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Abstract: There has been a great deal of debate as to the role, if any, of Mach’s Principle in cosmology.
We propose that these questions have meaning only in the context of a cosmic gravitational potential.
G4v operates with such a four-potential, which imposes a different symmetry on its treatment of
light propagation than that employed by GR. That combination enables a simple cosmic solution
that is Lorentz-invariant in free-fall frames of reference. The solution is compared with supernovae
data, which, together with an internal self-consistency condition, fixes the parameters of the solution.
The resulting Hubble trajectory is, in broad brush, consistent with many cosmic observations.
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1. Introduction

Any cosmology is built on a few central tenets. The central tenet of G4v is Mach’s
Principle, which states that matter derives its inertia through interaction with other matter
in the universe. Because virtually all modern “metric” formulations of gravitation are
differential in nature, they cannot directly address integral relations such as Mach’s.
To directly address Mach’s Principle we must work with the gravitational potential rather
than merely its derivatives, commonly referred to as the “curvature of spacetime”. Einstein
himself often referred to the gµν in his field equation as the “tensor gravitational potential”.
In the very last section of his wonderful little book The Meaning of Relativity [1], he outlines
a four-vector approach to Mach’s Principle, but does not develop it. We view G4v as the
development of Einstein’s Last Section, and show that it has many surprising merits.

2. Mach’s Principle

The (2004) successful launch of the historic Gravity Probe B (GPB) satellite has been
widely heralded as a test of General Relativity (GR). In a larger context, it can be viewed
as an investigation into the origin of inertia. In Newtonian physics, inertia was viewed
as an intrinsic local property of a massive body, moving with respect to absolute space.
Gravitation was a quite separate phenomenon, evidenced by the attraction of nearby
massive bodies. Elegant experiments by Eötvös showed that the inertial mass and the
gravitational mass were equal, to extremely high precision. Ernst Mach [2] was an
outspoken critic of Newton’s notion of “absolute space”. He believed that the motion
of an object had no meaning except with reference to other objects in the universe. In
his view, a mass would have no inertia if the rest of the mass in the universe were not
interacting with it. The idea that matter derives its inertia through interaction with other
matter in the universe is known as “Mach’s Principle”.

A number of workers have attempted to realize a mathematically precise formulation
of Mach’s Principle: an excellent account with many references can be found in Barbour and
Pfister [3]. A wonderfully well-reasoned and historically important exposition was given
by Sciama [4]. In a fully Machian universe, Gravitation becomes the universal interaction
of all matter. There is no longer such a thing as an isolated experiment. Local physics
cannot be separated from cosmology, and the identity of inertial and gravitational mass
is automatic.
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If gravitation is to serve as the mechanism for establishing a frame of reference, the
gravitational interaction of an element of matter with all other matter in the visible universe
must be responsible for the inertia of that element of matter. Inertia is the property that
allows matter moving with a velocity ~v to exhibit a momentum ~p. For gravitation to be the
origin of inertia, it must have a vector (momentum) effect as well as the usual scalar (energy)
effect associated with the gravitational potential energy of nearby massive bodies. In the
same way that magnetism is the vector aspect of electrical interaction, “gravitomagnetism”
must be responsible for inertia.

In the title of his 1912 paper, Einstein [5] asks the question:
“Is There a Gravitational Effect which is Analogous to Electrodynamic Induction?”
This paper contains the first concrete proposal for how distant matter in the universe

could serve as an inertial frame of reference:

This suggests that the entire inertia of a point mass is an effect of the presence of
all other masses, which is based on a kind of interaction with the latter.

At this point, Einstein inserts a footnote

This is exactly the same point of view that E. Mach advanced in his astute
investigations on the subject. (E. Mach, The Evolution of the Principles of Dynamics,
Chapter 2. Newton’sViews on Time, Space and Motion).

Einstein strongly believed in the relativity of inertia: In 1918 he stated, as being on
an equal footing, three principles which a satisfactory theory of gravitation should be
based upon:

The principle of relativity as expressed by general covariance.
The principle of equivalence.
Mach’s principle: That the gµν are completely determined by the mass of bodies,
more generally by Tµν.

Einstein noted in 1922 that others were content to proceed without Mach’s criterion,
and added: “This contentedness will appear incomprehensible to a later generation..”. [6]

In many places, particularly in his little book The Meaning of Relativity [1] Einstein
refers to gµν as the Gravitational Tensor Potential. That interpretation of the Field Equation
has not been widely accepted, principally because of a symmetry choice adopted by GR,
which is different from a symmetry adopted by G4v.

