Averaging Principle for ψ-Capuo Fractional Stochastic Delay Differential Equations with Poisson Jumps
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaeta, G. Symmetry of stochastic non-variational differential equations. Phys. Rep. 2017, 686, 1–62. [Google Scholar] [CrossRef] [Green Version]
- De Vecchi, F.C.D.; Morando, P.; Ugolini, S. Symmetries of stochastic differential equations: A geometric approach. J. Math. Phys. 2016, 57, 063504. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, G. Symmetry analysis of the stochastic logistic equation. Symmetry 2020, 12, 973. [Google Scholar] [CrossRef]
- Hussain, S.; Elissa Nadia Madi, H.K.; Abdo, M.S. A numerical and analytical study of a stochastic epidemic SIR model in the light of white noise. Adv. Math. Phys. 2022, 2022, 1638571. [Google Scholar] [CrossRef]
- Hussain, S.; Tunç, O.; ur Rahman, G.; Khan, H.; Nadia, E. Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory. Math. Comput. Simul. 2023, 207, 130–150. [Google Scholar]
- Hussain, S.; Elissa Nadia Madi, E.N.; Khan, H.; Gulzar, H.; Etemad, S.; Rezapour, S.; Kaabar, M.K.A. On the stochastic modeling of COVID-19 under the environmental white noise. J. Funct. Spaces 2022, 2022, 4320865. [Google Scholar] [CrossRef]
- Alzabut, J.; Alobaidi, G.; Hussain, S.; Madi, E.N.; Khan, H. Stochastic dynamics of influenza infection: Qualitative analysis and numerical results. Math. Biosci. Eng. 2022, 19, 10316–10331. [Google Scholar] [CrossRef]
- Khasminskii, R.Z. On the principle of averaging the Ito¨ stochastic differential equations. Kibernetika 1968, 4, 260–279. [Google Scholar]
- Golec, J.; Ladde, G. Averaging principle and systems of singularly perturbed stochastic differential equations. J. Math. Phys. 1990, 31, 1116–1123. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, J.Q.; Xu, W. An averaging principle for stochastic dynamical systems with Lvy noise. Physica D 2011, 240, 1395–1401. [Google Scholar] [CrossRef]
- Mao, W.; You, S.; Wu, X.; Mao, X. On the averaging principle for stochastic delay differential equations with jumps. Adv. Differ. Equ. 2015, 2015, 70. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Shah, R.; Chung, J.D. Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Shah, R.; Khan, A. A Comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Alshammari, S.; Al-Sawalha, M.M.; Shah, R. Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential. Fractal Fract. 2023, 7, 140. [Google Scholar] [CrossRef]
- Xu, W.J.; Duan, J.Q.; Xu, W. An averaging principle for fractional stochastic differential equations with Levy noise. Chaos 2020, 30, 083126. [Google Scholar] [CrossRef]
- Cui, J.; Bi, N.N. Averaging principle for neutral stochastic functional differential equations with impulses and non-Lipschitz coefficients. Statist. Probab. Lett. 2020, 163, 108775. [Google Scholar] [CrossRef]
- Li, S.; Xie, Y. Averaging principle for stochastic 3D fractional Leray- model with a fast oscillation. Stoch. Anal. Appl. 2019, 38, 248–276. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, P. Averaging principle for fractional stochastic differential equations with Lp convergence. Appl. Math. Lett. 2022, 130, 108024. [Google Scholar] [CrossRef]
- Xu, W.; Xu, W.; Zhang, S. The averaging principle for stochastic differential equations with Caputo fractional derivative. Appl. Math. Lett. 2019, 93, 79–84. [Google Scholar] [CrossRef]
- Luo, D.; Zhu, Q.; Luo, Z. An averaging principle for stochastic fractional differential equations with time-delays. Appl. Math. Lett. 2020, 105, 106290. [Google Scholar] [CrossRef]
- Xu, W.; Xu, W.; Lu, K. An averaging principle for stochastic differential equations of fractional order 0<α<1. Fract. Calc. Appl. Anal. 2020, 23, 908–919. [Google Scholar]
