Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation
Abstract
:1. Introduction
2. Fundamental Definitions
3. The General Application of ADTM
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, R.S. Fornberg-Whitham equation. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1997; Volume 60, pp. 35–37. [Google Scholar]
- Choi, W.; Camassa, R. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 2007, 581, 369–380. [Google Scholar] [CrossRef]
- He, H.M.; Peng, J.G.; Li, H.Y. Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds. UPB Bull. Ser. A 2022, 84, 25–36. [Google Scholar]
- Xie, X.; Huang, L.; Marson, S.M.; Wei, G. Emergency response process for sudden rainstorm and flooding: Scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory. Nat. Hazards 2023, 117, 3307–3329. [Google Scholar] [CrossRef]
- Jin, H.Y.; Wang, Z.A. Global stabilization of the full attraction-repulsion Keller-Segel system. Discret. Contin. Dyn. Syst. Ser. A 2020, 40, 3509–3527. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Hu, J. Fixed-Time Stabilization of High-Order Uncertain Nonlinear Systems: Output Feedback Control Design and Settling Time Analysis. J. Syst. Sci. Complex. 2023. [Google Scholar] [CrossRef]
- Lyu, W.; Wang, Z. Global classical solutions for a class of reaction-diffusion system with density-suppressed motility. Electron. Res. Arch. 2022, 30, 995–1015. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Khan, A. A comparative analysis of fractional-order kaup-kupershmidt equation within different operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Ostrovsky, L.A.; Pelinovsky, E.N.; Shrira, V.I. Rogue waves in nonlinear dispersive media: Physical mechanisms, models, and applications. Phys. Rep. 2008, 443, 1–53. [Google Scholar]
- Stolen, R.H.; Gordon, J.P. Self-phase-modulation and small-scale filaments in nonlinear fibers. Opt. Lett. 1982, 7, 28–33. [Google Scholar]
- Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1978, 289, 373–404. [Google Scholar]
- Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. II. Nonlinear geometrical optics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1979, 292, 385–409. [Google Scholar]
- Fornberg, B. Numerical solution of the Fornberg-Whitham equation. J. Comput. Phys. 1980, 36, 362–381. [Google Scholar]
- Zayed, E.M.; Rahman, H.M.A. On using the modified variational iteration method for solving the nonlinear coupled equations in the mathematical physics. Ric. Mat. 2010, 59, 137–159. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Nofal, T.A.; Gepreel, K.A. The travelling wave solutions for non-linear initial-value problems using the homotopy perturbation method. Int. J. Control. 2009, 88, 617–634. [Google Scholar] [CrossRef]
- Zhang, K.; Alshehry, A.S.; Aljahdaly, N.H.; Shah, N.A.; Ali, M.R. Efficient computational approaches for fractional-order Degasperis-Procesi and Camassa-Holm equations. Results Phys. 2023, 50, 106549. [Google Scholar] [CrossRef]
- Abu Hammad, M. Conformable Fractional Martingales and Some Convergence Theorems. Mathematics 2021, 10, 6. [Google Scholar] [CrossRef]
- Dahmani, Z.; Anber, A.; Gouari, Y.; Kaid, M.; Jebril, I. Extension of a Method for Solving Nonlinear Evolution Equations Via Conformable Fractional Approach. In Proceedings of the 2021 International Conference on Information Technology (ICIT 2021), Amman, Jordan, 14–15 July 2021; pp. 38–42. [Google Scholar]
- Batiha, I.M.; Oudetallah, J.; Ouannas, A.; Al-Nana, A.A.; Jebril, I.H. Tuning the fractional-order pid-controller for blood glucose level of diabetic patients. Int. J. Adv. Soft Comput. Its Appl. 2021, 13, 1–10. [Google Scholar]