3. Introduction to G4v

G4v is specifically formulated to be accessible to the broad range of individuals with
modest technical training. It uses ordinary trigonometry and calculus in ordinary “flat”
(Minkowski) spacetime, in which the value of units of measure do not depend upon the
contents. In this description I refrain from using the jargon of specialized areas theoretical
physics, since it is particularly opaque to anyone not trained in the specialty. A full
exposition of G4v is given in Engineering View of Gravitation [7].

Section 4 gives a simplified description of how G4v is related to GR, which necessarily
involves some tensors. A mathematical theorem, Sylvester’s Law of Inertia, shows that we
can always find a free-fall frame of reference, and the Principle of Relativity requires that
Special Relativity must hold in all free-fall frames of reference.

In addition, there is a symmetry degree of freedom: a theory must specify, in a
self-consistent manner, how the speed of light in one free-fall frame of reference is related
to that in another free-fall frame of reference at a different gravitational scalar potential.

GR choses full symmetry, in which the speed of light will always be the “Universal
Speed of Light in Vacuum” ∼ 3× 108 m/s, independent of gravitational scalar potential.

This choice imposes a different symmetry on spacetime: the unit of length and the unit
of time at any point in a free-fall frame of reference become proportional to the gravitational
scalar potential at that point in that free-fall frame of reference.
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G4v choses full symmetry with respect to spacetime, in which the unit of length
and the unit of time in any free-fall frame of reference remain constant, which imposes a
different symmetry on the propagation of light: The speed of light c in a free-fall frame of
reference becomes proportional to the gravitation scalar potential at every point in that
free-fall frame of reference. Special Relativity remains valid locally, in any free-fall frame of
reference, provided the local value of c in that free-fall frame of reference is used.

For nearly all physical problems, in weak gravity, results derived in the two systems
are identical; the relationships are represented by the well-known transformations between
the two systems. There are certain simplifications attendant to the G4v system, in that it
can be identical to the frame of reference in which the measurements are made. With that
simplification, the speed of clocks and the time of flight of Radar pulses become physical
interactions, rather than properties of spacetime, and must be shown to accord with physical
law. For cosmological purposes, the G4v system has the great advantage that a cosmic
gravitational four-potential and a universal cosmic time are defined quantities.

G4v works in frames of reference where lengths are independent of Gravitational
Scalar Potential, and the speed of light is, as directly observed in the Shapiro Delay [8,9],
proportional to the Gravitational Scalar Potential. To work properly with the quantum
(wave) nature of matter, G4v is formulated in wave units, where energies have the units of
frequency ω, and momenta have the units of a propagation vector~k, i.e., inverse length.
Together these quantities form a proper four-vector k:

k =
[
~k,

ω

c

]
(1)

The relativistic dot-product of two proper four-vectors defines a Lorentz invariant
scalar. In the case of Equation (1), we can dot k with itself:

k · k =~k ·~k− ω2

c2 = −k2
0 (2)

The Lorentz invariant quantity k0 is called the Compton wave number. The behavior of
each element of matter is governed by this Lorentz invariant dispersion relation:

ω2

c2 = k2
0 +~k ·~k (3)

• In G4v the speed of light c itself is used as the local gravitational scalar potential.
• The quantity of matter is not the mass m but the Compton wave number k0 = mc

h̄ .
• The entire rest energy of matter h̄k0c = mc2 is due to its gravitational scalar potential.

Thus, for example, the mass me of the electron is not a fixed number of kilograms,
but the electron’s Compton wave number k0 is always 2.589605× 1012 m−1.

Note about units: Because G4v is formulated in wave units, energies have the units
of frequency ω, and momenta have the units of a propagation vector k, i.e., inverse length.
The units of both k0 and ~k are inverse length. The product of k0 and the gravitational
potential c is the rest frequency ω0. In mechanical units, the rest momentum h̄k0 = mc, which,
when multiplied by the gravitational potential c is equal to the rest energy h̄ω0 = mc2.
Since lengths in G4v do not change when the gravitational potential c changes, we need to
express the gravitational constant G as a length. Planck [10] noted that a natural system
of units would have a length unit P̀ involving the Newton gravitational potential G.
By definition the Planck length

`p =

√
h̄G
c3 ⇒ h̄G

c3 = `2
P (4)

In G4v we use `2
P as our gravitational coupling constant rather than G because, as we

will see, it turns out to be independent of the gravitational potential.



