
Citation: Raezah, A.A.; Zarin, R.;

Raizah, Z. Numerical Approach for

Solving a Fractional-Order Norovirus

Epidemic Model with Vaccination

and Asymptomatic Carriers.

Symmetry 2023, 15, 1208. https://

doi.org/10.3390/sym15061208

Academic Editors: Hassen Fourati,

Abdellatif Ben Makhlouf and Omar

Naifar

Received: 9 May 2023

Revised: 30 May 2023

Accepted: 31 May 2023

Published: 5 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Numerical Approach for Solving a Fractional-Order Norovirus
Epidemic Model with Vaccination and Asymptomatic Carriers
Aeshah A. Raezah 1 , Rahat Zarin 2,* and Zehba Raizah 1

1 Department of Mathematics, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
2 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT),

126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
* Correspondence: rahat.zarin@uetpeshawar.edu.pk

Abstract: This paper explored the impact of population symmetry on the spread and control of a
norovirus epidemic. The study proposed a mathematical model for the norovirus epidemic that
takes into account asymptomatic infected individuals and vaccination effects using a non-singular
fractional operator of Atanganaa–Baleanu Caputo (ABC). Fixed point theory, specifically Schauder
and Banach’s fixed point theory, was used to investigate the existence and uniqueness of solutions
for the proposed model. The study employed MATLAB software to generate simulation results and
demonstrate the effectiveness of the fractional order q. A general numerical algorithm based on
Adams–Bashforth and Newton’s Polynomial method was developed to approximate the solution.
Furthermore, the stability of the proposed model was analyzed using Ulam–Hyers stability techniques.
The basic reproductive number was calculated with the help of next-generation matrix techniques.
The sensitivity analysis of the model parameters was performed to test which parameter is the most
sensitive for the epidemic. The values of the parameters were estimated with the help of least square
curve fitting tools. The results of the study provide valuable insights into the behavior of the proposed
model and demonstrate the potential applications of fractional calculus in solving complex problems
related to disease transmission.

Keywords: Mittag–Leffler kernel; fractional norovirus epidemic model; ABC-fractional derivative;
iterative solution; numerical scheme

1. Introduction

The most dangerous infectious diseases were listed by medical sciences researchers
through testing by various laboratories. Among them, one of the diseases of the stomach
is caused by noroviruses (NoV), which enter through fecal–oral paths and interact with
human feeding. These types of viruses may also be found in the shedding of vomitus.
Besides these sources, the contamination of used food or water and contact with fomites or
direct contact with any infected individuals may also cause this type of epidemic [1]. The
local significance for each of these paths has been discussed but it is widely known that the
NoV group of viruses alone is responsible for a huge epidemic due to food consumption
and creates a burden on health in various countries [2,3]. The acute viral gastroenteritis
viruses are related to three types of foods, which can cause an epidemic:

A1 : The shells of molluscs are contaminated with different impurities during production.
A2 : Fresh food items can be contaminated at the time of packing, collection, and harvesting.
A3 : Taking more time to prepare and cook food can lead to contamination.

Poor practical and personal hygiene when handling foods is the main cause of con-
taminated food, which can lead to the transmission of an NoV epidemic. This type of food
contamination will depend on many factors such as personal hygiene habits, the output of
the virus, time of virus transfer, duration of the existence of the virus, time of inactivation
for the virus, the shedding effect of the virus and many other factors. The contamination
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of hands may contaminate different surfaces depending upon the degree of touching and
contamination of hands. The hands in this situation may contribute to the epidemic as well
as receiving the disease [4]. The spreading of norovirus (NoV) and its results may depend
on many factors. It may also depend on weather conditions and nearly half of the cases
may occur in the winter season [5].

Mathematical models of epidemiological problems have been applied to the prediction
and control of infectious diseases [6–10]. Different global problems of epidemic diseases have
very interesting outcomes as represented by mathematical formulations given in the past
literature. Some aspects of this concept include stochastic representation which have impacts,
such as global humidity, perceptions, heat occurrence, etc., which affect the strength of the
immune system against infective diseases. This idea will enable us to write the deterministic
idea in the form of random situations which have more realistic outcomes. This will include all
the other external impacts in the form of mathematical formulation. This will cause vibration
in the parameters from the environment or some variation in the infectious models or due to
the given system [11,12]. This approach of modeling provides more choices for selection and
gives more realistic results as compared to the idealistic approach of deterministic models.
Therefore, the stochastic concepts that are perturbed by white noise or Brownian motion are
well represented in the literature, for detail one can see [13].

The relationship between symmetry and epidemic models relates to how the distri-
bution of susceptible, infected, and recovered individuals in a population are affected by
factors such as demographic and environmental symmetry. Symmetry considerations can
play a role in the modeling of disease transmission dynamics, as they can affect the spatial
and temporal spread of an epidemic. For example, if a population is asymmetric with
respect to some underlying factor, such as age or location, this could lead to differences
in the transmission of a disease and impact the effectiveness of control strategies. In the
context of mathematical modeling, accounting for symmetry in the population being mod-
eled can help to improve the accuracy of epidemic models and provide valuable insights
into the spread and control of infectious diseases [14–16]. Fractional calculus, as used in
the paper abstract mentioned earlier, is one approach to modeling the impact of symmetry
in disease transmission dynamics. By developing models that account for the effects of
asymmetry, researchers can gain a better understanding of the underlying mechanisms
driving epidemics and develop more effective strategies to prevent and control their spread.

As we describe any system having different choices for the selection of the order of
the derivative, the extra degrees will be obtained in the complex dynamics. This extra
variety of choices can be studied in modern calculus in the form of non-natural order
derivative expressions whose outcomes must be obtained as the whole density of the
quantities [17–19]. Due to this, modern calculus will be superior to classical calculus.
The medical sciences and natural sciences dynamical systems require more and more
information, therefore these can be well investigated using different fractional operators for
the internal behavior of the system; for the last few decades, this has been the central focus
of many researchers as compared to the integer order analysis. In this field, the investigation
is related to unique and solution existence, positivity, boundedness, numerical solution,
and the realistic approach of feasibility. To date, various problems of small micro species,
logistic population problems, HBV, TB, HCV, SIR, SEIR, SI, and many cancer problems
have been investigated in the sense of fractional order derivatives [20–24]. These problems
are tested for theoretical and approximate solutions in the non-integer order parameters
sensed by the application of various techniques. Some examples are the Adams–Bashforth,
corrector-predictor method, various transformations, and series solution techniques [25,26].
The analysis of COVID-19 problems has been investigated recently through fractional
operators as can be seen in [27–29]. The literature is full of articles related to infectious
disease problems and their analysis for different dynamics [30,31].

