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Abstract: The study presented in this paper follows the line of research created by the fact that
by employing the monomiality principle, new outcomes are produced. This article deals with the
inducement of ∆h tangent-based Appell polynomials and derivation of certain of its characterizations
such as explicit form, determinant form, monomiality principle, etc. These polynomials are designed
to exhibit certain symmetries themselves or to capture and describe symmetrical patterns in mathe-
matical structures. Further, certain members of ∆h Appell polynomials such as ∆h Bernoulli, Euler,
and Genocchi polynomials are taken, and their corresponding results are obtained.
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1. Introduction

The tangent numbers are usually expressed by the relation

2
exp(2w) + 1

=
∞

∑
k=0

Dk
wk

k!
, |w| < π

2
(1)

and thus facilitated tangent polynomials, which were introduced by Ryoo, who also studied
several of their characteristics (see, for example, [1–4]).

Throughout the article, we denote natural numbers with N and denote the set of
complex numbers with C and N0 = 0, 1, 2, · · · .

The tangent polynomials and ∆h-tangent polynomials are represented by the expressions

2
exp(2w) + 1

exp(ξ w) =
∞

∑
k=0

Dk(ξ)
wk

k!
, |w| < π

2
(2)

and
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0
Dk(ξ; h)

wk

k!
. (3)

The Tangent polynomials are a family of polynomials that are defined recursively with the
following formula:

Dk(ξ) = ξ − 1
3

Dk−1(ξ),

where D0(ξ) = 0 and D1(ξ) = 1.
These polynomials are called “tangent” because they are related to the tangent function.

Specifically, the nth tangent polynomial is the polynomial approximation of the tangent
function that matches its first n derivatives at ξ = 0.
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The first few tangent polynomials are:

D0(ξ) = 0

D1(ξ) = 1

D2(ξ) = ξ − 1
3

ξ3

D3(ξ) = ξ − 1
3

ξ3 +
2

15
ξ5

D4(ξ) = ξ − 1
3

ξ3 +
2
15

ξ5 − 17
315

ξ7.

The Tangent polynomials have a number of interesting properties and applications, par-
ticularly in numerical analysis and approximation theory. They have also been studied in
the context of special functions and orthogonal polynomials. These polynomials play a
significant role in symmetry because they often arise as solutions to equations or systems
of equations that possess specific symmetry properties.

Special polynomials play a crucial role in the study of symmetry because they fre-
quently emerge as solutions to equations or systems of equations that possess distinct
symmetry properties. These polynomials are specifically constructed to possess symme-
tries themselves or to effectively represent and elucidate symmetrical patterns inherent in
mathematical structures. By employing special polynomials, mathematicians can investi-
gate and analyze these symmetries more deeply. The significance of special polynomials in
approximation theory is paramount. These polynomials, specifically designed and tailored
for approximation purposes, offer numerous advantages and applications in the field.
These polynomials often possess desirable properties, such as orthogonality or recurrence
relations, which make them effective tools for approximating functions. By leveraging the
properties of these polynomials, researchers can develop efficient and accurate approxima-
tion methods. Special polynomials, such as Chebyshev polynomials, Legendre polynomials,
Hermite polynomials, and others, have been extensively studied and utilized in approxi-
mation theory. They provide powerful means to approximate functions in various domains
including numerical analysis, signal processing, data fitting, and scientific computations.
Further, the convergence properties and approximation rates of special polynomials have
been extensively investigated. These properties allow researchers to analyze and quantify
the quality of approximation achieved using these polynomials. This information is crucial
for determining the accuracy and efficiency of approximation algorithms. Moreover, these
special polynomials play a vital role in approximation theory by providing effective tools
for approximating functions and enabling rigorous analysis of the convergence properties
of approximation methods. Their significance lies in their ability to bridge the gap between
complex functions and simpler polynomial approximations, enabling efficient and accurate
computations in various applications (for instance, see [5–7]).