- Ahmed, H.M. Impulsive conformable fractional stochastic differential equations with Poisson jumps. Evol. Equations Control Theory 2022, 11, 2073–2080. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; El-Owaidy, H.M.; Ghanem, A.S. Impulsive Hilfer fractional differential equations. Adv. Differ. Equations 2018, 2018, 226. [Google Scholar] [CrossRef]
- Ahmed, H.M.; El-Borai, M.M.; Ramadan, M.E. Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps. Adv. Differ. Equations 2019, 2019, 82. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.M.; El-Borai, M.M.; Bab, A.S.O.E.; Ramadan, M.E. Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion. Bound. Value Probl. 2020, 2020, 120. [Google Scholar] [CrossRef]
- Wang, J.; Ahmed, H.M. Null controllability of nonlocal Hilfer fractional stochastic differential equations. Miskolc Math. Notes 2017, 18, 1073–1083. [Google Scholar]
- Ahmed, H.M.; Zhu, Q. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Suechoei, A.; Ngiamsunthorn, P.S. Existence uniqueness and stability of mild solutions for semilinear ψ-Caputo fractional evolution equations. Adv. Differ. Equ. 2020, 2020, 114. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Bai, C. On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications. AIMS Math. 2022, 7, 7728–7741. [Google Scholar] [CrossRef]
- Jiang, D.; Bai, C. Existence Results for Coupled Implicit ψ-Riemann-Liouville Fractional Differential Equations with Nonlocal Conditions. Axioms 2022, 2022, 103. [Google Scholar] [CrossRef]
- Yang, Q.; Bai, C.; Yang, D. Controllability of a class of impulsive ψ-Caputo fractional evolution equations of Sobolev type. Axioms 2022, 2022, 283. [Google Scholar] [CrossRef]
- Xu, W.; Xu, W. An effective averaging theory for fractional neutral stochastic equations of order 0<α<1 with Poisson jumps. Appl. Math. Lett. 2020, 106, 106344. [Google Scholar]
- Wang, P.; Wang, X.; Su, H. Input-to-state stability of impulsive stochastic infinite dimensional systems with Poisson jumps. Automatica 2021, 128, 109553. [Google Scholar] [CrossRef]
- Deng, S.; Fei, W.; Liu, W.; Mao, X. The truncated EM method for stochastic differential equations with Poisson jumps. J. Comput. Appl. Math. 2019, 355, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. Ser. S. 2019, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Ahmadova, A.; Mahmudov, N.I. Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fractals 2020, 139, 110253. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Applications; Ellis Horwood: Chichester, UK, 2008. [Google Scholar]
- Applebaum, D. Lévy Process and Stochastic Calculus; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Kunita, H. Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In Real and Stochastic Analysis. New Perspectives; Birkha¨user: Basel, Switzerland, 2004; pp. 305–373. [Google Scholar]
- Vanterler, J.; Sousa, J.V.V.; Oliveira, E.C. A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differ. Equ. Appl. 2019, 11, 87–106. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, J.; Bai, C. Averaging Principle for ψ-Capuo Fractional Stochastic Delay Differential Equations with Poisson Jumps. Symmetry 2023, 15, 1346. https://doi.org/10.3390/sym15071346
Yang D, Wang J, Bai C. Averaging Principle for ψ-Capuo Fractional Stochastic Delay Differential Equations with Poisson Jumps. Symmetry. 2023; 15(7):1346. https://doi.org/10.3390/sym15071346
Chicago/Turabian StyleYang, Dandan, Jingfeng Wang, and Chuanzhi Bai. 2023. "Averaging Principle for ψ-Capuo Fractional Stochastic Delay Differential Equations with Poisson Jumps" Symmetry 15, no. 7: 1346. https://doi.org/10.3390/sym15071346
APA StyleYang, D., Wang, J., & Bai, C. (2023). Averaging Principle for ψ-Capuo Fractional Stochastic Delay Differential Equations with Poisson Jumps. Symmetry, 15(7), 1346. https://doi.org/10.3390/sym15071346