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Abstract: To address the need for massive connections in Internet-of-Vehicle communications, local
wireless networks utilize non-orthogonal multiple access (NOMA). Scholars have introduced deep
reinforcement learning networks for user grouping and power allocation to reduce computational
complexity. However, the traditional algorithm based on DQN (Deep Q-Network) still exhibits
slow convergence speed and low training stability, while the uniform sampling method in the
sample playback process suffers from low sampling efficiency. In order to address these issues,
this paper proposes a user grouping and power allocation method for NOMA systems based on
Prioritized Dueling DQN-DDPG joint optimization. Firstly, the paper introduces the user grouping
network based on Dueling DQN, which considers both the state value and action value in the entire
connection layer. The two values compete with each other, are summed up, and re-evaluated. The
network significantly improves training stability and increases the convergence speed. Secondly, in
this paper, a depth deterministic strategy gradient (DDPG) algorithm with symmetric properties is
used. This algorithm works well for continuous action spaces and avoids the power quantization
error because of the continuity of power value in the power allocation stage. Finally, the priority
sampling based on TD-error (Temporal-difference error) is combined with the Dueling DQN network
and DDPG network to ensure random sampling and improve the replay probability of important
samples. Simulation results show that the proposed priority-based Dueling DQN-DDPG algorithm
significantly improves the convergence speed of sample training. The research results of this paper
provide a solid foundation for the following research content, which focuses on NOMA system
resource allocation under the mobile user state.

Keywords: non-orthogonal multiple access (NOMA); resource allocation; dueling DQN; prioritized
sampling; depth deterministic policy gradient (DDPG)

1. Introduction

As the 5G network becomes commercially available and the development of 6G
technology continues, the demands for communication quality across various industries
are increasing. Mobile communication devices are required to provide higher data rates,
lower communication delays, and better reliability. The traditional Orthogonal Multiple
Access (OMA) technologies cannot fully meet current communication needs, and as a result,
Non-Orthogonal Multiple Access (NOMA) technology has become an essential aspect of
the development of new generation communication technology. NOMA technology can
be primarily classified into two types: power domain multiplexing and code domain
multiplexing. The main principle of power domain multiplexing is to allocate power to
different users at the transmitter according to the real-time Channel State Information (CSI)
of users. Then the user information is superimposed on the same time-frequency resource
block by Superposition Coding (SC) technology. At the receiving end, the Successive
Interference Cancellation technology is used to detect multi-users in a certain order from
the received superimposed signals. SIC is used to demodulate the signals and eliminate
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interference, allowing the required information to be recovered successfully. SIC works
by first decoding the signal with the strongest power, which is usually the signal with
the highest quality, and subtracting it from the received superimposed signals. This
process is repeated for each user’s signal until all signals are successfully demodulated
and recovered. At the transmitting end of the base station, different signal powers will be
allocated to different users so as to obtain the maximum performance gain of the system
and achieve the purpose of distinguishing users. NOMA technology based on power reuse
can effectively improve spectrum utilization and provide a higher transmission rate, lower
delay and better transmission reliability [1–3]. By allowing multiple users to share the
same resources, NOMA technology can increase the capacity of the communication system
while maintaining the same bandwidth. Furthermore, the use of SIC at the receiver allows
for efficient decoding of these superimposed signals, improving the overall performance
of the system. As a result, NOMA technology has become a promising candidate for the
development of future wireless communication systems.

In recent years, many researchers have devoted themselves to the design and imple-
mentation of NOMA technology. They have demonstrated the compatibility of power
domain NOMA with cooperative communication, relay systems, and MIMO technology.
The problems of user grouping, power allocation, and spectrum resource allocation for
NOMA have also attracted extensive attention. The system sum rate can be significantly
improved by using an efficient scheme to group users and allocate power to them at the
transmitter. This can also enhance the accuracy and stability of the system. Islam et al. [4]
proposed a random user pairing method in which the base station randomly selected users
to form several user sets with the same number of users. They then group two users with a
large channel gain difference in each user set. Zhang et al. [5] proposed a user grouping
based on channel gain. While these algorithms could improve the system performance, the
complexities were too high to apply to practice. In [6], it was pointed out that for a given
set of scheduled users, the classical iterative water injection power allocation algorithm
can achieve the maximum weighted sum of the user throughput. A further study [7]
examined the user pairing problem of the NOMA system based on fixed power allocation.
They discussed the influence of user pairing on the sum rate, studied the power allocation
scheme of two users pairing and analyzed its performance. Another study [8] proposed a
low-complexity and high-efficiency three-stage alternating optimization algorithm, which
comprehensively considered service quality, power budget, and cooperation constraints
and optimized the transmit power, power allocation coefficient (PAC), and relay power. In
two further studies [9] and [10], the authors considered sub-channel allocation and power
allocation jointly, but this joint resource allocation problem is usually NP-hard, and it is
difficult to obtain an optimal solution with conventional optimization methods.