The Appell polynomials [8] have applications in many areas of mathematics and
physics, including algebraic geometry, differential equations, approximation theory, and
quantum mechanics. Appell polynomials find applications in diverse areas of approx-
imation theory, including numerical analysis, signal processing, image reconstruction,
and mathematical modeling. Their versatility allows them to approximate a wide range
of functions encountered in practical problems, making them a valuable tool in various
scientific and engineering disciplines. Further, these polynomials provide a framework for
analyzing the approximation error incurred when using polynomial approximations. By
quantifying the error bounds and rates of convergence, researchers can assess the trade-off
between computational complexity and accuracy in approximation algorithms employing
Appell polynomials. They are closely related to other families of special functions, such as
the hypergeometric functions and the Jacobi polynomials. The composition of two Appell
polynomials gives another Appell polynomial, which means that the Appell polynomials
form an Abelian group under composition. This group property is a consequence of the
fact that the differential equation satisfied by the Appell polynomials is a special case of the
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Heun equation, which is known to have a Galois group that is an Abelian extension of the
differential field generated by the solutions of the equation.

More precisely, the Appell polynomial sequences form an Abelian group under compo-
sition with the identity element being the constant polynomial sequence. The commutativity
property of the group follows from the symmetry property of the Appell polynomials. The
group property of the Appell polynomials has important consequences in various areas of
mathematics and physics, including the theory of differential equations and the study of
integrable systems. For example, the group property can be used to derive recursion rela-
tions for the coefficients of the Appell polynomials, which can be useful in the computation
of special values of the polynomials. The group property can also be used to construct new
families of Appell polynomials by composing known families with each other, which can
lead to the discovery of new and interesting mathematical structures.

In the 19th century, Appell [8] provided a family of polynomials known as Appell
polynomial family given by {Ak(ξ)}k∈N0 , which satisfies the differential equation:

d
dξ

Ak(ξ) = k Ak−1(ξ), k ∈ N0 (4)

and generating expression:

A(w) eξw =
∞

∑
k=0

Ak(ξ)
wk

k!
, (5)

where A(w) is convergent power series on the whole real line with Taylor expansion as:

A(w) =
∞

∑
k=0

Ak
wk

k!
, A0 6= 0. (6)

These polynomials are named after the French mathematician Paul Appell, who intro-
duced them in their work on elliptic functions. The generating relation (5) provides a
way to express the exponential function eξw as an infinite sum of the polynomials Ak(ξ)
multiplied by powers of w. This relation can be used to simplify certain integrals and to
calculate certain functions. Overall, the Appell polynomials have many applications in
mathematical physics, particularly in the study of quantum mechanics, electromagnetism,
and fluid dynamics.

It is interesting to note the development of hybrid special polynomials through the
incorporation of the monomiality principle and operational rules. The use of these prin-
ciples and operators has provided a powerful tool for the study of various mathematical
problems. Special functions are mathematical functions that have been studied extensively
due to their importance in various branches of mathematics and physics. These functions
often arise as solutions to differential equations or integrals that cannot be expressed in
terms of elementary functions. These functions have important applications in areas such
as quantum mechanics, statistical mechanics, and signal processing.

The concept of monomiality was introduced by the Steffenson in 1941 [9], where he
developed the poweroid notion. Later on, Dattoli [10] refined this concept, and it has
since become a fundamental tool in the study of special polynomials. The idea behind
monomiality is to express a polynomial set in terms of monomials, which are the building
blocks of polynomials. This allows for a better understanding of the polynomial set and
the properties that it possesses. Understanding the quasi-monomial characteristics of the
∆h-TAPs is crucial for their application in various approximation problems. The ∆h-TAPs
are based on the tangent function and are designed to provide a flexible and efficient
framework for polynomial-based approximations.

The M̂ and D̂ operators play a crucial role in the study of special polynomials.
These operators function as multiplicative and derivative operators for the polynomial set
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{bk(ξ)}k∈N, which means that they allow for the construction of new polynomials from
existing ones. The expression

bk+1(ξ) = M̂{bk(ξ)}, (7)

expresses the multiplicative property of the operator M̂, which generates a new polynomial
bk+1(ξ) from the previous polynomial bk(ξ). Similarly, the expression

k bk−1(ξ) = D̂{bk(ξ)}. (8)

expresses the derivative property of the operator D̂, which generates a new polynomial bk−1(ξ)
by taking the derivative of the polynomial bk(ξ) and multiplying it by the coefficient k.

Incorporating the monomiality principle and operational rules into the study of special
polynomials has led to the development of hybrid special polynomials. These polynomials
possess unique properties and are useful in the solutions of various mathematical problems.
The study of hybrid special polynomials is an active area of research, and their applications
are widespread in many fields, including physics, engineering, and computer science.