Symmetry 2023, 15, 1309 4 of 15

4. Relation of G4v to GR

The Einstein Field Equations of GR can be written as:

Gµν =
8πG

c4 Tµν Tµν =


T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33

. (5)

where Tµν is the stress-energy tensor and G is Newton’s gravitational constant. Element
T00 is the energy per unit volume divided by c, and T01, T02, T03 are the momenta per unit
volume in, for example, the x, y, z directions. Thus the units of all elements are momentum
per unit volume. We write the element of volume as dvol.

It is well known [11] that, for weak gravity, Equation (5) reduces to a vastly simpler
linear equation of the form:

�2 Aµν =

[
∇2 − 1

c2
∂2

∂t2

]
Aµν ≈

−4πG
c3 Tµν =

−4π`2
P

h̄
Tµν (6)

where the last form is from Equation (4), Aµν is the Tensor Gravitational Potential and the
Tµν are constructed differently than the common practice for Equation (5), as discussed below.

We may express Equation (6) in integral form, which follows from Green’s theorem,
as Einstein indicated in The Meaning of Relativity, Equation (101), and the discussion
that follows.

Aµν ≈
−`2

P
h̄

∫ Tµν(x, y, z, t± tt)

r(t± tt)
dvol where tt =

∫ r

path
s/c(s) ds (7)

As written, Equation (7) can utilize all components of Tµν. When we only include the
first column, or, equivalently, the top row, we arrive at a four-vector version.

For the overall space-time evolution of the idealized universe considered in this paper,
we deal only with the energy elements T00 and A00. Common practice in GR theories is
to attribute energy to the ~E and ~B fields of electromagnetic radiation. Quantum theories
that treat the vacuum radiation field as an array of harmonic oscillators end up with an
energy density that acts as a Cosmological Constant Λ that is a factor of ∼ 10120 too large
to accord with observation. Much hacking has reduced this factor to “only” ∼ 1070. This is,
by far, the largest disconnect between theory and experiment in the history of physics.

As discussed at length by Cramer and Mead [12] Section 7, G4v’s companion theory
Collective Electrodynamics (CE) [13] works with the electromagnetic four-potential, and
electromagnetic energy-momentum four vector is the scalar product of the four-potential
and the charge-current-density four potential. Thus the electromagnetic field itself has no
energy of its own, and exists only in the presence of charged matter.

Like CE, G4v works directly with the gravitational four-potential, and the energy ω
in Equation (3) only exists where the gravitational scalar potential c interacts with matter.
So neither electromagnetic nor gravitational potential fields have energy of their own, and,
in both cases, the T00 originates in matter. This formulation thus avoids the Cosmological
Constant disaster in a manner consistent with both electromagnetism and gravitation.

The top row and left column of the stress-energy tensor contain the components
of the energy-momentum four-vector, which are attributes of any fundamental element
of matter. The diagonal elements Tαα represent the moments of inertia of a binary, and
are the largest source of the Gravitational Waves that directly alter the spacing of the
LIGO mirrors. Using these elements in Equation (7) gives the same gravitational wave
coupling as predicted by GR. For gravitational arrangements where elements of matter
such as electrons and neutrons, and massive objects such as stars, planets, etc., can be
approximated as discrete elements, we can ignore the Tαβ elements for either α or β > 0,
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and a straightforward four-vector formulation becomes, as long as the curvature is small,
an excellent approximation.

G4v works strictly with a wave description of elements of matter, for which we employ
the original three-dimensional Schrödinger complex-valued wave function Ψ(x, y, z). The
amount of any property such as, i.e., the energy ω(x, y, z), of the element of matter
apportioned to a unit volume dvol is given by ωΨ∗Ψ, so the total energy of that element
is given by

∫
ωΨ∗Ψ dvol by the normalization of the wave-function Ψ. The quantities in

Equation (7), with α = [x, y, z] and four-vector quantities in bold are thus:

T00 =
h̄ω

c
Ψ∗Ψ

T0α = h̄kαΨ∗Ψ
(8)

Using T =
[

T00, T0x, T0y, T0z

]
= h̄

[
ω
c , kx, ky, kz

]
Ψ∗Ψ = h̄kΨ∗Ψ

So, when working in wave units, the h̄ cancels out, the coupling constant is represented
by `2

P, and Equation (7) becomes:

�2A ≈
−4π`2

P
h̄

h̄kΨ∗Ψ = −4π`2
PkΨ∗Ψ (9)

From Green’s Theorem, Equation (9) has the equivalent form for the gravitational
four-potential A at distance r along a light-path s:

A ≈ −`2
P

∫ kΨ∗Ψ(x, y, z, t± tt)

r(t± tt)
dvol where tt =

∫ r

path
s/c(s) ds (10)

When formulated in this way, the gravitational coupling constant becomes the square
of the Planck length, the quantity of matter becomes the Compton wavenumber (inverse
length), and all purely gravitational calculations require only units of time and length.