Conventional methods rely on system modeling, which can lead to high computa-
tional complexity. In contrast, deep learning is a powerful tool that can be used to solve
complex mathematical problems and has shown significant advantages. There have
been many studies that combine NOMA technology with deep learning. One study [11]
outlines that Deep Neural Networks (DNN) are used for decoding in order to consider
user fairness in NOMA. Compared with traditional algorithms, Deep Learning (DL) can
effectively reduce computational complexity, achieving fairness and maximizing the
system sum rate efficiently. Another study [12] outlines the Attention-Based Neural Net-
work (ANN) approach to allocating channels to users in the NOMA system. Compared
with the traditional random allocation and exhaustive search calculation methods, the
introduction of neural networks can effectively improve the total throughput of the sys-
tem and reduce computational complexity. One study [13] outlines the training of DNN
to simulate the interior point algorithm for power allocation. The introduction of neural
networks can improve computational efficiency. The study [14] effectively characterized
the nonlinearity between channel diversity and transmission power clustering using a
deep neural network-based UC (DNN-UC). The DNN-UC model provides a larger space
for hyperparameter optimization to maximize its learning ability. The combination of
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deep learning and reinforcement learning, Deep Reinforcement Learning (DRL), can
make full use of the perceptual advantages of deep learning and the decision-making
advantages of reinforcement learning. This allows for direct control strategies from high-
dimensional raw data, providing faster convergence speed and greater effectiveness for
multi-state and action-space systems. In [15], a Deep Q-Network (DQN) is proposed
and used as an approximator in various fields. In [16], a DRL-based resource allocation
scheme is proposed, which formulates the joint channel allocation and user grouping
problem as an optimization problem. Compared with other methods, the proposed
framework can achieve better system performance. Currently, DQN is a commonly used
deep reinforcement learning network that is widely applied in resource allocation for
NOMA systems. It effectively addresses the high complexity issue in traditional NOMA
resource allocation. However, traditional DQN networks are known to have slow train-
ing convergence speeds and unstable training processes when training with samples. In
practice, the problem with DQN is that under the condition of state st, Q(st, a) cannot
fully represent the value of state-action, resulting in slow convergence speed. At times,
regardless of what action is taken in a certain state, it will not have a positive impact
on the next state. When the state is good, no matter what action is taken, a high value
will be obtained, and when the state is poor, the obtained value will also be low. In [17],
an improved version of the DQN network called the Dueling DQN is proposed, which
decomposes the state value Qπ(st,At1) into a state value function V(st) and an action
advantage function A(st,At1) within the neural network. Dueling DQN emphasizes the
advantages that can be obtained from each current state and action, and the state value
function and advantage function form a competitive network. This effectively enhances
the instability of the traditional DQN training process and speeds up the convergence
of training. Based on this, the proposed paper applies Dueling DQN in the resource
allocation of NOMA systems, which not only addresses the high complexity issue of
traditional algorithms in resource allocation but also overcomes the problems of slow
convergence speed and unstable training process of traditional DQN networks.

Given that the output of both DQN and Dueling DQN are discrete, when using
Dueling DQN to perform power allocation tasks, the continuous user power needs to be
quantized, which may result in quantization errors. In order to address this issue, Deep
Deterministic Policy Gradient (DDPG) networks can be employed, as they can handle
continuous action spaces [18]. In this paper, the power allocation optimization problem in
NOMA systems is addressed using the Actor-Critic algorithm. The algorithm dynamically
selects the power allocation coefficient and constructs a parameterized policy from the
Actor-network part, which is evaluated by the Critic network. The Actor network then
adjusts the power allocation policy based on feedback from the Critic network part.

Furthermore, the empirical replay algorithm is employed in the Dueling DQN and
DDPG network to reduce the correlation between samples and ensure that the samples
exhibit independent and identically distributed characteristics. However, the current
sampling method involves uniform sampling, which does not consider the importance
of samples. In the sampling process, some valuable samples may not be learned, thus
reducing the learning rate. The prioritized sampling method, which is based on TD
error, can improve the replay probability of important samples and address this issue [19].
Therefore, this paper proposes a priority sampling-based approach for the Dueling DQN
and DDPG network to accelerate the convergence of training.

This paper aims to maximize the system sum rate in the NOMA resource alloca-
tion problem and proposes an optimal joint scheme based on a Prioritized Dueling
DQN-DDPG network. In this scheme, the Dueling DQN is employed to perform discrete
tasks for user grouping, and the DDPG network is used to perform continuous tasks for
power allocation among each user. In building on this, this paper proposes a sampling
optimization scheme to address the random sampling problem. The scheme is combined
with the Dueling DQN-DDPG network, utilizing Time Difference Error (TD-error) to
calculate sample priority and improve sampling efficiency and learning rate. Based
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on the aforementioned approach, this paper solves a series of issues in the resource
allocation of NOMA systems, effectively addressing slow sample training convergence
speeds and unstable system training, improving the efficiency of sample training, and
ultimately enhancing the system sum rate [19].

2. Materials and Methods
2.1. System Model

Figure 1 depicts the transmission model of the NOMA uplink system. In this paper,
we investigate the scenario of a multi-user NOMA system in the uplink, where the Base
Station (BS) is positioned at the center of the cell, and users are randomly distributed in
close proximity to the base station. Our objective is to maximize the system sum rate by
addressing issues related to user grouping and power allocation within the cell. Assuming
that there are K users per cell, they are randomly distributed throughout various locations
within the cell. The base station and users are configured with single antennas. Channel
decay follows the Rayleigh distribution, where zn represents the additive Gaussian white
noise with a variance of δn2. The total bandwidth of system B is evenly distributed among
N sub-channels, users in the same sub-channel are non-orthogonal, and the bandwidth
of each sub-channel is Bs = B/N. Since multiple users in a NOMA system can reuse the
same resource block, the maximum number of users on each sub-channel is set to M. cm,n
indicates the data signal connected by user n. The power allocated to the user m on the n
sub-channel is represented by bm,n, Sm,n represents the allocation index of the sub-channel,
and when user m is assigned to sub-channel n, then Sm,n = 1, and Sm,n = 0. The signal
transmitted on the nth sub-channel is then given by:

xn =
M

∑
i=1

cm,n
√

bm,nSm,n (1)
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In this model, gm,n represents the channel gain of user m on the sub-channel n. The
received signal expression at the base station is then given by:

yn = gm,ncm,n
√

bm,nSm,n +
M

∑
i=1,i 6=m

gi,ncm,n

√
bi,nSi,n + zm,n (2)