These equations and properties are part of the theory of quasi-monomials and Weyl
groups, which have applications in various branches of mathematics and physics, including
representation theory, algebraic geometry, and quantum field theory. Therefore, a set of
polynomials {bk(ξ)}k∈N in view of operators represented by expressions (7) and (8) is
referred to as a quasi-monomial and satisfies the formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂. (9)

Thus, it exhibits a Weyl group structure.
In particular, bk(ξ) demonstrate the differential equation

M̂D̂{bk(ξ)} = k bk(ξ), (10)

if M̂ and D̂ possesses differential realizations. The equation implies that the quasi-
monomials are eigen functions of the operator M̂D̂, with eigenvalue k. This differen-
tial equation can be solved explicitly for certain choices of M̂ and D̂, leading to explicit
expressions for the quasi-monomials, represented by

bk(ξ) = M̂k {1}, (11)

with b0(ξ) = 1. The formula (11) provides a recursive way to compute the quasi-monomials
by repeated application of the operator M̂ to the identity function Î. With b0(ξ) = 1, the
generating relation in exponential form for bk(ξ) can be put in the form

ewM̂{1} =
∞

∑
k=0

bk(ξ)
wk

k!
, |w| < ∞ , (12)

in view of identity expression (11).
The generating relation (12) expresses the quasi-monomials as a power series in the

variable w with coefficients given by the quasi-monomials themselves. This formula allows
for the computation of the quasi-monomials to arbitrary precision and has applications
in the study of certain special functions and their properties. Overall, the theory of quasi-
monomials and Weyl groups provides a powerful tool for analyzing the structure and
behavior of certain families of functions and has important applications in mathematics
and physics.

These operational approaches have been and continue to be widely used in various
areas of mathematical physics, including quantum mechanics and classical optics. One
of the main advantages of these approaches is that they allow researchers to describe
complex physical systems in terms of simpler building blocks or operators, which can
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then be manipulated and analyzed using well-established mathematical techniques. This
approach has proven to be particularly useful in the study of systems with many degrees
of freedom, where more traditional approaches based on partial differential equations or
other analytical methods can become prohibitively difficult. For example, in the study of
quantum mechanics, operational techniques have been used to describe the behavior of
systems such as atoms, molecules, and condensed matter materials. These techniques have
also been applied to the study of quantum information and computation, where they have
helped researchers to understand and manipulate the properties of quantum states and
operators. Similarly, in the field of classical optics, operational techniques have been used
to describe the behavior of light and its interaction with matter. These techniques have
been particularly useful in the study of nonlinear optics, where the response of materials to
intense electromagnetic fields can lead to a wide range of interesting phenomena. Over-
all, operational approaches continue to be a valuable tool for researchers in many areas
of physics, and their importance is likely to grow as new experimental techniques and
theoretical models are developed in the years to come, see for example [7,11,12].

Thus, in view of (7) and (8), we derived the operators, usually called multiplicative
and derivative operators for the Appell polynomials by differentiating the expression (5)
w.r.t. w and ξ, respectively.

Motivated by the work of C. S. Ryoo, we are introducing DAk(ξ; h), i-e, ∆h tangent-
based Appell polynomials, which possess generating expression of the form:

A(w)
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0
DAk(ξ; h)

wk

k!
, (13)

where

A(w) =
∞

∑
k=0

Ak
wk

k!
, A0 6= 0. (14)

The following identities are satisfied by ∆h polynomials: for g : Z ⊂ R→ R and h ∈
R+, the forward difference operator denoted by ∆h is provided by [13] (p. 2):

g(u + h)− g(u) = ∆h[g](u) (15)

and

∆h
(
∆i−1

h [x](u)
)
=

i

∑
l=0

(−1)i−l
(

i
l

)
g(u + lh) = ∆i

h[g](u). (16)

where ∆1
h = ∆h and ∆0

h = I , with I as the identity function.
The generating function (13) is established by convolution of the Appell and tangent

