The Influence of the Perturbation of the Initial Data on the Analytic Approximate Solution of the Van der Pol Equation in the Complex Domain
Abstract
:1. Introduction
2. Methods of Research and Results
3. Numerical Study
3.1. Example 1
3.2. Example 2
3.3. Example 3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sudakov, V.F. To the Problem on Limit Cycle of the Van der Pol Generator in Relaxation Mode. Her. Bauman Mosc. State Tech. Univ. Ser. Instrum. Eng. 2013, 1, 51–57. [Google Scholar]
- Kuznetsov, A.P.; Seliverstova, E.S.; Trubetskov, D.I.; Turukina, L.V. Phenomenon of the Van der Pol Equation. Izv. Vuz 2014, 4, 3–42. [Google Scholar]
- Birkhoff, G.; Rota, G. Ordinary Differential Equations, 4th ed.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Kreyszig, E. Advanced Engineering Mathematics, 9th ed.; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Edwards, C.; Penney, D.; Calvis, D. Differential Equations and Boundary Value Problems: Computing and Modeling, 5th ed.; Pearson: New York, NY, USA, 2014. [Google Scholar]
- Andronov, A.A.; Vitt, A.A.; Khaikin, S.E. Theory of Oscillators; Dover: New York, NY, USA, 1987. [Google Scholar]
- Mishchenko, E.F.; Rozov, N.K. Small-Parameter Differential Equations and Relaxation Oscillations; Nauka: Moscow, Russia, 1975. [Google Scholar]
- Magnus, K. Schwingungen-Eine Einfuhrung in Die Theoretische Behandlung von Schwingungsproblemen; Teubner: Stuttgart, Germany, 1961. [Google Scholar]
- FitzHugh, R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys. J. 1961, 1, 445–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Wang, Z.; Tian, H.; Liu, J. Symplectic Dynamics and Simultaneous Resonance Analysis of Memristor Circuit Based on Its van der Pol Oscillator. Symmetry 2022, 14, 1251. [Google Scholar] [CrossRef]
- Hafien, C.; Messaoudi, A. A Modified Van Der Pol Oscillator Model for the Unsteady Lift Produced by a Flapping Flat Plate for Different Positions of the Rotation Axis. Symmetry 2022, 14, 88. [Google Scholar] [CrossRef]
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: Berlin, Germany, 1983. [Google Scholar]
- Cartwright, J.; Eguiluz, V.; Hernandes-Garcia, E.; Piro, O. Dynamics of elastic excitable media. Int. J. Bifurc. Chaos. Appl. Sci. Eng. 1999, 9, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Grasman, J. Asymptotic Methods for Relaxation Oscillations and Applications; Springer: New York, NY, USA, 1987. [Google Scholar]
- Alhejaili, W.; Salas, A.H.; Tag-Eldin, E.; El-Tantawy, S.A. On Perturbative Methods for Analyzing Third-Order Forced Van-der Pol Oscillators. Symmetry 2023, 15, 89. [Google Scholar] [CrossRef]
- Panayotounakos, D.E.; Panayotounakou, N.D.; Vakakis, A.F. On the lack of analytic solutions of the Van der Pol oscillator. ZAMM Z. F. Angew. Math. Mech. 2003, 83, 611–615. [Google Scholar] [CrossRef]
- Sebert, F. Symmetry Analysis for a Second-Order Ordinary Differential Equation. Electron. J. Differ. Equations 2021, 85, 1–12. [Google Scholar]
- Balanov, Z.; Farzamirad, M.; Krawcewicz, W. Symmetric systems of van der Pol equations. Topol. Methods Nonlinear Anal. 2006, 27, 29–90. [Google Scholar]
- Conte, R.; Musette, M. The Painlevé Handbook, Mathematical Physics Studies; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Orlov, V.N. Moving Singular Points and the Van der Pol Equation, as Well as the Uniqueness of Its Solution. Mathematics 2023, 11, 873. [Google Scholar] [CrossRef]
- Orlov, V.; Chichurin, A. About Analytical Approximate Solutions of the Van der Pol Equation in the Complex Domain. Fractal Fract. 2023, 7, 228. [Google Scholar] [CrossRef]
- Orlov, V.; Gasanov, M. Existence and Uniqueness Theorem for a Solution to a Class of a Third-Order Nonlinear Differential Equation in the Domain of Analyticity. Axioms 2022, 11, 203. [Google Scholar] [CrossRef]
- Dubinskii, Y.A. Analytic continuation of solutions of ordinary differential equations. Differ. Equ. 1994, 30, 672–674. [Google Scholar]
- Hille, E. Ordinary Differential Equations in the Complex Domain; Dover: New York, NY, USA, 1997. [Google Scholar]
- Abel, M.L.; Braselton, J.P. Differential Equations with Mathematica; Academic Press: London, UK, 2022. [Google Scholar]
No. Analytical Continuation | ||||
---|---|---|---|---|
No. Analytical Continuation | ||||
---|---|---|---|---|
No. Analytical Continuation | ||||
---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlov, V.; Chichurin, A. The Influence of the Perturbation of the Initial Data on the Analytic Approximate Solution of the Van der Pol Equation in the Complex Domain. Symmetry 2023, 15, 1200. https://doi.org/10.3390/sym15061200
Orlov V, Chichurin A. The Influence of the Perturbation of the Initial Data on the Analytic Approximate Solution of the Van der Pol Equation in the Complex Domain. Symmetry. 2023; 15(6):1200. https://doi.org/10.3390/sym15061200
Chicago/Turabian StyleOrlov, Victor, and Alexander Chichurin. 2023. "The Influence of the Perturbation of the Initial Data on the Analytic Approximate Solution of the Van der Pol Equation in the Complex Domain" Symmetry 15, no. 6: 1200. https://doi.org/10.3390/sym15061200
APA StyleOrlov, V., & Chichurin, A. (2023). The Influence of the Perturbation of the Initial Data on the Analytic Approximate Solution of the Van der Pol Equation in the Complex Domain. Symmetry, 15(6), 1200. https://doi.org/10.3390/sym15061200