In NOMA systems, due to interference introduced by the superimposed user, SIC
technology is usually used at the receiving end, and the base station will receive multiple
different superimposed signals and demodulate them in a certain order. The receiver
first demodulates the high-power signal, subtracts it from the mixed signal, and treats
remaining signal as interference. Further to this, zm,n represents additive Gaussian white
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noise, which obeys complex Gaussian distribution, and zm,n ∼ CN(0, ϑ2
n). Therefore, for

users in sub-channel n, the SINR can be expressed as:

SINR =
cm,nbm,n|gm,n|2

ϑ2
n + ∑M

i=1,|gi,n |2<|gm,n |2
cm,nbi,m|gi,n|2

(3)

According to Shannon’s theorem, the rate of the mth user on the sub-channel n can be
expressed as:

Rm,n = Bs log(1 + SINR) (4)

The sum rate of the corresponding sub-channel n is:

Rn =
M

∑
i=1

Rm,n (5)

The system sum rate is:

R =
M

∑
i=1

Rn =
M

∑
i=1

N

∑
j=1

Rm,n (6)

In this paper, the problem is to maximize the system sum rate under the constraints
of each user meeting the minimum transmission rate requirements. This optimization
problem can be formulated as:

max
M

∑
i=1

N

∑
j=1

Rm,n (7)

The constraints of the joint user grouping and power allocation are as follows:

C1 : 0 ≤ bm,n ≤ bmax
C2 : Rm,n ≥ Rmin

(8)

where bmax represents the maximum transmit power of the user, and Rmin is the minimum
data rate requirement for each user. Constraint C1 ensures that the transmit power per
user does not exceed bmax, while constraint C2 guarantees that the rate per user meets the
minimum signal rate requirement. Finding a globally optimal solution for this objective
function is a challenging task. Although the global search method can provide the op-
timal solution by searching all possible user grouping combinations, the computational
complexity is too high to be practical. Hence, the predecessors of this research utilized
DRL to reduce the complexity of the calculation [20]. In building upon this, the present
article proposes a novel approach that combines Prioritized Dueling DQN-DDPG with joint
optimization for user grouping and power allocation in NOMA systems. The proposed
method aims to enhance the system sum rate, improve learning efficiency, and address the
issues of slow convergence speed and unstable training.

2.2. Resource Allocation Method Based on Prioritized Dueling DQN-DDPG
2.2.1. Resource Allocation Network Architecture

Generic reinforcement learning comprises five components, namely, Agent, Action,
State, Reward, and Environment. Agent refers to an entity that produces a corresponding
Action based on the input State. The Environment, in turn, receives the Action and returns
the State and Reward. The Agent updates the decision function that generates the Action
based on the Reward and the current State. This process is repeated until the Agent can
produce the optimal Action in any State, i.e., the learning process of the model is completed.
The critical aspect of reinforcement learning is ensuring that the State, Action, and Reward
correspond one-to-one with the parameters of the NOMA system under study, thereby
enabling the reinforcement learning method to achieve the desired outcomes [21].
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Based on the structure of reinforcement learning, this paper designs the NOMA system
model, as shown in Figure 2. NOMA stands for a reinforcement learning environment with
two agents: One is the Prioritized Dueling DQN, which is responsible for user grouping;
the other is the Prioritized DDPG network, which performs power allocation. In this paper,
the state space is defined as S = {gm,1, gm,2, . . . , gm,n}, the user grouping space is defined
as A1, and the power allocation space is defined as A2. Instant rewards are denoted by
rt = R, where R is the optimization target system sum rate, and Rt is used to represent the
sum of the rewards and rewards obtained [22].

Rt = rt + γrt+1 + γ2rt+2 . . . =
∞

∑
i=0

γirt+i, γ ∈ [0, 1] (9)
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The discount factor, γ, determines the relative importance of immediate rewards and
future rewards. The value of γ ranges from 0 to 1. The expected value of the cumulative
payoff Rt is defined as the Q value, which is determined by the state st. Choice action at
under certain strategy π. It is expressed as:

Qπ(st, at) = E[rt + γmaxQπ(st+1, at+1)] (10)

At every Time Slot (TS), Agent1 and Agent2 obtain the channel gain from the NOMA
system, select the user combination and power in the action space based on the current
channel gain, and communicate the action results to the NOMA system. The NOMA
system generates instantaneous rewards and channel gains for the next TS based on the
received action, which are then passed on to Agent1 and Agent2, respectively. Based
on the reward, Agent1 and Agent2 update the decision function that selects the optimal
action under the current channel gain to complete the interaction. This process is reiterated
until the Agent is capable of generating the optimal decision for any channel gain [23].
However, the DQN user grouping scheme proposed by previous researchers has some
inherent issues, such as slow convergence speed and unstable training, which adversely
impact system performance. Therefore, the present study improves upon the uplink
method, proposing a joint optimization scheme for user grouping and power allocation in
the NOMA system based on Prioritized Dueling DQN-DDPG, as illustrated in Figure 2.
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2.2.2. User Grouping Based on Dueling DQN