The source of the electrical four-potential is the charge, current-density four-vector, and
that for the gravitational four potential is the energy-momentum four-vector. Both quantities
are defined for the wave function of the source matter, and appear directly as terms in the
affected matter wave function. The concept of force is not necessary.

For a macroscopic “classical” object composed of the incoherent arrangement of
many localized elementary quantum elements, for each element

∫
Ψ∗Ψdvol = 1, so∫

kΨ∗Ψdvol = k, the total source value is just the sum of each individual ith source,
and Equation (10) becomes:

A ≈ −`2
P ∑

i

ki(xi, yi, zi, t± tt)

ri(t± tt)
dvol where tt =

∫ r

path
s/c(s) ds (11)

Thus, for such a classical object, the energy is just the sum of the energies of all the
constituent elements and the momentum is just the vector sum of the momenta of the
constituent elements, as common sense would dictate.

We have thus found that, in weak gravity, where only the energy–momentum elements
of the stress–energy tensor play a significant role, we have a four-vector version of Einstein’s
field equation that is parallel to, and integrated with CE four-vector, quantum-based
electromagnetism. We call this formulation G4v.

5. Basic Cosmological Assumptions

It is not obvious at the outset that G4v is compatible with a universe having the
properties we observe. Here we analyze the simplest and most basic properties of a
G4v universe. In accord with our goal of obtaining the maximum physical insight with
the minimum of mathematical complexity, we introduce what we see as the minimal
assumptions which could underlie any form of cosmology whatsoever.
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The assumptions upon which this formulation is based are:

1. The universe is homogeneous, isotropic, and expanding;
2. Energy density cT00 = ρE is the source of gravitational scalar potential,

which acts along both past and future light cones;
3. The gravitational scalar potential Z is the speed of light c;
4. Energy density satisfies a continuity equation.

6. Gravitational Potential

In G4v, the gravitational vector potential takes the same place in the matter wave
function as does the electromagnetic vector potential, each with their individual coupling
constant: The source of the gravitational four-potential is the energy-momentum four-vector
T0α. The coupling constant χ is equal to the square of the Planck length, and the scalar
potential Z is equal to the local speed of light c.

Whatever the makeup of matter in the universe, it will have some average energy
density cT00, which we abbreviate ρE, and that energy density is the source for gravitational
scalar potential Z, governed by the Abraham’s version of Equation (9). (Abraham, in his
1913 paper [14] (p. 356), saw that this form of the equation must be used when the speed
of light c = Z is changing with time. Unfortunately he applied it to a theory in which the
variable was

√
Z instead of Z. Nonetheless we have chosen to refer to this form of the

equation, when used for gravitational potential calculations, as Abraham’s):

�2Z = ∇2Z− 1
c

∂

∂t

(
1
c

∂Z
∂t

)
= 4πχρE (12)

where χ = `P
2 is the coupling constant. Because the potential is equal to the speed of

light c, the equation is highly non-linear due to the 1/c = 1/Z terms, so it has no scalable
solutions. We are accustomed to solving it in the limit of nearly-constant gravitational
potential, in which case it becomes nearly linear, and ordinary methods apply. In the case
of cosmology, we must look for a particular solution.

Assuming a uniform solution throughout space, consistent with the cosmological
principle, both Z and ρE are functions of cosmic time t alone and Equation (12) becomes

− 1
Z

∂

∂t

(
1
Z

∂Z
∂t

)
= 4πχρE (13)

which has solution
Z = c∞ tanh (nH0t)

ρE =
ρ0 cosh (2nH0t)

cosh (nH0t) sinh3 (nH0t)

ρ0 =
n2H2

0
4πχc∞

(14)

where n is a parameter of the theory that is determined by the self-consistency condition
described in Section 12. So the speed of light is uniquely determined by the Hubble
Constant, H0, and the energy density.