A fractional derivative is a generalization of the standard derivative to non-integer
orders. It is defined using the Riemann–Liouville fractional integral, which is a general-
ization of the standard integral to non-integer orders [17,18]. The fractional derivative has
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applications in many areas of science and engineering, including mathematical biology. In
mathematical biology, fractional derivatives are used to model various phenomena such as
diffusion in porous media, blood flow in vessels, and the spread of diseases. For example,
in the study of tumor growth, a fractional derivative model can be used to describe the
diffusion of nutrients and oxygen through the tumor tissue, which is a non-local process.
Additionally, in the study of the spread of infectious diseases, a fractional derivative model
can be used to describe the spread of the disease through a population, which is also
a non-local process. There have been a variety of fractional operators proposed in the
literature with both nonsingular and singular kernels [20–24,32]. The work of [25,26,33–35]
and references cited therein present a comprehensive study and the application of these
fractional order operators as well as a detailed analysis of their implementation.

The Atangana–Baleanu fractional derivative is a particular type of fractional derivative
that is defined using a Caputo–Fabrizio type of kernel function. It is named after its
inventors, Atangana and Baleanu, who introduced it in their 2016 paper [25]. This fractional
derivative is a generalization of the Caputo fractional derivative, which is one of the most
widely used fractional derivatives in mathematical biology. It can be used to model various
phenomena such as diffusion in porous media, blood flow in vessels, and the spread of
diseases. In mathematical biology, the Atangana-Baleanu fractional derivative has been
used to model various phenomena such as the spread of infectious diseases, tumor growth,
and the spread of pollutants in a porous medium. For example, in the study of the spread
of infectious diseases, a fractional derivative model can be used to describe the spread
of the disease through a population, which is a non-local process. Additionally, in the
study of tumor growth, the Atangana–Baleanu fractional derivative can be used to describe
the diffusion of nutrients and oxygen through the tumor tissue, which is also a non-local
process. In the study of the spread of pollutants in a porous medium, the Atangana–Baleanu
fractional derivative can be used to describe the diffusion of pollutants through the porous
medium, which is also a non-local process. It has been found that in many cases that the
Atangana–Baleanu fractional derivative provides a better fit than other types of fractional
derivatives, such as the Caputo fractional derivative, for the above-mentioned phenomena.

As for the motivation of our work, we kept in mind the above significance of fractional
calculus and took a novel problem related to the norovirus (NoV) using the Atangana–
Baleanu arbitrary order differentiation by applying the conditions of asymptomatic and
vaccinated classes. For the discussion, different aspects of NoV mathematical formu-
lation have been used. Here, we discuss the said epidemic with the inclusion of two
classes of asymptomatic carriers and vaccinated classes for more effective analysis. There
is a duration of 30–180 days in which the signs of NoV virus and the risk of infection
by an infectious person with a chance of death can manifest [36,37]. On reviewing
the literature, we have formulated a new problem for the NoV viruses with two new
compartments [9,12,30,31]. Firstly, the problem was constructed for the integer order and,
after that, it was modified and extended to the fractional version of the Atangana–Baleanu
derivative. The main objective of this article was to evaluate the mathematical formulation,
testing the problem on public health with vaccination and dilation of time for controlling an
NoV epidemic.

The novelty of this paper is in the extension of the deterministic stochastic model [38]
to the Atanga–Beleanu fractional model, which offers a more realistic approach to epidemic
modeling. The ABC fractional operator model provides several advantages over stochas-
tic models in the context of epidemic modeling. First of all, it provides a deterministic
framework that makes it possible to precisely and deterministically analyze the dynam-
ics of epidemics, especially when examining how population symmetry affects spread
and control. Contrarily, stochastic models introduce randomness and variability, creating
uncertainties and making it difficult to comprehend the effects of population symmetry.
Second, for better comprehension and management of epidemics, the ABC fractional oper-
ator model incorporates critical elements such as asymptomatic infected individuals and
vaccination effects. This thorough representation takes into account the sizeable portion of
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infected people who might not show any symptoms. Stochastic models have limitations in
accurately determining the effectiveness of control strategies and interventions because
they do not explicitly take into account asymptomatic individuals or vaccination effects.
Furthermore, the ABC model benefits from the application of fixed point theory, such
as Schauder and Banach’s fixed point theory, to analyze the existence and uniqueness of
solutions. This mathematical approach provides rigorous foundations, ensuring reliable
and valid outcomes. In contrast, stochastic models heavily rely on probabilistic methods
and simulations, which can be computationally intensive and susceptible to statistical
fluctuations. Moreover, the utilization of MATLAB software in the ABC model enables
efficient computation and visualization of epidemic dynamics. This capability facilitates in-
sights into model behavior under various scenarios and interventions, supporting informed
decision-making in epidemic control. Collectively, the advantages of the ABC fractional
operator model make it a valuable tool for epidemic modeling, offering greater realism and
enhanced analytical capabilities compared to stochastic models.

The organization of this paper is as follows: Ii Section 2, we will formulate a novel
mathematical model. Section 3 presents some basic definitions of fractional operators. In
Section 4, the mathematical analysis determines whether there is a solution that exists
and how certain terms can be optimized (3). The qualitative theory is studied in Section 5.
The basic reproductive number and sensitivity analysis of the model are presented in
Section 6. Section 7 studied the approximate solution of the model (3). Section 8 presented
the parameter estimation of the model. In Section 9, we verify our theoretical results using
numerical simulations. At the end of this paper, we summarize the main findings of our
research in a section titled Conclusions.

2. Model Formulation

We extended Cui et al.’s model [38] which has five equations that are applicable to the
considered infection mathematical model describing norovirus (NoV). All the density of
individuals is distributed in five different compartmental agents, namely: Susceptible class
(H), Vaccinated individuals (V), Asymptomatic or Exposed individuals (U ), Symptomatic
or Infectious individuals (A), and the Recovered class (C), i.e., H(t)+V(t)+U(t)+ A(t)+
C(t)) = N(t). The equations describing the model are

H́ = Λ− ηH(t)A(t)
N

−H(t)(ρ + d),

V́ = ρH(t)− (1− τ)ηA(t)
N

− dV(t),

Ú =
ηH(t)A(t)

N
+

(1− τ)ηV(t)A(t)
N

− (α + d)U (t),

Á = αU (t)− (q + d)A(t),
Ć = δA(t)− dC(t),

(1)

with the starting approximation,

H(0) ≥ 0, V(0) ≥ 0, A(0) ≥ 0, U(0) ≥ 0, R(0) ≥ 0, (2)

where Λ is the recruitment rate representing the rate at which individuals enter the suscep-
tible population. η is the transmission rate representing the probability of transmission per
contact between susceptible individuals and infected individuals. H(t) represents the den-
sity of individuals in the susceptible (healthy) class at time t. The rate of change ofH(t) is
determined by the balance between recruitment (Λ), transmission ηH(t)A(t)