This paper applies Prioritized Dueling DQN to accomplish the task of user group-
ing. DQN, as one of the deep reinforcement learning algorithms, merges the Q-learning
algorithm with neural networks, leveraging the neural network’s strong representational
capability. In reinforcement learning, the input record serves as the state, which is fed
into the neural network model (Agent) as input. Subsequently, the neural network model
outputs the corresponding value (Q) of each action to determine the action to be executed.
However, in numerous deep reinforcement learning tasks, the value functions for different
actions in various states are not identical, and in some states, the value functions have no
connection with actions. In line with the aforementioned concept, Wang et al. proposed the
Dueling network model to substitute the network model in the DQN [17]. The core idea
of Dueling DQN is to divide the state value Qπ(st,At1) into the state value function V(st)
and the action advantage function A(st,At1). In this paper, Dueling DQN is implemented in
the user grouping stage of the NOMA system. The fundamental concept is that Dueling
DQN considers different state values and advantage functions in different states, which
can swiftly select the present optimal action in the sample training process.

Dueling DQN-Based User Grouping Network

This section introduces the user grouping framework base on Dueling DQN in
the NOMA system. As shown in Figure 3, Dueling DQN contains two sub-networks,
Q-network and target Q-network. Q-network is used to generate the estimated Q value of
the selected action, and the target Q-network is used to generate the target Q value of the
training neural network. In the NOMA system, the current environment is first initialized
to obtain the initial state st, which is fed into the estimated Q-network of the Dueling DQN.
In taking st as input, this paper adopts the ε-greedy strategy to select At1 as a new user
combination, namely:

at1 = arg max
at1∈A1

(st, at; θ, β, α) (11)

where θ is the convolution layer parameter; β and α are the fully connected layer parameters
of the two branches.
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This means that the ζ probability is to randomly select the action from the action space
A1 as the user combination or the user combination with the highest estimated Q value
with a probability of (1−ε). Finally, all user combinations At1 and power At2 (setting the
power allocation action to At2) are returned to the NOMA system. Based on the chosen
action, the NOMA system generates the immediate reward and the status information st+1
at the next moment, which is then stored in memory (st, at1, rt, st+1). To ensure that all
samples in the sample pool can be sampled, we set the new sample as the highest priority
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and store this sample tuple in the experience pool. We calculate the sample weight using
the sampling probability and train the target Q value in the network generated using the
Q-network, namely:

yi = ri + γ max
a(i+1)1∈A1

Qπ

(
si+1, a(i+1)1; θ−, β, α

)
(12)

The purpose of the training process is to make the prediction error between the
estimated Q value and the real Q value infinitely close to 0. Therefore, in this paper, the
prediction error is defined as a loss function, namely:

LOSS1 =
1
N

N

∑
i=1

wi(yi −Q(si, ai1; θ, β, α))2 (13)

Finally, the loss function is used to update and estimate the weights of the Q-network.
Then, after a certain number of iterations, the weight parameters of the target Q-network
are updated with the weight parameters of the estimated network, where wi is the sampling
weight importance of the sample [24,25].

Dueling DQN Network Structure

The architecture of the Dueling DQN model used in the user grouping algorithm is
shown in Figure 4a, while the traditional DQN model architecture is given in Figure 4b
for comparison. Compared with DQN, Dueling DQN first divides the fully connected
layer into two branches. The first path is the output state value(V(st)), which represents the
value of the static state environment itself. The second path outputs the action advantage
value(A(st,At1)), which represents the additional value of selecting an action. Finally,
through full connection, it is merged into the action value Qπ(st,At1). The state value
function is unrelated to the action. In contrast, the action advantage function is related to
the action and represents the average reported degree of goodness of the action, which
is related to the state and can solve the Reward-bias problem. Based on this competing
network structure, the agent can learn a more realistic value V(st) in the environmental
state without the influence of action [17].

In this paper, the state value function V(st) of Dueling DQN in user grouping is
expressed as:

V(st) ∼= V(st; θ, β) (14)

Action advantage function A(st,At1) can be expressed as:

A(st, at1) ∼= A(st, at1; θ, α) (15)

where θ is the convolution layer parameter; β and α are the fully connected layer parameters
of the two branches.

Dueling DQN only improves the intermediate structure of the neural network, and
simply splitting the model is not enough to fundamentally solve the problem. In this
article, we need to impose some restrictions on the output of the split two parts. If we
do not restrict the output of these two parts, there can be infinite possible combinations
of the value function V(st) and the advantage function A(st,At1) given a constant Q value.
However, only a few of these combinations actually make sense and come close to the
real number. In order to solve this problem, this paper qualifies the dominant function
A(st,At1). In practice, action dominance is generally set as a separate action dominance
function minus the average of all action advantage functions in a certain state. Therefore,
the final action Q value of the user grouping in this paper is expressed as:

Qπ(st, at1; θ, β, α) = V(st; θ, β) +

(
A(st, at1; θ, α)− 1

|A|∑at1
′
A(st, at1

′; θ, α)

)
(16)
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The advantage of this expression is that it ensures the stable relative ranking of
dominant functions of each action in a given state, reduces the range of Q value, removes
the excess degrees of freedom, and improves the stability of the algorithm. Compared
to the traditional DQN network structure, Dueling DQN decomposes the Q value into
the form of the value function V(st) and the advantage function A(st,At1), which makes
training easier and convergence faster. As the number of actions increases, this advantage
becomes even more pronounced. The state value function depends solely on the state and
is independent of the behavior, making it easier to train. Multiple behaviors can share the
same value V(st), in the same state. The difference between different behaviors lies only in
the dominance function. The convergence of this part can also be independent of the value
function, allowing for the independent learning of relative differences between behaviors.
Moreover, the advantage function is introduced to avoid unstable results caused by the
large magnitude of Q values and the very small differences between Q values.