7. Continuity Condition

A necessary constraint on the solution is the continuity of energy density ρE. We express
the expansion in a spherical coordinate system, in which the expansion velocity v is in
the r direction. For a universe whose density is uniform at any given cosmic time, ρE is a
function of t alone:

−∂(ρE)

∂t
= ∇ · (v ρE) = ρE∇ · v

− 1
ρE

∂ρE
∂t

=
∂ v
∂r

+ 2
v
r

(15)
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We assume a separable solution for the velocity v = vt H0r, where vt is a function of t alone:

1
ρE

∂ρE
∂t

= −3H0vt (16)

So the full solution for the expansion velocity is

v =
nH0r

3

(
3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)

)
(17)

Henceforth we shall express the relations of Equations (14) and (17) in terms of
dimensionless variables as follows:

c(H0t) =
c

c∞
= tanh (nH0t)

ρ(H0t) =
ρE
ρ0

=
cosh (2nH0t)

cosh (nH0t) sinh3 (nH0t)

v(H0t, R) =
v

c∞
=

R
3

(
3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)

)
where R =

r
rH

rH =
c∞

nH0

(18)

This model has two free parameters: (1) the present cosmic time of our observations,
and (2) the constant n. These will be determined by: (a) internal consistency of the model
with Mach’s Principle, described in Section 12, and (b) fitting the model to SN1a Hubble
observations, as described in Section 11.3. The evolution of these quantities with cosmic
time is shown in Figure 1.

Figure 1. The three dimensionless functions of cosmic time in Equation (18) for the self-consistent
value n = 1.33 determined in Section 12. The green curve is the normalized speed of light c, equal to
the gravitational potential Z. It is determined by the energy density and expansion rate, and is nearly
constant after about two Hubble times. The blue curve of the normalized expansion velocity can be
thought of as the effective Hubble constant, which also becomes constant after about two Hubble
times. The red curve is the normalized energy density.

8. Light Cone Distance

A light signal leaving a source at time t1 will reach an observer at distance d at
t = t2, where

∂d
∂t

= c(t) = tanh (nH0t) ⇒ d =
∫ t2

t1

c(t) dt

d = rH log
(

cosh (nH0t2)

cosh (nH0t1)

)
where rH =

c∞

nH0

(19)

We note that d is not the distance at one particular cosmic time, but the distance along
the light cone. When H0t2 is taken at the origin of our coordinates, d = r at H0t1. For a
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well-evolved universe, older than about two Hubble times, Equation (19) reduces to the
usual expression where the speed of light is constant. In dimensional units:

d ≈ rH(H0t2 − H0t1) = c∞(t2 − t1) for H0t� 1 (20)

9. Co-Moving Distance

We wish to follow the evolution of a small volume as it moves with the Hubble flow
(called a co-moving volume in the cosmology literature). The dimensionless radius Rc
reached by a co-moving volume at cosmic time t will be the solution to

v =
∂R
∂t

=
R
3

(
3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)

)
Rc(t) = Rs

(
cosh (nH0t)

)−1
3n ·

(
cosh (2nH0t)

)−1
2n ·

(
sinh (nH0t)

) 1
3n

·
(

sinh (2nH0t)
) 1

2n ·
(

sinh (4nH0t)
) 1

6n

(21)

The co-moving radius has an arbitrary scale constant Rs which, when viewed as a
vector, is unique to each element in the universe. It identifies that element’s position,
relative to our chosen origin, at any given cosmic time.

10. Horizon

From Equation (19) we have a “lookback radius”—the distance from which light can
reach us. The maximum such distance occurs at the normalized horizon radius R0, where
v = c in the chosen frame of reference. From Equation (18)

R0 =
3 tanh (nH0t)

3 coth (nH0t) + tanh (nH0t)− 2 tanh (2nH0t)
(22)

The light-cone distance, co-moving distance, and horizon radius, normalized to the
Hubble radius, are shown in Figure 2.

Figure 2. Cosmic distances for n = 1.33, in units of the Hubble Radius rH , relative to an arbitrarily
chosen origin, plotted as a function of cosmic time in units of the Hubble time. The Horizon Radius
is shown in black. The observer is at R = 0, on the Ht axis. The green, cyan, and blue curves
are co-moving distances Rc for objects with Rs = 0.1, Rs = 0.2 and Rs = 0.4. The right plot is an
enlargement of the lower-left corner of the left plot.

The red curves are the light paths emitted by the green, cyan, and blue sources at
earlier times H0t1, and received by observers at H0t2 = 0.66, 1.5, 2.75, and 4.0. The n = 1.33,
H0t2 = 0.66 curve will turn out to be internally consistent, and to give the best fit to recently
observed SN1a Hubble data. The early universe is beyond the horizon in this model.