N , and the natural
removalH(t)(ρ + d) of individuals. V(t) represents the density of vaccinated individuals
at time t. The balance between transmission from susceptible individuals ρH(t), transmis-
sion from immunized individuals [(1−τ)ηA(t)]

N , and natural removal of individuals dV(t)
determines the rate of change of V(t). The density of people who are asymptomatic or ex-
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posed at time t is represented by U (t). The balance between transmission from susceptible
individuals and U (t) determines the rate of change of this variable. ηH(t)A(t)

N , transmis-

sion from immunized people [(1−τ)ηV(t)A(t)
N , recovery of people (α + d)U (t), and natural

removal. A(t) indicates the proportion of people who are symptomatic or contagious at
time t. The balance between natural removal, [(q+d)A(t)]

N , and transmission to susceptible
individuals αU (t) determines the rate of change of A(t). C(t) represents the density of
people who have been found at time t. The recovery of individuals δA(t) and natural
removal dC(t) determine the rate of change of C(t). The system of equations captures the
interactions between those who are susceptible, those who have received vaccinations,
those who are asymptomatic, those who are symptomatic, and those who have recovered
to describe the dynamics of the norovirus epidemic. The spread and management of the
epidemic over time are influenced by the rates of transmission, recovery, and removal as
well as the population size N. The behavior’s transition points are shown in Figure 1.

Figure 1. Schematic diagram of the model.

The key objective was to construct a new numerical system (1) using the ABC fractional
derivative for an extra degree of choices of dynamical behavior. The qualitative analysis
will be derived by the application of fixed point theory. The considered numerical problem
will be analyzed, having a general derivative order of η as follows:

ABCDqH(t) = Λ− ηH(t)A(t)
N

− (ρ + d)H(t),

ABCDqV(t) = ρH(t)− (1− τ)ηA(t)
N

− dV(t),

ABCDqU (t) = ηH(t)A(t)
N

+
(1− τ)ηV(t)A(t)

N
− (α + d)U (t),

ABCDqA(t) = αU (t)− (q + d)A(t),
ABCDqC(t) = δA(t)− dC(t).

(3)

3. Preliminaries

This section introduces the ABC operator and its properties, along with the numerical
approximation method for solving fractional order differential equations.
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Definition 1. If Π(t) ∈ G1(0, T ) and q ∈ (0, 1], then ABC is formulated as

ABCDq
+0Π(t) =

M(q)
1− q

∫ t

0

d
dx

Π(y)Mq

[
−q

1− q
(t− y)

]
dy, (4)

replacing Mq

[
−q

1−q (t− y)
]

dy by M1 = exp
[
−q

1−q (t− y)
]

, we obtain the Caputo–Fabrizo fractional

derivative. It should be noticed that

ABCDq
+0[Constant] = 0;

here, M(q) is named the normal mapping given as M(0) = M(1) = 1. Mq represents Mittag–
Leffler mapping, the generalized exponent mapping [39–41].

In Definition 1, theABC operator is defined as a fractional derivative operator, denoted
by ABCDq

+0, where Π(t) is a function belonging to the space G1(0, T ) and q is a parameter
in the range (0, 1]. The operator is expressed as an integral involving the derivative of Π
and a Mittag–Leffler mapping Mq, with M1 representing the exponential function. The
lemma also states the behavior of the operator for constant values.

Lemma 1. [42] Solution of the given equation for 1 > q > 0,

ABCDq
+0Z(t) = x(t), t ∈ [0, T],

Z(0) = Z0,
(5)

is given by

Z(t) = Z0 +
(1− q)
M(q)

x(t) +
q

Γ(q)M(q)

∫ t

0
(t− y)q−1x(y)dy.

Lemma 1 provides the solution to a fractional differential equation in terms of the
ABC operator. The equation ABCDq

+0Z(t) = x(t) represents a fractional order differential
equation, where Z(t) is the unknown function and x(t) is a given function. The lemma
presents the explicit solution Z(t) in terms of the initial condition Z0, the function x(t), and
the parameters q, M(q), and Γ(q).

Definition 2. We can convert the fractional order DEs with order q in the form of the ABC derivative as

ABCDqY(t) = f (t,Y(t))
Y(0) = Y0.

(6)

Then, the approximate solution of (6) is given as follows:

Y(tm+1) = Y0 +
1− q
M(q)

f (tm,Y(tm))

+
q

Γ(q)M(q)

m

∑
k=0

(
hq f (tk,Yk)

Γ(q + 2)

(
(1 + m− k)q(−k + m + 2 + q)

− (−k + m)q(−k + m + 2 + 2q)
)

− hq f (tk−1,Yk−1)

Γ(q + 2)

(
(1 + m− k)q+1 − (−k + m)q(−k + m + 1 + q)

))
.

(7)

Definition 2 introduces the conversion of fractional order differential equations to
the ABC derivative form. The equation ABCDqY(t) = f (t,Y(t)) represents a fractional
order differential equation with the unknown function Y(t) and the function f (t,Y(t))
on the right-hand side. The definition provides an approximation method for solving
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such equations using the ABC operator. The approximate solution Y(tm+1) is expressed
recursively in terms of the initial condition Y0, the function f (t,Y(t)), and parameters q,
M(q), Γ(q), and h.

4. The Theory of Existence of Solution

The existence of the solutions for the given fractional order model is presented in this
part of the paper; for this purpose, we try to define a function as follows:

Π1(t,H,V ,U ,A, C) = Λ− ηH(t)A(t)
N

−H(t)(ρ + d),

Π2(t,H,V ,U ,A, C) = ρH(t)− (1− τ)ηA(t)
N

− dV(t),

Π3(t,H,V ,U ,A, C) = ηH(t)A(t)
N

+
(1− τ)ηV(t)A(t)

N
−U (t)(α + d),

Π4(t,H,V ,U ,A, C) = αU (t)− (q + d)A(t),
Π5(t,H,V ,U ,A, C) = δA(t)− dC(t).