The primary advantages of Dueling DQN are as follows:

(1) It can generalize the learning process to all possible actions in the environment without
changing the underlying reinforcement learning algorithm.

(2) Since it can learn the most critical state for the agent, it does not need to know the
impact of each action on each state, enabling it to quickly identify the best action.

(3) From a network training perspective, less data is required, making the network
training more user-friendly and straightforward.

(4) Training the state and advantage functions separately makes it easier to maintain
the order between actions. When breaking down the value function, each result part
has practical significance, and their combination is uniquely determined, making the
network learning more precise and robust.
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Therefore, Dueling DQN, as an improved reinforcement learning algorithm, has
better performance and higher efficiency and can be employed to address NOMA system
problems such as user grouping.

2.2.3. Power Allocation Based on DDPG Network

Deep reinforcement learning methods, such as DQN and Dueling DQN, use deep
neural networks to approximate Q-valued functions, and they are effective in solving
complex problems with high dimensions of state space and action space. However, they are
only suitable for dealing with discrete action spaces. This is because DQN needs to find the
action with the largest Q value, and if the action is an infinite number of consecutive values,
iterative optimization within the training set incurs a performance penalty. Therefore,
DQN cannot be directly applied to continuous action spaces. DDPG is a model-free,
offline learning method based on deterministic policy gradients. The DDPG algorithm has
symmetric properties. It follows the Actor-Critic architecture and can effectively deal with
problems with continuous action spaces by using a deep neural network approximation
strategy. Wang et al. proposed two frameworks (i.e., DDRA and CDRA) to maximize the
energy efficiency of NOMA systems, where DDRA is based on DDPG networks, and CDRA
is based on multiple DQN networks [26]. The results show that the time complexity of the
two frameworks is similar, but the performance of the DDPG network is better than that of
the multi-DQN network. This is because, in multi-DQN, the quantization of user power
results in the loss of some important information. The DDPG network is similar to DQN,
using deep neural networks and uniform sampling. It is also a deterministic policy gradient
network where behavior is uniquely determined in one state. Moreover, DDPG can handle
sequential action tasks without quantifying the transmission power. Therefore, in this
section, the power allocation network based on DDPG is designed based on sub-channel
assignment in Dueling DQN. DDPG can be easily extended to larger and more complex
mobile communication systems. Compared to the discrete method, the continuous resource
allocation method proposed in this chapter can achieve a better system sum rate and has
stronger processing power for large-scale user access. Figure 5 shows the network structure
of DDPG [27–30].
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2.2.4. Priority Experience Playback Mechanism

Dueling DQN and DDPG networks introduce an empirical replay mechanism to
reduce the correlation and dependence among samples, where all samples are uniformly
sampled from the experience pool. However, this approach may ignore some important
samples, leading to lower learning efficiency. Therefore, to compensate for the insufficient
random sampling of the experience pool, this paper introduces a priority-based empirical
replay mechanism for Dueling DQN and DDPG networks. This mechanism solves the
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problem of low sampling efficiency in the empirical replay and greatly improves the
training speed of network models.

The priority experience replay mechanism does not perform random sampling but
instead samples according to the importance of each sample in the experience pool.
This approach can more effectively find the samples required for training. In priority
experience replay, the temporal difference error (TD-error) of each sample is used as
the evaluation criterion for sampling. The TD-error formula for the samples in the user
grouping is as follows [19].

δi = yi −Q(si, ai1; θ) (17)

where δi is the TD-error of sample i. The larger the absolute value of the TD-error of a
sample, the higher its probability of being sampled. The TD-error of a sample determines
the probability of being sampled. The priority sampling probability of samples can be
expressed as follows:

P(i) =
Pk

i

∑ jPk
j

(18)

where Pi represents the priority of the sample, it is calculated according to the TD-error
of the sample, Pi = |δi| + ε0. Pi > 0, ε0 > 0. By setting the priority of the samples, samples
with high probability will be added to the learning process frequently, and samples with
small TD-errors may never be trained. In order to ensure that samples with lower priority
can also be drawn as training samples, it is assumed that ε0 is a positive value to ensure
that the sample priority is always greater than 0. Further to this, k determines the degree
of priority: when k = 0, it indicates uniform sampling, and when k = 1 indicates greedy
strategy sampling. Therefore, k does not change the monotonicity of priority and is used to
increase or decrease the priority of the TD-error experience.

Since the priority experience replay algorithm frequently replays empirical samples
with high TD-errors, it can result in a change in the data distribution of the samples, leading
to training bias or overfitting. In order to reduce this bias, the priority experience replay
algorithm uses the importance sampling weight method to correct the bias. The importance
sampling weight of a sample is defined as follows [31]:

wi =

(
1
H

1
P(i)

)σ

(19)

where H is the number of samples, P(i) is the sample probability, σ is used to adjust the
degree of deviation, and σ = 1 indicates that the deviation is completely eliminated.

Figure 6 illustrates the priority-based sampling model.