- Deng, W.; Li, C. Existence and uniqueness of solutions for the fractional Fornberg-Whitham equation with initial and boundary conditions. Appl. Math. Lett. 2010, 23, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Anh, V. Well-posedness of the fractional Fornberg-Whitham equation with different types of boundary conditions. Comput. Math. Appl. 2011, 62, 1295–1303. [Google Scholar]
- Zhang, H.; Deng, W. A finite difference scheme for the fractional Fornberg-Whitham equation. J. Comput. Appl. Math. 2013, 239, 12–23. [Google Scholar]
- Liu, F.; Li, X.; Zhao, X. A finite volume method for the fractional Fornberg-Whitham equation. J. Comput. Phys. 2015, 295, 336–353. [Google Scholar]
- Li, C.; Deng, W.; Zhu, M. A spectral method for the fractional Fornberg-Whitham equation. Numer. Algorithms 2018, 79, 377–392. [Google Scholar]
- Hu, X.; Li, C.; Deng, W. Fractional Fornberg-Whitham equation for the dynamics of stock prices. J. Appl. Math. Comput. 2016, 50, 601–612. [Google Scholar]
- Wang, Y.; Zhang, C.; Song, W. Image denoising using the fractional Fornberg-Whitham equation. J. Comput. Appl. Math. 2015, 279, 152–161. [Google Scholar]
- Zhang, J.; Xie, J.; Shi, W.; Huo, Y.; Ren, Z.; He, D. Resonance and bifurcation of fractional quintic Mathieu-Duffing system. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 23131. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Cui, S.; Chang, X.; Xu, Y.; Meng, H.; Wang, Y.; Arif, M. Multi-region Nonuniform Brightness Correction Algorithm Based on L-Channel Gamma Transform. Secur. Commun. Netw. 2022, 2022, 2675950. [Google Scholar] [CrossRef]
- Zhu, H.; Xue, M.; Wang, Y.; Yuan, G.; Li, X. Fast Visual Tracking with Siamese Oriented Region Proposal Network. IEEE Signal Process. Lett. 2022, 29, 1437. [Google Scholar] [CrossRef]
- Guo, F.; Zhou, W.; Lu, Q.; Zhang, C. Path extension similarity link prediction method based on matrix algebra in directed networks. Comput. Commun. 2022, 187, 83–92. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals. IEEE Trans. Instrum. Meas. 2022, 71, 6503504. [Google Scholar] [CrossRef]
- He, J.H. variational iteration method-a kind of nonlinear analytical technique: Some examples. Int. J. Non-Linear Mech. 2007, 34, 699–708. [Google Scholar] [CrossRef]
- He, J.H. variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 2010, 217, 869–877. [Google Scholar] [CrossRef]
- Khader, M.M.; Hashim, I. Numerical methods for solving fractional differential equations: A comparative study. J. Comput. Appl. Math. 2016, 305, 195–210. [Google Scholar]
- Gao, G.H.; Li, X.Z.; He, J.H. Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 2004, 22, 549–554. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z. Variational iteration transform method for solving the coupled Burgers’ equations with time-fractional derivatives. Appl. Math. Comput. 2017, 303, 132–141. [Google Scholar]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Chung, J.D. Analytical investigation of fractional-order Korteweg-De-Vries-type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Xu, L.; Cao, X. The variational iteration transform method for solving the time-space fractional Fisher equation. Appl. Math. Comput. 2017, 305, 188–194. [Google Scholar]
- Wang, J.; Tian, J.; Zhang, X.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Control of Time Delay Force Feedback Teleoperation System with Finite Time Convergence. Front. Neurorobot. 2022, 16, 877069. [Google Scholar] [CrossRef]
- Jafari, H.; Seifi, S. Analytical solution of a nonlinear differential equation using the Variational Iteration Transform Method. J. Math. Anal. Appl. 2017, 446, 1261–1275. [Google Scholar]