(8)

Using (8), the model is expressed as follows:

ABCDq
+0Z(t) = Π(t,Z(t)), t ∈ [0, T], 0 < q ≤ 1,

Z(0) = Z0.
(9)

Using Lemma (1), Equation (9) becomes

Z(t) = Z0(t) +
[

Π((t,Z(t))−Π0(t)
]

1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy, f or 0 ≤ y ≤ t ≤ 1, (10)

where

Z(t) =



H(t)

V(t)
U (t)
A(t)
CR(t)

,Z0(t) =



H0

V0

U0

A0

C0

, Π(t,Z(t)) =



Π1(t,H,V ,U ,A, C)
Π2(t,H,V ,U ,A, C)
Π3(t,H,V ,U ,A, C)
Π4(t,H,V ,U ,A, C)
Π5(t,H,V ,U ,A, C)

, Π0(t)



Π1(0,H0,V0,U0,A0, C0)

Π2(0,H0,V0,U0,A0, C0)

Π3(0,H0,V0,U0,A0, C0)

Π4(0,H0,V0,U0,A0, C0)

Π5(0,H0,V0,U0,A0, C0)

(11)

Using (10) and (11), define two operators F and G , using (10)

FZ = Z0(t) +
[

Π(t,Z(t))−Π0(t)
]

1− q
M(q)

,

GZ =
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy.

(12)

Furthermore, we reassume that the conditions D1 and D2 holds
(D1) If fixed σ1 and σ2, as

|Π(t,Z(t))| ≤ σ1|Z(t)|+ σ2.

(D2) If fixed κ > 0, for all Z,Z1 ∈ X, as

|Π(t,Z(t))−Π(t,Z1(t))| ≤ κ||Z− Z1||.

Theorem 1. If (D1) and (D2) are fulfilled, then system (10) will have at least a unique root,
implying that our problem (3) has at least one root if

(1− q)κ
M(q)

< 1.
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Proof. For the derivation of F to be a contraction operator, let Z1 ∈ B, while B = {Z ∈ Y :
||Z|| ≤ r, r > 0} is a closed convex set. Applying the result of F from (12), as

||FZ−FZ1|| =
(1− q)
M(q)

max
t∈[0,T]

∣∣∣∣Π(t,Z(t))−Π(t,Z1(t))
∣∣∣∣,

≤
(1− q)p

M(q)
||Z− Z1||.

(13)

Therefore, F is a contraction operator. Next, to derive the relative compactness of G ,
we must prove that G has its bounds, and define on their domain. For achieving the result,
consider as given under:

As G is continuous as Π is defined on their domain, for u ∈ B,

|G (Z)| = max
t∈[0,T]

q
M(q)Γ(q)

∣∣∣∣∣∣∣∣ ∫ t

0
(t− y)q−1Π(y,Z(y))dy

∣∣∣∣∣∣∣∣
≤ q

M(q)Γ(q)

∫ T

0
(T − y)q−1|Π(y,Z(y))|dy

≤ qTq

M(q)Γ(q)
[σ1r + σ2].

(14)

Hence, (14) shows that G has bound; for equi-continuity, let t1 > t2 ∈ [0, T], as

|GZ(t1)− GZ(t2)| =
q

M(q)Γ(q)

∣∣∣∣ ∫ t1

0
(t1 − y)q−1Π(y),Z(y)dy−

∫ t2

0
(t2 − y)q−1Π(y,Z(y))dy

∣∣∣∣
≤ [σ1r + σ2]

M(q)Γ(q)
[tq

1 − tq
2].

(15)

As t1 → t2, the (15) approaches zero, also G is defined on their domain, and so

|GZ(t1)− GZ(t2)| → 0, as t1 → t2.

So, G has bounds and is defined on its domain, hence G is uniformly continuous and
has bounds. The Arzelà–Ascoli theorem G is relatively compact and therefore completely
continuous. Applying Theorem 1, the integration Equation (10) has at least one zero and so
the model has at least one zero.

For a unique solution, we proceed as follows:

Theorem 2. By condition (D2), the integration Equation (10) has one root which provides that the
proposed model (3) has one solution if[

(1− q)κ
M(q)

+
qTqκ

M(q)Γ(q)

]
< 1.

Proof. Take T : Y→ Y by

TZ(t) = Z0(t) +
[

Π(t,Z(t))−Π0(t)
]

1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy, t ∈ [0, T]. (16)

Let Z,Z1 ∈ Y, then
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||TZ−TZ1|| ≤
(1− q)

M(Γ(q))
max

t∈[0,T]

∣∣∣∣Π(t,Z(t))−Π(t,Z1(t))
∣∣∣∣

+
q

M(q)Γ(q)
max

t∈[0,T]

∣∣∣∣ ∫ t

0
(t− y)q−1Π(y,Z(y))dy−

∫ t

0
(t− y)q−1Π(y,Z1(y))dy

∣∣∣∣
≤
[
(1− q)κ

M(q)
+

qTqκ

M(q)Γ(q)

]
||Z− Z1||

≤ ϕ||Z− Z1||,

(17)

where

ϕ =

[
(1− q)κ

M(q)
+

qTqκ

M(q)Γ(q)

]
. (18)

So by (17), T is a contraction operator. Therefore, the integration Equation (10) has one
root. Hence, problem (3) has one root.

5. Stability Analysis

Hyers–Ulam stability, also known as Hyers–Ulam–Rassias stability, is a concept in
the field of functional analysis that deals with the stability of functional equations. It is
named after David Hyers, Stanislaw Ulam, and Themistocles Rassias, who independently
proved that the Cauchy equation for functional equations is stable in certain cases. In other
words, it states that if a function is close to a solution of a functional equation, then it is
also a solution of that equation. This concept has been extended to include various types of
functional equations, including those involving nonlinear operations. Overall, Hyers–Ulam
stability plays an important role in the study of functional equations and has been applied
in various areas of mathematics and science.

The proposed model stability is assured by the consideration of a small perturbation
α ∈ C[0, T], related to the root of α(0) = 0. Consider

(i) |α(t)| ≤ µ, f or µ > 0,

(ii) ABCDq
+0(Z(t)) = Π(t,Z(t)) + α(t), ∀ t ∈ [0, T].

Lemma 2. The root of the perturbed model,{
ABC
0 Dq

+0Z(t) = Π(t,Z(t)) + α(t),

Z(0) = Z0,
(19)

satisfies the following expression,∣∣∣∣Z(t)−(Z0(t) +
[

Π(t,Z(t))−Π0(t)
]

1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy

)∣∣∣∣ ≤ µT,q, (20)

where

µT,q =
Γ(q)(1− q) + Tq

M(q)Γ(q)
.

Proof. The derivation is straight forward, so we skip it.

Theorem 3. Using (D2) and (20) in lemma (2), the root of concerned integration Equation (10) is
U-H stable and, so, the solution of the concerned problem is U-H stable if ϕ < 1.