This plot would look the same, independent of which element in the visible universe
is chosen as the origin. We have chosen the frame of reference to be the co-moving frame of
the observer at R = 0. The expansion decelerates in the early stages of cosmic evolution,
and accelerates during the later stages. It is clear that, at late cosmic time, more and more
volume elements disappear beyond the horizon.
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11. Comparison with Astrophysical Observations
11.1. Redshift

We compare the rest-frame frequency ω1 of an atomic transition at r1, t1, where the
speed of light is c1 to the corresponding rest-frame frequency ω2 of the same atomic
transition at the observer on the light come of the emitter, at d = r = 0, t2 where the speed
of light = gravitational potential is c2. The rest-frame frequencies will be proportional to
the corresponding gravitational potentials:

ω2

ω1
=

c2

c1
(23)

The frequency ωobs we observe at r2, t2 where the speed of light is c2, is further reduced
by the Doppler effect due to the relative motion of the source and observer. The commonly
used relativistic redshift z is therefore:

1 + z ≡ ω2

ωobs
=

c2

c1

√
1 + v1/c1

1− v1/c1
(24)

11.2. Magnitude

A certain number of excited atoms in the supernova we are observing radiate energy
at a frequency given by Equation (24). All time scales change inversely with gravitational
potential, and are affected the same way by the Doppler effect, so both the energy per
photon and the rate at which photons are received will be inversely proportional to the
factor given by Equation (24). It follows that the received energy per second f will be
inversely proportional to the square of that factor, and of the distance R:

f ∝

(
c1

c2

√
1− v/c1

1 + v/c1
· 1

R

)2

(25)

The Equation (25) relation is valid in the frame of reference of the source, where R
is the radius of a sphere upon whose surface the energy flux f is constant. However, in
the frame of reference of the observer, the spheres of constant flux are lengthened in the
direction of source motion and flattened in the direction opposite to the source motion.

This problem is known as relativistic-beaming, and is well known in particle-physics
circles. It has has been carefully worked out by K. T. McDonald [15]. The result is that, for
an isotropically radiating source moving away from the observer, the received energy flux
fobs is reduced from that of a stationary source fsta by the factor:

fobs
fsta

=

(
1− v/c2

1 + v/c2

)2
(26)

so the total flux received at the observer, whose speed of light is c2, becomes:

f ∝

(
c1

c2

√
1− v/c1

1 + v/c1
· 1− v/c2

1 + v/c2
· 1

R

)2

=

(
1

1 + z
· 1− v/c2

1 + v/c2
· 1

R

)2

m = −2.5 log10 ( f ) + constant

(27)

11.3. Hubble Fits

The predictions of this model, plotted along with supernovae observations in Figure 3,
were arrived at by the following iterative trial-and-error process:
Choose a value of n and H0t2, and

1. Calculate c at the source atom from Equation (18)
2. Calculate distance along light cone from Equation (19)
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3. Calculate v/c1 and v/c2 from Equation (18)
4. Calculate z + 1 from Equation (24)
5. Calculate

√
1/ f from Equation (25)

6. Calculate
√

m from Equation (27)
7. Make Hubble Plot such as Figure 3 and calculate residuals
8. Record slope and rms error of residuals, and adjust H0t2
9. Return to Step 1

Until an H0t2 is found that zeros slope and minimizes rms error for this n

Experimentally, it was found that equally good Hubble plot fits could be obtained
for a wide range of the parameter n, each of which has a different value for the present
age of the universe H0t2 that gives the best fit. By carrying out a number of best fits with
different n values, the dependence of H0t2 on n was found as shown in Figure 4. This
“manual” method of finding self-consistent solutions might seem tedious, but it enables the
investigator to get an intuitive feeling for the solution space. With experience, values of
H0t2 could be reproduced within ±1% without undue effort.

Figure 3. Hubble plot showing the magnitude-redshift relation predicted by the G4v cosmological
model (red curve). The blue points are the Union2.1 data set, augmented with the 2013 z =

1.71 observation. The upturn of the curves at high redshift is predominantly due to the moving-source
factor (Equation (26)).

Figure 4. Present age of the universe H0t2 giving the best Hubble plot fit, as a function of the
parameter n. The red line merely connects the points.



Symmetry 2023, 15, 1309 11 of 15

12. Internal Consistency

Thus far we have used only differential relations that follow from Equation (12), from
which Z = c is determined in Equation (14). Our solution has a free parameter n, which
can only be determined by comparison with the observable Universe. We have found, by
fitting our model to observed Hubble plots, that equally good fits could be obtained as long
as the values of H0t2 for each n shown in Figure 4 were used. We should not be surprised at
this result—the cosmic gravitational potential is inherently an integral quantity and cannot
be determined by any differential theory alone.