2.2.5. User Grouping and Power Allocation of Prioritized Dueling DQN-DDPG

In this paper, we use Prioritized Dueling DQN to perform user grouping and Pri-
oritized DDPG network for power allocation. The combination of the user group and
power distribution is optimized to obtain the optimal user combination and the optimal
power distribution mode. In the user grouping module of the resource allocation network,
the NOMA system provides the current channel gain, which is st, and feeds it into the
Dueling DQN. Dueling DQN selects user group action At1 from the user group action space
according to the current channel gain and inputs it into the NOMA system. The NOMA
system generates the next channel gain and reward (i.e., system sum rate) feedback to the
Dueling DQN. Dueling DQN updates the action value function that generates this action
according to the system sum rate, which is the real Q value. At this time, an interaction is
completed. Power distribution action At2 is also obtained by using the DDPG network in
the power distribution module [32].
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When we jointly optimize user grouping and power allocation, we need to obtain
the joint action at = {at1, at2} of user grouping and power allocation in the above process
and input it into the NOMA system. According to the action, the system updates the
environment, gives feedback to the distribution action, and then feeds back to the base
station according to the reward value set. Finally, the base station adjusts the selected
distribution action and updates the parameters of the network according to the feedback
reward value and the updated state. The following Algorithm 1 shows the Prioritized user
grouping and power allocation algorithm based on Prioritized Dueling DQN-DDPG [33]:

Algorithm 1: User grouping and power allocation of Prioritized Dueling DQN-DDPG

Initialize the memory D, store the maximum value of the experience sample to N, and the weight update interval W. Initialize the
prediction Q-network and weight θ of all Dueling DQN units, the target Q-network and weight θ− = θ.
The random weights µ and ω are used to initialize the current π(si;µ) of the Actor network, and the Q(si;ω) of Critic current network;
Update Actor target network π(si+1; µ′) with parameter µ′ < −µ; Update Critic target network Q(si+1; ω′) with parameter ω′ < −ω.
Initialize state s1, action at1 and ambient noise zn.
Repeat The time step in the empirical trajectory, from t = 1 to T.
The Dueling DQN network chooses action at1 ∈ A1 according to the ε-greedy strategy, and otherwise chooses
at1 = arg max

at1∈A1
(st, at1; θ, β, α), and get the return reward rt and the next state st+1.

Save the (st, at1, rt, st+1) to the memory.
Sample data (st, at1, rt, st+1) by priority size from the memory.
The target value of each state is calculated, and the value of Q is updated by the reward rt after the action is performed by the target

network Q. The Target value yi = ri + γ max
a(t+1)1∈A1

Q
(
(si, a(i+1)1; θ−)

)
of Target Q Network in Dueling DQN network is calculated,

the TD error(δi1 = yi −Q(si, ai1; θ)) of samples is calculated, and the loss function Loss1 = 1
N

N
∑

i=1
wi
(
yi −Q

(
si, ai1; θ

))2

is calculated.

Calculate the Target Q value yi = ri + γQ(si+1, π(si+1, µ′); ω′) of the Target Critic Network, calculate the sample

δi2 = yi −Q(si, ai2; ω), and get the loss function Loss2 = 1
N

N
∑

i=1

(
yi −Q

(
si, a2

i2, ω
))2

.

Through continuous parameter update to train the sample, finally find the appropriate user group and power allocation mode at = {at1, at2} .
Through the calculated loss function, update all parameters, recalculate TD error, and then determine all sample priority pi
according to the TD error, update all priority pi.
The weight parameter θ of Dueling DQN is updated by minimizing the loss function formula Loss1.
Update the weight ω of Critic current network in DDPG by minimizing loss function formula Loss2.

The resampling strategy gradient formula J(µ) = −1
N

N
∑

i=1
Q(si, ai; µ) was used to update the policy parameter µ of the Actor’s

current network in DDPG.
Every W interval, update the weight θ− of the target network with the prediction network weight θ.
Every W time intervals, update parameter µ′ of Actor target network according to µ′ = τµ + (1− τ)µ′ and parameter ω′ according
to Critic target network ω′ = τω + (1− τ)ω′.
END
END

The priority-based experience replay mechanism mentioned above is used in both
the Dueling DQN and DDPG networks. Figure 7 illustrates the structure model for user
grouping and power allocation based on Prioritized Dueling DQN-DDPG.

This paper proposes three approaches to optimize user grouping and power allocation
in NOMA systems. Firstly, in the user grouping stage, Dueling DQN adopts a competitive
network structure. The full connection layer of the Dueling DQN network is divided into
two paths. The upper path outputs the state value, which represents the intrinsic value of
the static state environment. The lower path outputs the action advantage value, which
represents the additional value brought by selecting a certain action. These two values
compete with each other and are combined into the action value by a full connection. The
state value function is independent of the action, while the action advantage function is
related to the action. It reflects the average reward obtained relative to the state s and
is used to solve the reward bias problem. Based on this competitive network structure,
the agent can learn more accurate values in an environment without action influence. By
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emphasizing the advantages of each current state and action, Dueling DQN can accelerate
convergence speed and improve the stability of the training process. It also enhances the
system sum rate.
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Secondly, in the power allocation stage, due to the continuous nature of the user power
variable, we use the DDPG network, which can effectively handle continuous actions and
solve the problem that DQN cannot handle continuous actions. Compared with DQN,
DDPG does not quantify the total power emitted by the base station for power allocation
actions. This solves the problem of high dimensionality, and DDPG directly outputs the
user’s power, which can generate actions based on parameterized policies.