Proof. Consider Z1 ∈ Y to be one root and u ∈ Y to be zero of (10), then
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|Z(t)− Z1(t)| =
∣∣∣∣Z(t)−(Z0(t) +

[
Π(t,Z1(t))−Π0(t)

]
1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z1(y))dy

)∣∣∣∣
≤
∣∣∣∣Z(t)−(Z0(t) +

[
Π(t,Z(t))−Π0(t)

]
1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy

)∣∣∣∣
+

∣∣∣∣(Z0(t) +
[

Π(t,Z(t))−Π0(t)
]

1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy

)
−
(
Z0(t) +

[
Π(t,Z1(t))−Π0(t)

]
1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z1(y))dy

)∣∣∣∣
≤ µT,q +

(1− q)κ
M(q)

||Z− Z1||+
qTqκ

M(q)Γ(q)
||Z− Z1||

≤ µT,q + ϕ||Z− Z1||.

(21)

From (21), we can write

||Z− Z1|| ≤
µT,q

1− ϕ
. (22)

By (22), we say that the zero of (10) is U-H stable and hence generalized U-H stable
by applying ΠU(µ) = µT,q, ΠU(0) = 0, implying that the zero of the considered system is
U-H stable and so generalized U-H stable.

Considering

(i) |α(t)| ≤ Ω(t)µ, f or µ > 0,
(ii) ABCDq

+0(Z(t)) = Π(t,Z(t)) + α(t), ∀ t ∈ [0, T].

Lemma 3. The below equation holds for (19)∣∣∣∣Z(t)−(Z0(t) +
[

Π(t,Z(t))−Π0(t)
]

1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy

)∣∣∣∣
≤ Ω(t)µT,q.

(23)

Proof. This is also straight forward.

Theorem 4. By Lemma (3), the root of the given model is U-H-Rassias stable and therefore,
generalized U-H-Rassias stable.

Proof. Consider Z1 ∈ Y to be one root and u ∈ Y to be the root of (10), then

|Z(t)− Z1(t)| =
∣∣∣∣Z(t)−(Z0(t) +

[
Π(t,Z1(t))−Π0(t)

]
1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z1(y))dy

)∣∣∣∣
≤
∣∣∣∣Z(t)−(Z0(t) +

[
Π(t,Z(t))−Π0(t)

]
1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy

)∣∣∣∣
+

∣∣∣∣(Z0(t) +
[

Π(t,Z(t))−Π0(t)
]

1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z(y))dy

)
−
(
Z0(t) +

[
Π(t,Z1(t))−Π0(t)

]
1− q
M(q)

+
q

M(q)Γ(q)

∫ t

0
(t− y)q−1Π(y,Z1(y))dy

)∣∣∣∣
≤ Ω(t)µT,q +

(1− q)κ
M(q)

||Z− Z1||+
qTqκ

M(q)Γ(q)
||Z− Z1||

≤ Ω(t)µT,q + ϕ||Z− Z1||,

(24)



Symmetry 2023, 15, 1208 11 of 26

we can write, from (24),

||Z− Z1|| ≤
Ω(t)µT,q

1− ϕ
. (25)

Hence, the solution of (10) is U-H-Rassias stable and so generalized U-H-Rassias stable.

6. Basic Reproductive Number

The disease-free equilibrium, denoted as E0, can be determined by setting the right-
hand side of the equations in system (3) equal to zero, yielding the following equations:

E0 = (S0,V0,U0,A0, C0) =

(
Λ

ρ + d
,

ρΛ
d(ρ + d)

, 0, 0, 0
)

.

We determined the basic reproductive ratio, abbreviated R0, using the next-generation
matrix approach. This estimate is solely based on the two equations that correspond to the
compartments U and A classes that were derived from system (3).

F =

[
0 ηΛ[d+(1−τ)ρ]

d(ρ+d)
0 0

]
,

V =

[
d + α 0
−α d + δ

]
,

V−1 =

[
1

d+α 0
α

(d+α)(d+δ)
1

d+δ

]
.

The spectral radius of the matrix FV−1, which corresponds to the basic reproductive
ratio, is calculated as follows:

R0 = ρ
(

FV−1
)
=

αηΛ[d + (1− τ)ρ]

d(ρ + d)(d + α)(d + δ)
. (26)

Sensitivity Analysis

We must ascertain the sensitivity of R0 with respect to each relevant parameter in order
to perform sensitivity analysis for the given expression of R0. The sensitivity quantifies
the impact of a parameter’s changes on the value of R0. We can use the idea of partial
derivatives to determine the sensitivity of R0 with respect to each parameter. If all other
parameters are held constant, the partial derivative of R0 with respect to a parameter
represents the rate of change of R0 with respect to that parameter. Let us determine how
each parameter affects the sensitivity of R0:

• Sensitivity with respect to α: ∂R0
∂α = ηΛ[d+(1−τ)ρ]

d(ρ+d)(d+α)(d+δ)
= 0.002.

• Sensitivity with respect to η: ∂R0
∂η = αΛ[d+(1−τ)ρ]

d(ρ+d)(d+α)(d+δ)
= 0.004.

• Sensitivity with respect to Λ: ∂R0
∂Λ = αη[d+(1−τ)ρ]

d(ρ+d)(d+α)(d+δ)
= 0.0016.

• Sensitivity with respect to d: ∂R0
∂d = αηΛ[(1−τ)ρ−d(ρ+d)]

d2(ρ+d)2(d+α)(d+δ)
= −0.292.

• Sensitivity with respect to ρ: ∂R0
∂ρ = αηΛ(1−τ)

d(ρ+d)(d+α)(d+δ)
= 0.022.

• Sensitivity with respect to τ: ∂R0
∂τ = − αηΛρ

d(ρ+d)(d+α)(d+δ)
= −0.0044.

• Sensitivity with respect to δ: ∂R0
∂δ = − αηΛ(1−τ)

d(ρ+d)(d+α)(d+δ)2 = −0.0244.

The sensitivities of R0 with respect to each parameter are represented by these partial
derivatives. They show how each parameter’s changes affect the value of R0. Positive
sensitivities predict an increase in R0 as the parameter increases, whereas negative sensi-
tivities predict the opposite. Please be aware that when calculating the sensitivity with
respect to a specific parameter, these calculations make the assumption that the other
parameters remain constant. Sensitivity analysis aids in understanding how changes in
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these parameters can affect the spread and control of the virus by illuminating the relative
importance of each parameter in determining the value of R0. Figure 2 shows the graphic
results of parameter versus R0.
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Figure 2. The plots examine how changes in various parameters relate to R0 through sensitivity
analysis. (a) R0 versus sensitive parameters d and α. (b) R0 versus sensitive parameters ρ and α.
(c) R0 versus sensitive parameters Λ and τ. (d) R0 versus sensitive parameters τ and d. (e) R0 versus
sensitive parameters α and Λ. (f) R0 versus sensitive parameters δ and d.