polynomials given by expressions (5) and (3), respectively. These polynomials have several
significant applications in different areas of mathematics and physics. The tangent poly-
nomials provide an alternative to classical orthogonal polynomials, such as Legendre or
Chebyshev polynomials, for approximating functions over a finite interval. They have the
advantage of being well-suited for functions with singularities or discontinuities, where
classical orthogonal polynomials may not converge well. Furthermore, these polynomials
arise as solutions to certain types of differential equations, such as the heat equation or
the Schrödinger equation. They can be used to solve problems in quantum mechanics and
statistical physics, among other fields. Further, these polynomials have diverse applications
in mathematics and physics and are important tools for solving problems in these areas.
Here, we derive several properties of these ∆h tangent-based Appell polynomials. The rest
of the paper is written as follows: ∆h tangent-based Appell polynomials (∆hTAPs) DAk(ξ; h)
are introduced in Section 2 along with some of their specific features. Quasi-monomial
characteristics for these polynomials are established in Section 3. A few members of this
polynomial family are established and their related findings are found in the last section.
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2. ∆h Tangent-Based Appell Polynomials DAk(ξ; h)

Here, in this section, we provide alternative general methods to determine DAk(ξ; h)
sequences. In fact, we know any polynomial is of Appell type with degree k, where k ∈ N,
if and only if it satisfies expression (4). Therefore, we prove the result:

Theorem 1. For, ∆h tangent-based Appell polynomials DAk(ξ; h), the following relation holds true:

ξ ∆h

h
{DAk(ξ; h)} = k DAk−1(ξ; h). (17)

Proof. In view of (15), we differentiate both sides of (13) w.r.t. ξ, and replace k with k− 1
in the derived equation. Further, on comparing the coefficients of the same exponents of w,
we obtain assertion (17).

Further, we introduce these ∆h-TAPs by proving the following results:

Theorem 2. For the polynomials DAk(ξ; h), the succeeding generating expression holds true:

A(w)
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0
DAk(ξ; h)

wk

k!
. (18)

Proof. We prove the result in alternate ways:

By expanding A(w) 2

(1+hw)
2
h +1

(1 + hw)
ξ
h at ξ = 0 for finite differences by a Newton se-

ries and the order the product of the developments of the function A(w) 2

(1+hw)
2
h +1

(1+ hw)
ξ
h

w.r.t. the powers of w, we observe the polynomials DAk(ξ; h) expressed in Equation (13) as
coefficients of wm

m! as the generating function of ∆h-TAPs.
Alternatively:
Replacing ξ in (3) by the multiplicative operator of Appell polynomials given in [8], it

follows that

2

(1 + hw)
2
h + 1

e
ξ
h log

(
ξ+A′(w)

A(w)

)
=

∞

∑
k=0
Dk

(
ξ +

A′(w)

A(w)
; h
)

wk

k!
, (19)

the l.h.s. of the previous equation in view of the Crofton identity yields

A(w)
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0
Dk

(
A′(w)

A(w)
+ ξ; h

)
wk

k!
. (20)

Denoting Dk

(
A′(w)
A(w)

+ ξ; h
)

in the r.h.s. of above equation by DAk(ξ; h), we are led to
assertion (18).

Next, we establish the explicit forms of ∆h TAPs DAk(ξ; h) by proving the results
following as:

Theorem 3. For, ξ ∈ C and k ∈ Z+, the ∆h TAPs DAk(ξ; h) satisfy the following explicit form:

DAk(ξ; h) =
k

∑
m=0

(
m
k

)
Am Dk−m(ξ; h). (21)

Proof. Generating Equation (13) in view of expressions (6) and (2) can be written as

A(w)
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
m=0

Am
wm

m!

∞

∑
k=0
Dk(ξ; h)

wk

k!
.
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Applying the Cauchy product rule and replacing m by m− k in the resultant equation and
then comparing coefficients of the same exponents of w, we obtain assertion (21).

Next, we derive the quasi-monomial properties for the ∆h TAPs.

3. Quasi-Monomiality Principle and Determinant Form

The main motive behind the monomiality principle is to find the multiplicative and
derivative operators. Further, to frame the ∆h TAPs DAk(ξ; h) within the context of the
monomiality principle, we prove the following results:

Theorem 4. For, the ∆h TAPs DAk(ξ; h), the succeeding multiplicative and derivative operators
holds true:

ˆM(DA) =
A′( ξ ∆h

h )

A( ξ ∆h
h )
− 2

h
(1 +ξ ∆h)

2
h−1

(1 +ξ ∆h)
2
h + 1

+
ξ

1 +ξ ∆h
(22)

and
ˆD(DA) =

ξ ∆h

h
. (23)

Proof. Taking derivatives of generating relation (18), w.r.t. w on both sides, it follows that

∂

∂w

{
A(w)

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h

}
=

∂

∂w

[
∞

∑
k=0
DAk(ξ; h)

wk

k!