Finally, as Dueling DQN and DDPG introduce experience replay to reduce the cor-
relation and dependence between samples, all samples are uniformly sampled from the
experience pool. In this case, some important samples may be ignored, leading to reduced
learning efficiency. Therefore, to address the problem of inadequate random sampling
in the experience pool, this paper applies a prioritized reinforcement learning method to
Dueling DQN and DDPG networks to solve the sampling problem in experience replay.
It significantly improves the training speed of the network model. Based on this, this
paper proposes a resource allocation method based on the Prioritized Dueling DQN-DDPG
algorithm for joint optimization of user grouping and power allocation, which effectively
improves the convergence speed of sample training and improve the stability of the training
process. It also enhances the system sum rate.

3. Results and Discussion

This paper conducts simulations to evaluate the performance of the proposed Pri-
oritized Dueling DQN-DDPG resource allocation in an uplink NOMA system. The base
station is located at the center of the cell, and the users are randomly distributed throughout
the cell. The specific parameters are listed in Table 1.

Table 1. Simulation parameter setting.

Parameter Numerical

The number of users 4
Radius of neighborhood 500 m
Path loss factor 3
Number of samples 64
Noise power density −110 dBm/Hz
The minimum power 3 dBm
Total system bandwidth 10 MHz
Discount factor γ 0.9
Greedy choice strategy probability ς 0.9
Algorithm learning rate 0.001

Various learning rates can affect the convergence speed and stability of Dueling DQN
training. In this paper, the algorithm’s learning rate is first set to 0.001 through parameter
selection. Figure 8 illustrates the convergence of the proposed algorithm at different
learning rates.

In this paper, the NOMA system resource allocation algorithm of Prioritized Duel-
ing DQN and DDPG proposed is denoted as Prioritized Dueling DQN-DDPG. In order
to verify the effectiveness of the proposed algorithm, this paper makes a comparison
between DQN-DDPG, Dueling DQN-DDPG and Prioritized Dueling DQN-DDPG. In
the DQN-DDPG method, the user grouping is completed according to DQN and the
power allocation is finished according to DDPG. In the Dueling DQN-DDPG method,
Dueling DQN performs user grouping, and DDPG performs power allocation. Prior-
itized Dueling DQN-DDPG is put forward in this paper, where Prioritized Dueling
DQN makes user grouping and Prioritized DDPG makes power allocation. This paper
compares the system sum rate performance, training convergence speed and stability,
and algorithm time complexity of the aforementioned algorithms. As shown in Figure 9,
it can be seen that the Prioritized Dueling DQN-DDPG algorithm is superior to the other
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two algorithms. The following will discuss the advantages and disadvantages of the
algorithm proposed in this paper from three aspects.
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3.1. Convergence of the Proposed Algorithm

For the convergence performance of the proposed algorithm in this paper, Figure 9
shows a comparison between the convergence performance of the proposed Prioritized
Dueling DQN-DDPG, Dueling DQN-DDPG, and DQN-DDPG methods. As the system sum
rate gradually increases, the algorithm proposed in this paper is close to convergence when
the number of iterations is 150, while DQN-DDPG tends to converge when the number of
iterations is nearly 300. We compared the proposed Dueling DQN-DDPG with DQN-DDPG
in two aspects. Firstly, the convergence speed of Dueling DQN-DDPG is significantly faster
than DQN-DDPG, with an increase of more than double. This is because the main feature
of Dueling DQN is to use the model structure to express the value function in a more
detailed form, allowing the model to have better performance. DQN only contains one
Q network, corresponding to only one Q function, while the Q network in Dueling DQN
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contains two functions: the state value function and the advantage function. The state value
function represents the inherent value of the static environment itself, and the advantage
function represents the additional value brought by choosing a certain action in a certain
state. Dueling DQN can speed up convergence by paying attention to the advantage
that can be obtained for each current state and action, and the training process is more
stable. Second, it can be observed that the convergence speed of the Prioritized Dueling
DQN-DDPG is significantly faster than that of Dueling DQN-DDPG because the prioritized
experience replay stores prioritized learning experience in the experience pool and guides
the optimization of model parameters by extracting samples with high TD-error, which
improves learning efficiency. In addition, prioritized experience replay not only focuses on
samples with high TD-error to help speed up the training process but also involves samples
with low TD-error to increase the diversity of training. Therefore, it is concluded that the
convergence speed of the Prioritized Dueling DQN-DDPG has a significant improvement
compared with Dueling DQN-DDPG.

Based on the above two discussions, we conclude that the proposed Prioritized Du-
eling DQN-DDPG method significantly improves the stability and convergence speed of
training, with a speed increase of almost double.

3.2. Average Sum Rate Performance of the Proposed Algorithm

Figure 9 shows the experimental results for the system sum rate. All experimental
results are averaged every 600 TS to achieve a smoother and clearer comparison. The
Prioritized Dueling DQN-DDPG algorithm has obvious advantages over the other two
algorithms in the system sum rate. Compared with the DQN-DDPG algorithm, the
proposed algorithm improves the system sum rate by 0.5%. There are two reasons for
this. Firstly, the network structure of Dueling DQN has more advantages than DQN.
DQN only contains one Q network, corresponding to only one Q function, while the
Q network in Dueling DQN contains two functions: the state value function and the
advantage function. The state value function represents the inherent value of the static
environment itself, and the advantage function represents the additional value brought
by choosing a certain action in a certain state. By giving importance to the advantage
that can be obtained for each current state and action, Dueling DQN can learn more
accurate Q values based on the value function and advantage function. Therefore, the
system sum rate of Dueling DQN-DDPG is improved compared with DQN-DDPG. At
the same time, Prioritized Dueling DQN-DDPG sets the priority for valuable samples
that are beneficial to network training, thereby improving the system sum rate.