7. Approximate Solution by ABM Method

The numerical scheme used in this article is a fractional Adams–Bashforth–Moulton
(ABM) method. The ABM method has a long history in numerical analysis, dating back
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to the work of Adams in the late 19th century. The method was further developed by
Bashforth and Moulton in the early 20th century, and it has since been widely used in
a variety of applications, including fluid dynamics, chemical kinetics, and population
dynamics. Advantages of the ABM method include its simplicity and efficiency, as well as
its ability to handle stiff equations. The method is based on the extrapolation of previous
time steps, and it can be easily implemented using standard software packages. The
fractional version of the ABM method used in this article is a relatively new development,
arising from recent advances in fractional calculus. This version of the method is well-
suited to problems involving fractional derivatives, which arise in many areas of science
and engineering.

In this section of the article, we present the approximate solution; for this we can
write model (3)

ABCDqH(t) = Λ− ηH(t)A(t)
N

− (ρ + d)H(t),

ABCDqV(t) = ρH(t)− (1− τ)ηA(t)
N

− dV(t),

ABCDqU (t) = ηH(t)A(t)
N

+
(1− τ)ηV(t)A(t)

N
− (α + d)U (t),

ABCDqA(t) = αU (t)− (q + d)A(t),
ABCDqC(t) = δA(t)− dC(t).

(27)

Using the basic theorem of the generalized calculus known as fractional calculus, we
can now obtain

H(t) = H0 +
1− q
M(q)

E1(t,H(t)) +
q

Γ(q)M(q)

∫ t

0
E1(φ,H(φ))(t− φ)q−1dφ,

V(t) = V0 +
1− q
M(q)

E2(t,V(t)) +
q

Γ(q)M(q)

∫ t

0
E2(φ,V(φ))(t− φ)q−1dφ,

U (t) = U0 +
1− q
M(q)

E3(t,U (t)) +
q

Γ(q)M(q)

∫ t

0
E3(φ,U (φ))(t− φ)q−1dφ,

A(t) = A0 +
1− q
M(q)

E4(t,A(t)) +
q

Γ(q)M(q)

∫ t

0
E4(φ,A(φ))(t− φ)q−1dφ,

C(t) = C0 +
1− q
M(q)

E5(t, C(t)) +
q

Γ(q)M(q)

∫ t

0
E5(φ,A(φ))(t− φ)q−1dφ.

At the moment t = tm + 1, we obtain our result as follows:

H(tm+1) = H0 +
1− q
M(q)

E1(tm,H(tm)) +
q

Γ(q)M(q)

m

∑
k=0

∫ tk+1

tk

E1(φ,H(φ))(tm+1 − φ)q−1dφ,

V(tm+1) = V0 +
1− q
M(q)

E2(tm,V(tm)) +
q

Γ(q)M(q)

m

∑
k=0

∫ tk+1

tk

E2(φ,V(φ))(tm+1 − φ)q−1dφ,

U (tm+1) = U0 +
1− q
M(q)

E3(tm,U (tm)) +
q

Γ(q)M(q)

m

∑
k=0

∫ tk+1

tk

E3(φ,U (φ))(tm+1 − φ)q−1dφ,

A(tm+1) = A0 +
1− q
M(q)

E4(tm,A(tm)) +
q

Γ(q)M(q)

m

∑
k=0

∫ tk+1

tk

E4(φ,A(φ))(tm+1 − φ)q−1dφ,

C(tm+1) = C0 +
1− q
M(q)

E5(tm, C(tm)) +
q

Γ(q)M(q)

m

∑
k=0

∫ tk+1

tk

E5(φ,A(φ))(tm+1 − φ)q−1dφ.

(28)

By approximating E1 − E5 in two stages of the interpolation of Lagrange polynomials
in [tk, tk+1], and after reentering it into (28), we have the following:
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H(tm+1) = H0 +
1− q
M(q)

E1(tm,H(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
E1(tk,Hk)

h

∫ tk+1

tk

(φ− tk−1)(tm+1 − φ)q−1dφ

− E1(tk−1,Hk−1)

h

∫ tk+1

tk

(φ− tk)(tm+1 − φ)q−1dφ

)
,

V(tm+1) = V0 +
1− q
M(q)

E2(tm,V(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
E2(tk,Vk)

h

∫ tk+1

tk

(φ− tk−1)(tm+1 − φ)q−1dφ

− E2(tk−1,Vk−1)

h

∫ tk+1

tk

(φ− tk)(tm+1 − φ)q−1dφ

)
,

U (tm+1) = U0 +
1− q
M(q)

E3(tm,U (tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
E3(tk,Ak)

h

∫ tk+1

tk

(φ− tk−1)(tm+1 − φ)q−1dφ

− E3(tk−1,Ak−1)

h

∫ tk+1

tk

(φ− tk)(tm+1 − φ)q−1dφ

)
,

A(tm+1) = A0 +
1− q
M(q)

E4(tm,A(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
E4(tk,Ak)

h

∫ tk+1

tk

(φ− tk−1)(tm+1 − φ)q−1dφ

− E4(tk−1,Ak−1)

h

∫ tk+1

tk

(φ− tk)(tm+1 − φ)q−1dφ

)
,

C(tm+1) = C0 +
1− q
M(q)

E5(tm, C(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
E5(tk, Ck)

h

∫ tk+1

tk

(φ− tk−1)(tm+1 − φ)q−1dφ

− E5(tk−1, Ck−1)

h

∫ tk+1

tk

(φ− tk)(tm+1 − φ)q−1dφ

)
.

(29)

The following outcome is obtained by integrating the terms contained in (29) and
plugging them back into it.

H(tm+1) = H0 +
1− q
M(q)

E1(tm,H(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
hqE1(tk,Hk)

Γ(q + 2)
((m + 1− k)q(m− k + 2 + q)−

(m− k)q(m− k + 2 + 2q))− hqE1(tk−1,Hk−1)

Γ(q + 2)
((m + 1− k)q+1 − (m− k)q(m− k + 1 + q))

)
,

V(tm+1) = V0 +
1− q
M(q)

E2(tm,V(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
hqE1(tk,Vk)

Γ(q + 2)
((m + 1− k)q(m− k + 2 + q)−

(m− k)q(m− k + 2 + 2q))− hqE2(tk−1,Vk−1)

Γ(q + 2)
((m + 1− k)q+1 − (m− k)q(m− k + 1 + q))

)
,

U (tm+1) = U0 +
1− q
M(q)

E3(tm,U (tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
hqE3(tk,Uk)

Γ(q + 2)
((m + 1− k)q(m− k + 2 + q)−

(m− k)q(m− k + 2 + 2q))− hqE3(tk−1,Uk−1)