It is a principle of G4v that the speed of light is equal to the gravitational potential,
and thus determined by Mach’s Principle i.e., by the gravitational interaction with every
other element of matter on both our future and past light cones within our horizon.

For each H0t2, n pair, we can determine the value of every variable, including the
speed of light and density, at every point in space-time from Equation (18). Because we
have the density at every point on the light cone of our present point of observation, we can
carry out the Mach integral and thereby determine the gravitational potential, and hence
the speed of light. When our theory is internally consistent, these two values must agree.

Mach Integral

According to the G4v interpretation of Mach’s Principle, the gravitational potential,
and therefore the rest energy and hence the inertia of matter, is determined by the energy
density of matter, weighted inversely with distance, and corrected for the Doppler effect.
Because of the non-linear nature of the equations involved, we are not guaranteed that an
integral determination of the potential will yield the same result as that assumed in the
differential formulation. So we must carry out the integration to the point where the two
values can be compared to evaluate the internal consistency of the entire approach. From
the definitions of the dimensionless variables in Equations (17) and (18) we obtain

c = c∞ − χ
∫ r0

0

ρE(r)
r

√
1− v(r)/c(r)
1 + v(r)/c(r)

4πr2 dr

1− c
c∞

=
4πχ

c∞

∫ r0

0
ρE(r)

√
1− v(r)/c(r)
1 + v(r)/c(r)

r dr

=
4πχρ0

c∞

∫ t1

t2

ρE
ρ0

(t)

√
1− v(t)/c(t)
1 + v(t)/c(t)

r(t) c(t)dt

= 4πχρ0 ·
rH
H0

∫ H0t1

H0t2

ρE
ρ0

(t)

√
1− v(t)/c(t)
1 + v(t)/c(t)

r
rH

(H0t)
c

c∞
(H0t) d(H0t)

= 4πχρ0 ·
c∞

H2
0

∫ H0t1

H0t2

ρ(t)

√
1− v(t)/c(t)
1 + v(t)/c(t)

R(H0t) c(H0t) d(H0t)

= n2
∫ H0t1

H0t2

ρ(t)

√
1− v(t)/c(t)
1 + v(t)/c(t)

R(H0t) c(H0t) d(H0t)

(28)

As with any Mach’s-Principle-based theory, the integration must be carried out over
both the past and future light cones. The integrand is shown as a function of R in Figure 5.

The determination of the self-consistent values of the parameters proceeds by using
the values of H0t2, n pairs found in the previous section (plotted in Figure 4) to calculate
c(H0t2)/c∞ from Equation (28). A value of c(H0t2)/c∞ for the same n is also given directly
in Equation (18). Then a plot can be made of both c(H0t2)/c∞ vs n dependencies, as shown
in Figure 6. The best fit self-consistent values obtained are n = 1.33, H0t2 = 0.66, and
c(H0t2)/c∞ = 0.706. Plots such as Figure 6 for each of the n, H0t2 pairs plotted in Figure 4
looked almost identical.
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Figure 5. Integrand of Equation (28) as a function of cosmic time at the radius on the light cone where
the source matter is located. The blue curve is the contribution of the past light cone and the red
curve is that of the future light cone. Both curves cut off where the light cone encounters the horizon.
The value of H0t2 = 0.66 used for this plot is that which gives a self-consistent solution.

This particular plot uses n = 1.33, H0t2 = 0.66, c/c∞ ≈ 0.706, which are the values
that are also consistent with the Mach integral, as shown in Figure 6. Out of the many
Hubble plots that were used to determined the self-consistent H0t2, n pairs, the one that
is also consistent with the Mach integral is determined by the intersection at n ≈ 1.33,
c/c∞ ≈ 0.706 in Figure 6. It has H0t2 ≈ 0.66 from Figure 4, and is the best estimate of an
overall self-consistent solution. That particular Hubble plot is shown in Figure 3.

Figure 6. Velocity of light determined from Equation (18) (blue crosses) and from the full
Equation (28) Mach integral (red circles), both plotted as functions of the parameter n.

13. Absolute Distance and Density

To establish the z � 1 absolute distance scale, we need a single measurement of
both z and distance. In 1999, the water masers in NGC4258 were observed with VLBI
parallax, and the distance to that galaxy has been followed and updated regularly. A recent
(2016) distance was reported by Humphreys et al. [16] as 7.6± 0.23 Mpc (One megaparsec
(Mpc)= 3.09×1022 m). This distance is too close to obtain a reliable Hubble-flow velocity,
so Riess et al. [17] used Cepheid variable star magnitudes in NGC4258 and more distant
galaxies to infer the magnitude of a hypothetical SN Ia in NGC4258 of m4258 = 10.25. In
more recent studies Riess et al. [18] inferred a magnitude of m4258 = 10.18.