- Adomian, G. A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 1988, 13, 17–43. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A First Course in Integral Equations; World Scientific: Singapore, 2002. [Google Scholar]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2007, 177, 488–494. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Shirzadi, A. Application of the Adomian decomposition method for solving a system of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 210–219. [Google Scholar]
- Eftekhari, G.; Alhuthali, M.S. Solving fractional partial differential equations using the Adomian decomposition method. J. Comput. Appl. Math. 2018, 339, 318–328. [Google Scholar]
- Cakir, M.; Arslan, D. The Adomian Decomposition Method and the Differential Transform Method for Numerical Solution of Multi-Pantograph Delay Differential Equations. Appl. Math. 2015, 6, 1332. [Google Scholar] [CrossRef] [Green Version]
- Bhrawy, A.H.; Alofi, A.S. Solving nonlinear differential equations by the modified Adomian decomposition method with application to wave equation. Results Phys. 2021, 26, 104708. [Google Scholar]
- Benattia, M.E.; Belghaba, K. Application of the Aboodh transform for solving fractional delay differential equations. Univers. J. Math. Appl. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Awuya, M.A.; Subasi, D. Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel. Symmetry 2021, 13, 2055. [Google Scholar] [CrossRef]
- Gupta, P.K.; Singh, M. Homotopy perturbation method for fractional Fornberg-Whitham equation. Comput. Math. Appl. 2011, 61, 250–254. [Google Scholar] [CrossRef]
- Abidi, F.; Omrani, K. Numerical solutions for the nonlinear Fornberg-Whitham equation by He’s methods. Int. J. Mod. Phys. B 2011, 25, 4721–4732. [Google Scholar] [CrossRef]
x | ADTM/VITM | Exact Solution | Absolute Error |
---|---|---|---|
−1.0 | 0.567414 | 0.567839 | 0.000425389 |
−0.9 | 0.596506 | 0.596953 | 0.000447199 |
−0.8 | 0.627089 | 0.627559 | 0.000470128 |
−0.7 | 0.659241 | 0.659735 | 0.000494232 |
−0.6 | 0.693041 | 0.69356 | 0.000519572 |
−0.5 | 0.728574 | 0.72912 | 0.000546211 |
−0.4 | 0.765928 | 0.766503 | 0.000574215 |
−0.3 | 0.805198 | 0.805802 | 0.000603656 |
−0.2 | 0.846482 | 0.847116 | 0.000634606 |
−0.1 | 0.889882 | 0.890549 | 0.000667143 |
0.0 | 0.935507 | 0.936208 | 0.000701348 |
0.1 | 0.983471 | 0.984209 | 0.000737307 |
0.2 | 1.0339 | 1.03467 | 0.00077511 |
0.3 | 1.0869 | 1.08772 | 0.00081485 |
0.4 | 1.14263 | 1.14349 | 0.000856629 |
0.5 | 1.20121 | 1.20212 | 0.000900549 |
x | ADTM/VITM | Exact Solution | Absolute Error |
---|---|---|---|
0.0 | 1.0021 | 1.00089 | 0.00121594 |
0.1 | 1.00043 | 0.999616 | 0.000818105 |
0.2 | 1.00002 | 0.999597 | 0.000420427 |
0.3 | 1.00085 | 1.00083 | 0.0000183526 |
0.4 | 1.00294 | 1.00333 | 0.000392684 |
0.5 | 1.00628 | 1.0071 | 0.000817276 |
0.6 | 1.01089 | 1.01215 | 0.00126006 |
0.7 | 1.01678 | 1.0185 | 0.00172572 |
0.8 | 1.02396 | 1.02618 | 0.00221902 |
0.9 | 1.03245 | 1.03519 | 0.0027448 |
1.0 | 1.04227 | 1.04557 | 0.003308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, S.; Hammad, M.A.; Shah, R.; Alrowaily, A.W.; El-Tantawy, S.A. Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry 2023, 15, 1353. https://doi.org/10.3390/sym15071353
Noor S, Hammad MA, Shah R, Alrowaily AW, El-Tantawy SA. Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry. 2023; 15(7):1353. https://doi.org/10.3390/sym15071353
Chicago/Turabian StyleNoor, Saima, Ma’mon Abu Hammad, Rasool Shah, Albandari W. Alrowaily, and Samir A. El-Tantawy. 2023. "Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation" Symmetry 15, no. 7: 1353. https://doi.org/10.3390/sym15071353
APA StyleNoor, S., Hammad, M. A., Shah, R., Alrowaily, A. W., & El-Tantawy, S. A. (2023). Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation. Symmetry, 15(7), 1353. https://doi.org/10.3390/sym15071353