Γ(q + 2)
((m + 1− k)q+1 − (m− k)q(m− k + 1 + q))

)
,

A(tm+1) = A0 +
1− q
M(q)

E4(tm,A(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
hqE4(tk,Ak)

Γ(q + 2)
((m + 1− k)q(m− k + 2 + q)−

(m− k)q(m− k + 2 + 2q))− hqE4(tk−1,Ak−1)

Γ(q + 2)
((m + 1− k)q+1 − (m− k)q(m− k + 1 + q))

)
,

C(tm+1) = C0 +
1− q
M(q)

E5(tm, C(tm)) +
q

Γ(q)M(q)

m

∑
k=0

(
hqE5(tk, Ck)

Γ(q + 2)
((m + 1− k)q(m− k + 2 + q)−

(m− k)q(m− k + 2 + 2q))− hqE5(tk−1, Ck−1)

Γ(q + 2)
((m + 1− k)q+1 − (m− k)q(m− k + 1 + q))

)
,

(30)
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where

E1 = Λ− ηH(t)A(t)
N

− (ρ + d)H(t),

E2 = ρH(t)− (1− τ)ηA(t)
N

− dV(t),

E3 =
ηH(t)A(t)

N
+

(1− τ)ηV(t)A(t)
N

− (α + d)U (t),

E4 = αU (t)− (q + d)A(t),
E5 = δA(t)− dC(t).

Approximate Solution by Newton’s Polynomial Method

Newton’s polynomial method is a numerical technique used to interpolate a set of
data points using a polynomial function. The method involves constructing an nth degree
polynomial that passes through n + 1 data points. This polynomial can be evaluated
at any point within the range of the data points to estimate the corresponding function
value. The advantage of this method is its simplicity and efficiency, as it only requires
basic algebraic operations to construct the polynomial. Additionally, it can accurately
approximate complex functions with a high degree of precision. The method was first
introduced by Sir Isaac Newton in the 17th century and has since been widely used in
various fields, including engineering, physics, and computer science. There are several
advantages of using Newton’s polynomial numerical methods. Firstly, it allows for accurate
approximation of the values of functions, making it a useful tool in various fields such
as engineering, physics, and economics. Secondly, the method is relatively simple to use
and understand, making it accessible to a wider audience of mathematicians and scientists.
Thirdly, the method can be applied to a wide range of functions and is not limited to
specific types or classes. Fourthly, the method allows for easy and efficient calculation
of the derivatives of the function, which can be useful in many applications. Finally,
the method can be extended to higher dimensions, making it suitable for problems in
multiple variables.

We derive the numerical scheme for the case of Mittag–Leffler as follows:

Hv+1 =
1− q
AB(q)

+H∗(tv,Hv,Vv,U v,Av, Cv)

+
q(∆t)q

AB(q)Γ(q + 1)

v

∑
u=2
H∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)Π

+
q(∆t)q

AB(q)Γ(q + 2)

v

∑
u=2

[
H∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
−H∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

]
Σ

+
q(∆t)q

2AB(q)Γ(q + 3)

v

∑
u=2


H∗(tu,Hu,Vu,Uu,Au, Cu)

−2H∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
+H∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

∆

Vv+1 =
1− q
AB(q)

+ V∗(tv,Hv,Vv,U v,Av, Cv)

+
q(∆t)q

AB(q)Γ(q + 1)

v

∑
u=2
V∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)Π

+
q(∆t)q

AB(q)Γ(q + 2)

v

∑
u=2

[
V∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
−V∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

]
Σ

+
q(∆t)q

2AB(q)Γ(q + 3)

v

∑
u=2


V∗(tu,Hu,Vu,Uu,Au, Cu)

−2V∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
+V∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

∆
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U v+1 =
1− q
AB(q)

+ U ∗(tv,Hv,Vv,U v,Av, Cv)

+
q(∆t)q

AB(q)Γ(q + 1)

v

∑
u=2
U ∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)Π

+
q(∆t)q

AB(q)Γ(q + 2)

v

∑
u=2

[
U ∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
−U ∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

]
Σ

+
q(∆t)q

2AB(q)Γ(q + 3)

v

∑
u=2


U ∗(tu,Hu,Vu,Uu,Au, Cu)

−2U ∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
+U ∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

∆

Av+1 =
1− q
AB(q)

+A∗(tv,Hv,Vv,U v,Av, Cv)

+
q(∆t)q

AB(q)Γ(q + 1)

v

∑
u=2
A∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)Π

+
q(∆t)q

AB(q)Γ(q + 2)

v

∑
u=2

[
A∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
−A∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

]
Σ

+
q(∆t)q

2AB(q)Γ(q + 3)

v

∑
u=2


A∗(tu,Hu,Vu,Uu,Au, Cu)

−2A∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
+A∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

∆

Cv+1 =
1− q
AB(q)

+ C∗(tv,Hv,Vv,U v,Av, Cv)

+
q(∆t)q

AB(q)Γ(q + 1)

v

∑
u=2
C∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)Π

+
q(∆t)q

AB(q)Γ(q + 2)

v

∑
u=2

[
C∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
−C∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

]
Σ

+
q(∆t)q

2AB(q)Γ(q + 3)

v

∑
u=2


C∗(tu,Hu,Vu,Uu,Au, Cu)

−2C∗(tu−1,Hu−1,Vu−1,Uu−1,Au−1, Cu−1)
+C∗(tu−2,Hu−2,Vu−2,Uu−2,Au−2, Cu−2)

∆,

where

∆ =

(v− u + 1)q
[

2(v− u)2 + (3q + 10)(v− u)
+2δ2 + 9q + 12

]
−(v− u)q

[
2(v− u)2 + (5q + 10)(v− u)

+6δ2 + 18q + 12

]
,

Σ =

[
(v− u + 1)q(v− u + 3 + 2δ)
−(v− u)q(v− u + 3 + 3δ)

]
, Π = [(v− u + 1)q − (v− u)q].

8. Parameter Estimation
Parameter estimation is a process of determining the values of unknown parameters in a model,

based on available data. This process is essential in many fields of science and engineering, including
epidemiology, physics, economics, and engineering. Parameter estimation allows researchers to
quantify the underlying characteristics of a system or process and make predictions about its behavior
under different conditions. There are many different methods for parameter estimation, including
maximum likelihood estimation, Bayesian inference, and least squares estimation. The choice of
method depends on the type of data available, the assumptions of the model, and the desired level
of precision. Overall, parameter estimation plays a crucial role in improving our understanding of
complex systems and in making informed decisions in a wide range of applications. We have taken
the real data from the Norovirus laboratory reports in England by week during 2021/2022 [43]. The
optimized curve that best fits the data is shown in Figure 3. We employed the least squares curve
fitting technique to analyze the reported cases of norovirus in this section. The estimated parameters
of system (1) were obtained from the available data of reported cases. The ordinary least squares
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(OLS) method was applied to minimize the daily report errors, and the goodness of fit was evaluated
by analyzing the relative error.

min

(
∑n

ι=1
(
Aι − Âl

)2

∑n
ι=1A2

ι

)
. (31)
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Figure 3. The graph presents the optimized curve that best fits the data, along with the residuals
depicting the discrepancies between the simulated results and the recorded daily cumulative cases
within the corresponding timescale. (a,b) Represents the model fit with the Norovirus laboratory-
reported cases per week, and (c) represents the Residuals.