These two values of m4258 and the ± Humphreys distance estimates give us four
values for the conversion factor from redshift to distance. For each combination we follow
our model Hubble plot back to m4258 and read off the redshift inferred for NGC4258 if it
were in the Hubble flow. The mean value so obtained is z4258 = .00192. Then, using the
Humphreys distance, we can determine the absolute conversion factor between the redshift
z and the distance r:

r = z r0 where r0 = (3.96± 0.16)× 103 Mpc (29)
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More recent values are more precise, but the papers [19–21] are much harder to follow.

13.1. The Hubble Constant

Although it is not an object of this analysis to derive an independent estimate of the
Hubble Constant H0, the Equation (29) relation between the redshift z and the distance r is
equivalent to one. All theories, even the most naive Doppler interpretation, predict z = v/c
for small redshift, where v is the recession velocity. The z = .00192 redshift inferred for
NGC4258 (if it were in the Hubble flow) certainly meets the z� 1 criterion. The Hubble
constant H0 thus determined is

H0 =
v
r
=

z c
r

=
z c
z r0

=
c
r0

= 75.9± 5
km/sec

Mpc
(30)

Of the ±5 estimated uncertainty in the result, ±3 is attributable to the uncertainty in
the distance to NGC4258 and the uncertainty in m4258. The balance is directly attributable
to the value for H0t2 chosen as best fit, and the particular fit adopted to the data set.

To use this class of G4v models for a serious determination of H0 would require a
much more exacting analysis. In recent years, vast new data sets have become available,
with more appearing regularly. Elaborate evaluation technologies are evolving to integrate,
and get the most out of, the new data. The point of the present paper has been to develop
a simple conceptual way of thinking that can be understood by anyone with a modest
technical background. The data set used was updated in 2013 when the analysis was
carried out. It would seem rather remarkable if any of the results could relate to those of
the modern “gold rush”. Nevertheless, the value obtained here is near the value labled
“Best χ2” in Figure 7. Good 2022 overviews of the growing disagreement between values
derived from models fit to the Cosmic Microwave Background and those from more direct
distance measurements can be found in references [22,23].

Figure 7. Reported values of the Hubble Constant as of 2023. Figure 4 from arXiv:2304.06693
(https://arxiv.org/pdf/2304.06693.pdf, accessed on 1 May 2023). The rough value derived in the
present treatment is H0 ≈ 75.9 km/sec/Mpc.

https://arxiv.org/pdf/2304.06693.pdf
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13.2. Energy Density

Using the values quoted above, we can, with Equation (14), determine the value of ρ0
and thus the present energy density ρE in the universe (An h̄ is needed to convert from our
standard G4v frequency units to ordinary energy units):

ρ0 =
n2H2

0
4πχc∞

=
n2H2

0 cosh (2nH0t)

4πχ c(H0t2) cosh (nH0t) sinh3 (nH0t)

≈ 11.5 H atoms equivalent per m3

(31)

This value is about twice the often quoted values of ∼ 6 equivalent protons/cubic
meter, arrived at with GR-based theory. Our approach has the advantage that it does not
place any restrictions on the particular form of energy making up the universe.

14. Conclusions

A simple G4v model based on Mach’s Principle, the wave representation of matter,
and a speed of light equal to the gravitational potential is formulated in “flat” Minkowski
space-time, and has a minimum of other assumptions. When fit to .015 < z < 1.71
supernova data, it predicts a universe whose expansion decelerates in the early stages of
cosmic evolution and accelerates during the later stages, a present age of 0.66 Hubble times,
and a Hubble Constant H0 ≈ 75.9 km/sec/Mpc.

A substantial fraction of the observed redshift is due to lower gravitational potential
at earlier epochs. This approach naturally avoids the “Cosmological Constant problem”
and places no restrictions on the makeup of the universe. In this way it may also be a first
step toward resolving the “dark energy” puzzle that arises in GR cosmologies.

We have thus demonstrated that a simple, internally consistent G4v model cosmology
based on Mach’s Principle gives results that are within the bounds of reason. It can be
argued that using such an approximate approach as a “broad brush” introduction to cosmic
thinking has the advantage of conceptual clarity over present complex GR based models.
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