inequalities.
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