]
, (24)

Therefore, we have

(A′(w)

A(w)
− 2

h
(1 + hw)

2
h−1

(1 + hw)
2
h + 1

+
ξ

1 + hw

)[
A(w)

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h

]
=

[
∞

∑
k=0

k DAk(ξ; h)
wk−1

k!

]
, (25)

using the r.h.s. of expression (17) in the l.h.s. of previous equation, it follows that

(A′(w)

A(w)
− 2

h
(1 + hw)

2
h−1

(1 + hw)
2
h + 1

+
ξ

1 + hw

)[ ∞

∑
k=0
DAk(ξ; h)

wk

k!

]
=

[
∞

∑
k=0

k DAk(ξ; h)
wk−1

k!

]
. (26)

Next, taking the derivatives of expression (18) w.r.t. ξ in view of (15), it follows that

ξ ∆h

{
A(w)

2

(1 + hw)
2
h + 1

(1 + hw)
ξ+h

h −A(w)
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h

}
= hw

{
A(w)

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h

}
,

which further can be written to extract the identity:

ξ ∆h

h

{
A(w)

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h

}
= w

{
A(w)

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h

}
, (27)

We replace k with k + 1 in the r.h.s. of expression (26); then, in view of (7) and identity
expression (27) in the resultant equation, the assertion (22) is proved.

The expression (27) can further be written as:

ξ∆h

h

[
∞

∑
k=0
DAk(ξ; h)

wk

k!

]
=

[
∞

∑
k=0
DAk(ξ; h)

wk+1

k!

]
. (28)

We replace k with k− 1 in the r.h.s. of above equation; then, in view of expression (8), the
assertion (23) follows.

Next, we find the differential equation satisfied by these polynomials:
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Theorem 5. The ∆h TAPs DAk(ξ; h) satisfy the succeeding differential equation:[
A′( ξ ∆h

h )

A( ξ ∆h
h )

ξ ∆h

h
− 2

h
(1 +ξ ∆h)

2
h−1

(1 +ξ ∆h)
2
h + 1

ξ ∆h

h
+

ξ

1 +ξ ∆h

ξ∆h

h
− k

]
DAk(ξ; h) = 0. (29)

Proof. Inserting expression (22) and (23) in expression (10), we obtain assertion (29).

Further, we provide the determinant representation to these polynomials DAk(ξ; h) by
proving the result:

Theorem 6. The ∆h TAPs DAk(ξ; h) create a determinant in the following form:

DAk(ξ; h) =
(−1)k

(γ0)
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 D1(ξ; h) D2(ξ; h) · · · Dk−1(ξ; h) Dk(ξ; h)

γ0 γ1 γ2 · · · γk−1 γk

0 γ0 (2
1)γ1 · · · (k−1

1 )γk−2 (k
1)γk−1

0 0 γ0 · · · (k−1
2 )γk−3 (k

2)γk−2
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0 ( k

k−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (30)

where

γk, k = 0, 1, · · · are the coefficients of Maclaurins series of
1

A(w)
.

Proof. Multiplying both sides of Equation (18) by 1
A(w)

= ∑∞
m=0 γm

wm

m! , we find

∞

∑
k=0
Dk(ξ; h)

wk

k!
=

∞

∑
k=0

∞

∑
m=0

γm
wm

m! D
Ak(ξ; h)

wk

k!
, (31)

which upon using the Cauchy product rule becomes

Dk(ξ; h) =
k

∑
m=0

(
k
m

)
γm DAk−m(ξ; h). (32)

This equality leads to the system of m equations with unknowns DAk−m(ξ; h), k = 0, 1, 2, · · · .
Solving this system using Cramer’s rule, using the fact that the denominator is the determi-
nant of the lower triangular matrix with determinant (γ0)

k+1, taking the transpose of the
numerator, and then replacing the i-th row by (i + 1)-th position for i = 1, 2, · · · k− 1 gives
the desired result.