9. Numerical Simulation
In this section of the article, our aim was to find the approximate solution for the non-integer-

order NoV (Norovirus) system using the ABC derivative of model (3). The simulation was performed
over a time interval ranging from 0 to 60 steps, utilizing MATLAB 2019. The system parameters are
provided in Table 1, and these values are used for graphical representation. The numerical simulation
was conducted for various orders of q, and the results indicate that the non-integer-order fractional
derivative yields favorable outcomes for controlling the infected class. The dynamics of each class
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in the system (3), for different values of q such as 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, are
depicted in Figure 4a–e. Figure 4a illustrates an increasing trend in the number of healthy individuals
with a decay occurring in the fractional order q. Figure 4c demonstrates the growth of the exposed
class for arbitrary values of q; however, after a certain time interval (around 20), the exposed class
starts to decrease. The population of the infected class decreases over time as the values of q decrease in
Figure 4d. Additionally, Figure 4b illustrates how newborns can immunize themselves by being carried
by their mothers. This implies that proper care for carrier mothers could result in the vaccination-induced
recovery of newborns in as little as a day. Similar to this, Figure 4e represents the recovery class and
illustrates how people recover from infections. The approximative results show clear system deviations
for various non-integer order parameter q values. The long-term simulation results obtained using ABM
methods are also shown in Figure 5. Additionally, Figure 6 compares the simulation outcomes attained
using the Newton polynomial and ABM approaches. Figures 7 and 8 show the simulation results
specifically for the Newton polynomial method. Additionally, Figures 9 and 10 show, for each state
variable, the effects of the transmission parameter eta and the natural removal rate d, respectively, on
the results of the simulation.
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Figure 4. Paths for the solution of system (3) for t = 60, when q = 0.90, 0.85, 0.80, 0.75, 0.70, 0.65,
0.60, 0.55, 0.50. (a) Susceptible individuals. (b) Vaccinated individuals. (c) Exposed individuals.
(d) Infected individuals. (e) Recovered individuals.
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Figure 5. Paths for the solution of system (3) for a long time t = 100, when q = 0.90, 0.85, 0.80, 0.75, 0.70,
0.65, 0.60, 0.55, 0.50. (a) Susceptible individuals. (b) Vaccinated individuals. (c) Exposed individuals.
(d) Infected individuals. (e) Recovered individuals.

Table 1. The table represents the parameters values and initial conditions of the state variable given
in model (1).

Parameters Description Value Source

Λ The recruitment rate 125.66/day Fitted
η The rate of effectively contacts 0.02/day Estimated
ρ The vaccinated converging rate 0.01/day Estimated
d The natural mortality rate 0.02/day Estimated
δ The recovery rate 0.5/day Estimated
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Table 1. Cont.

Parameters Description Value Source

α Developing clinical symptoms 0.2/day [38]
τ The vaccine efficiency 0.90/day Estimated
H(0) IC 75 [38]
V(0) IC 20 [38]
U (0) IC 55 [38]
A(0) IC 30 [38]
C(0) IC 20 [38]
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Figure 6. The plots represents the caparison of ABM and Newton’s polynomial numerical methods on
each state variable at fractional order q = 0.95. (a) Susceptible individuals. (b) Vaccinated individuals.
(c) Exposed individuals. (d) Infected individuals. (e) Recovered individuals.
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Figure 7. Paths for the solution of system (3) via Newton’s Polynomial numerical method for
a long time t = 60, when q = 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50. (a) Suscepti-
ble individuals. (b) Vaccinated individuals. (c) Exposed individuals. (d) Infected individuals.
(e) Recovered individuals.
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Figure 8. Paths for the solution of system (3) via Newton’s Polynomial numerical method
for a long time t = 100, when q = 0.90,0.85,0.80,0.75, 0.70, 0.65, 0.60, 0.55, 0.50. (a) Suscepti-
ble individuals. (b) Vaccinated individuals. (c) Exposed individuals. (d) Infected individuals.
(e) Recovered individuals.
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Figure 9. Impact of the parameter η which represent the rate of effectively contacts on each state
variable at fractional order q = 1. (a) Susceptible individuals. (b) Vaccinated individuals. (c) Exposed
individuals. (d) Infected individuals. (e) Recovered individuals.
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Figure 10. Impact of the parameter d which represents the natural death on each state variable
at fractional order q = 1. (a) Susceptible individuals. (b) Vaccinated individuals. (c) Exposed
individuals. (d) Infected individuals. (e) Recovered individuals.

10. Conclusions
In this paper, we have conducted a thorough investigation into the dynamics of Norovirus (NoV),

taking into account the presence of asymptomatic carriers and the effects of vaccination. Our study
utilized the Atangana–Baleanu–Caputo (ABC) fractional order derivative and applied fixed point
theory to derive qualitative analysis for the positive solution of the system. To obtain an approximate
solution, we have employed an iterative numerical method. Furthermore, we have presented
graphical results for each system quantity at different fractional orders, revealing a convergence of
curves to the integer order curves as the order increases. Our findings demonstrate a significant
reduction in the number of infected cases through vaccination, emphasizing its positive impact.
Consequently, this article provides valuable guidance for public health authorities in promoting
and ensuring widespread vaccination within communities. Educating both rural and urban areas
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about the importance of vaccination and proper treatment is crucial for effectively controlling and
preventing NoV outbreaks. The use of Atangana–Baleanu fractional derivatives demonstrates their
usefulness as a tool for researching the dynamics of norovirus disease transmission, and our work
highlights several crucial features of the fractional model. These include the model’s creation, the
fixed-point theorem’s proof of the existence and uniqueness of solutions, stability and sensitivity
analyses, and the basic reproduction number. Notably, the basic reproduction number is most
sensitive to the disease transmission rate (η), whereas the basic reproduction number is least sensitive
to the natural mortality rate (d) and the recovery rate of isolated individuals (δ). Additionally, because
an increase in the fractional parameter results in an overall increase in the indices of all parameters,
the fractional parameter has a significant impact on the sensitivity indices.
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