3.3. Computational Complexity Analysis

This section analyzes the computational complexity of the proposed algorithm.
Based on the computer program runtime (computer configuration: 64-bit operating sys-
tem, x64-based processor), the time complexity of the Prioritized Dueling DQN-DDPG
increases by about 15% compared to the DQN-DDPG. This is because Dueling DQN
divides the output of the fully connected layer into two parts, decomposing the Q value
into the value function and the advantage function, which compete with each other to
obtain the optimal solution, and then adds these two parts together. Therefore, some
calculation steps are added when training samples, resulting in an increase in compu-
tational complexity. Secondly, this paper introduces the priority algorithm based on
temporal errors in the Dueling DQN and DDPG networks, which increases the computa-
tional complexity. However, during the training process, the convergence speed of the
algorithm improved significantly. Table 2 is a time complexity comparison of the two
methods. Figure 10 shows the time complexity of the three methods.
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Table 2. Time complexity comparison of the two methods.

Number DQN-DDPG Prioritized Dueling DQN-DDPG Time Complexity Increased by Percentage

1 2355.0431316 s 2724.8576722 s 15.703%
2 2074.8412441 s 2376.3507379 s 14.531%
3 2021.6223315 s 2280.1505739 s 12.788%
4 2042.1567555 s 2304.2756512 s 12.835%
5 2006.6152422 s 2290.4872706 s 14.146%
6 2020.9810086 s 2323.9442205 s 14.990%
7 2031.1689703 s 2305.3912113 s 13.500%
8 2011.4987920 s 2276.6919056 s 13.159%
9 2103.3444909 s 2434.7927646 s 15.758%

10 2043.8314553 s 2370.6670829 s 15.991%
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The table above shows the time complexity comparison results of ten experiments. It
is observed that Prioritized Dueling DQN-DDPG increases the average time complexity by
around 15% compared with DQN-DDPG. This paper only compares the running time of
the two algorithms:

Time complexity increased by percentage =
Running time of Prioritized Dueling DQN −DDPG−DQN−Running time of DDPG

Running time of DQN−DDPG × 100%

The above method of calculating time complexity is based on the comparison of the
results obtained by running both algorithms 600 TS. However, as we have concluded in
Section 3.1, our proposed algorithm approaches convergence at around 150 iterations, while
DQN-DDPG tends to converge at around 300 TS. This section calculates the running time
of both algorithms as they approach convergence. As we can see from the table below,
the Prioritized Dueling DQN-DDPG algorithm reaches convergence in only about 36% of
the time taken by DQN-DDPG. Therefore, based on the time taken to reach convergence
for both algorithms, we can conclude that the time complexity of the Prioritized Dueling
DQN-DDPG algorithm has not increased but has actually reduced the training time re-
quired to some extent. Table 3 shows a comparison of the convergence time between
Prioritized Dueling DQN-DDPG and DQN-DDPG.
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Table 3. Comparison of convergence time of the two methods.

DQN-DDPG (300 TS) Prioritized Dueling
DQN-DDPG (150 TS)

(Prioritized Dueling
DQN-DDPG/DQN-DDPG) × 100%

1 597.822680 s 212.271871 s 35.51%
2 617.336156 s 228.685814 s 38.25%
3 607.584831 s 219.122785 s 36.06%
4 582.458203 s 209.875624 s 36.03%
5 584.686530 s 209.240106 s 36.01%
6 586.673505 s 213.803065 s 36.44%
7 561.049539 s 206.073456 s 36.73%
8 568.325278 s 206.477650 s 36.33%
9 551.649149 s 227.379164 s 41.22%
10 558.230064 s 185.991332 s 33.32%

Average value - - 36.58%

4. Conclusions

This paper aims to solve the problems of slow convergence speed and unstable training
of DQN under the constraint of ensuring the minimum transmission rate of each user and
ensuring the system’s sum-rate maximization. A resource allocation method for the NOMA
system with Prioritized Dueling DQN-DDPG joint optimization is proposed. Prioritized
Dueling DQN is designed with the current channel state information as input and the sum
rate as the optimization objective so that it can output the optimal user grouping policy. In
the power allocation part, the Prioritized DDPG network is used to output the power of all
users simultaneously. The algorithm uses priority experience replay instead of previous
randomly distributed experience replay and uses TD-error to evaluate the importance
of samples. Thus, the optimal strategy can be selected more quickly. Simulation results
show that when Dueling DQN is used for user grouping, the training convergence speed
is significantly accelerated, and the training process is relatively stable. The proposed
combined priority sampling algorithm can replay valuable samples with high probability,
improve the learning rate, and make the training more stable. In addition, compared
with the common DQN-DDPG, the convergence speed of the proposed joint algorithm is
nearly doubled, and the complexity is only increased by 15%. The time required for the
Prioritized Dueling DQN-DDPG algorithm to reach convergence is only about 36% of the
time required by the DQN-DDPG algorithm.

This paper focuses on the resource allocation of the NOMA system in the non-
mobile state. However, in practical applications, resource allocation in the mobile state,
such as the Internet of Vehicles, should also be considered. The mobile state can cause
system instability, which can lead to additional challenges. The research conducted in
this paper establishes a theoretical foundation for more complex practical applications
and provides a reliable basis for the implementation of follow-up work. The future
direction of this paper is to continue studying the resource allocation of NOMA in the
mobile state and consider more complex channel scenarios based on the outcomes of
this research [19]. The optimization method proposed in this paper is also applicable to
multi-user MIMO. Our future research direction will also consider applying this method
to resource allocation in MIMO.
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