4. Applications

Different members of the Appell polynomial family can be created based on appro-
priate choices for the function A(w). Table 1 lists these members along with their names,
generating functions, definitions of the series, and related numbers.
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Table 1. Certain Appell family members.

S. No. Name of the Polynomials
and Related Numbers A(w) Generating Expression Series Representation

I. Bernoulli
(

w
ew−1

) (
w

ew−1

)
eξw =

∞
∑

k=0
Bk(ξ)

wk

k! Bk(ξ) =
k
∑

m=0
( k

m)Bmξk−m

polynomials
(

w
ew−1

)
=

∞
∑

k=0
Bk

wk

k!

and numbers [14] Bk := Bk(0)

II. Euler
(

2
ew+1

) (
2

ew+1

)
eξt =

∞
∑

k=0
Ek(ξ)

wk

k! Ek(ξ) =
k
∑

m=0
( k

m)
Em
2m

(
ξ − 1

2

)k−m

polynomials 2ew

e2w+1 =
∞
∑

k=0
Ek

wk

k!

and numbers [14] Ek := 2kEk

(
1
2

)
III. Genocchi

(
2w

ew+1

) (
2w

ew+1

)
eξw =

∞
∑

k=0
Gk(ξ)

wk

k! Gk(ξ) =
k
∑

m=0
( k

m)Gmξk−m

polynomials 2w
ew+1 =

∞
∑

k=0
Gk

wk

k!

and numbers [15] Gk := Gk(0)

The Bernoulli, Euler, and Genocchi numbers are important in many areas of mathe-
matics and have numerous applications. The Bernoulli numbers are a sequence of rational
numbers that appear in many mathematical formulas, including the Euler–Maclaurin for-
mula and the Bernoulli polynomials. They are used in number theory, combinatorics, and
numerical analysis, and have connections to various other areas of mathematics, such as
algebraic geometry and representation theory, see for instance, [16,17].

The Euler numbers are also a sequence of integers that arise in many different areas of
mathematics. They appear in the study of algebraic topology and the geometry of smooth
manifolds, as well as in combinatorics, number theory, and the theory of elliptic curves.
The Euler numbers also play an important role in the theory of modular forms, which have
applications in cryptography and coding theory, see for instance, [18–20].

The Genocchi numbers are a sequence of integers that appear in various combinatorial
problems, such as counting up–down sequences and labeled rooted trees. They are also
related to the Riemann zeta function and have applications in graph theory and automata
theory, see for instance, [17,18,21,22].

The trigonometric and hyperbolic secant functions are functions that are closely related
to the Euler numbers. The Taylor series expansions of these functions involve the Euler
numbers and their derivatives, and the functions themselves have applications in various
areas of mathematics and physics, such as signal processing and quantum field theory.

Thus, the Bernoulli, Euler, and Genocchi numbers are fascinating objects of study
in mathematics, with many connections to other areas of the subject and a wide range
of practical applications. These polynomials often arise in the study of finite differences,
which is a branch of mathematics concerned with the study of discrete structures. They
also have applications in analytic number theory, which is the study of the properties of
integers and their relationships with other mathematical objects. Overall, the study of
special functions and polynomials is an important area of mathematics that has contributed
to the development of many other branches of mathematics and science.

By taking Bernoulli, Euler and Genocchi polynomials as members of the Appell family,
we obtain different members of ∆h TAP-family as ∆h Tangent-based Bernoulli polynomials
DBk−m(ξ; h), ∆h tangent-based Euler polynomials DEk−m(ξ; h), and ∆h tangent-based
Genocchi polynomials DGk−m(ξ; h). These polynomials are given by generating expression
as following:

w
ew − 1

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0

DBk(ξ; h)
wk

k!
, (33)
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2
ew + 1

2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0

DEk(ξ; h)
wk

k!
(34)

and
2w

ew + 1
2

(1 + hw)
2
h + 1

(1 + hw)
ξ
h =

∞

∑
k=0

DGk(ξ; h)
wk

k!
, (35)

respectively.
Further, in view of expression (21), these ∆h tangent-based Bernoulli polynomials

DBk(ξ; h), ∆h tangent-based Euler polynomials DEk(ξ; h) and ∆h tangent-based Genocchi
polynomials DGk(ξ; h) satisfy the following series representations:

For ξ ∈ C and k ∈ Z+, the ∆h TBPs DBk−m(ξ; h) satisfy the following explicit form:

DBk(ξ; h) =
k

∑
m=0

(
m
k

)
Bm Dk−m(ξ; h). (36)

For, ξ ∈ C and k ∈ Z+, the ∆h TBPs DEk(ξ; h) satisfy the following explicit form:

DEk(ξ; h) =
k

∑
m=0

(
m
k

)
Em Dk−m(ξ; h). (37)

For, ξ ∈ C and k ∈ Z+, the ∆h TGPs DGk(ξ; h) satisfy the following explicit form:

DGk(ξ; h) =
k

∑
m=0

(
m
k

)
Gm Dk−m(ξ; h). (38)

Furthermore, in view of expressions (30), ∆h TBPs DBk(ξ; h), ∆h TEPs DEk(ξ; h) and
∆h TGPs DGk(ξ; h) satisfy the following determinant representations:

The ∆h TBPs DBk(ξ; h) create a determinant in the following form:

DBk =
(−1)k

(γ0)
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 B1(ξ; h) B2(ξ; h) · · · Bk−1(ξ; h) Bk(ξ; h)

γ0 γ1 γ2 · · · γk−1 γk

0 γ0 (2
1)γ1 · · · (k−1

1 )γk−2 (k
1)γk−1

0 0 γ0 · · · (k−1
2 )γk−3 (k

2)γk−2
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0 ( k

k−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (39)

The ∆h TEPs DEk(ξ; h) create a determinant in the following form:

DEk =
(−1)k

(γ0)
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 E1(ξ; h) E2(ξ; h) · · · Ek−1(ξ; h) Ek(ξ; h)

γ0 γ1 γ2 · · · γk−1 γk

0 γ0 (2
1)γ1 · · · (k−1

1 )γk−2 (k
1)γk−1

0 0 γ0 · · · (k−1
2 )γk−3 (k

2)γk−2
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0 ( k

k−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (40)
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The ∆h TGPs DGk(ξ; h) create a determinant in the following form:

DBk =
(−1)k

(γ0)
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 G1(ξ; h) G2(ξ; h) · · · Gk−1(ξ; h) Gk(ξ; h)

γ0 γ1 γ2 · · · γk−1 γk

0 γ0 (2
1)γ1 · · · (k−1

1 )γk−2 (k
1)γk−1

0 0 γ0 · · · (k−1
2 )γk−3 (k

2)γk−2
. . . · · · . .
. . . · · · . .
0 0 0 · · · γ0 ( k

k−1)γ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (41)

5. Conclusions

In this article, a new class of polynomials known as ∆h tangent-based Appell poly-
nomials (∆h TAPs), denoted as DAk(ξ; h), was introduced and their specific features were
derived. Further, the quasi-monomial characteristics of the ∆h TAPs were established in
Section 2, and the analysis in this section explored the properties and behaviors of these
polynomials under different conditions. The last section of the article presented specific
members of the ∆h-TAP family and discussed the findings related to these specific cases.
This section included examples, showcasing the effectiveness and applicability of the ∆h
TAPs in practical scenarios.

For, ξ → 0 in expression (17), the ∆h tangent-based Appell polynomials DAk(ξ; h)
reduce to the ∆h tangent-based Appell numbers given by the generating expression:

A(w)
2

e2w+1 =
∞

∑
k=0
DAk

wk

k!
. (42)

In a similar fashion, ∆h TBPs DBk(ξ; h), TEPs DEk(ξ; h) and TGP sDGk(ξ; h) reduce to the
∆h tangent-based Bernoulli, Euler, and Genocchi numbers.

Because these numbers play an important role in automata theory, in the Taylors’
expansion, and in other areas of engineering and physics problems, these can be taken as
future observations to establish their several characteristics, such as degenerate tangent-
based Bernoulli, Euler, and Genocchi numbers; ∆h tangent-based Bernoulli, Euler, and
Genocchi numbers; and poly or partially tangent-based Bernoulli, Euler, and Genocchi
numbers.

Furthermore, for χ to be a Dirichlet us character with conductor d ∈ N with d ∼= 1(mod2),
the generalized forms of these polynomials and numbers can also be taken as future obser-
vation. These posed problems are left to interested researchers for further investigation.
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