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Abstract: In this paper, we modify the KF-iteration process into hyperbolic metric spaces where the
symmetry condition is satisfied and establish the weak w2-stability and data dependence results
for contraction mappings. We also prove some ∆-convergence and strong convergence theorems
for generalized (α, β)-nonexpansive type 1 mappings. Finally, we offer a numerical example of
generalized (α, β)-nonexpansive type 1 mappings and show that the KF-iteration process is more
effective than some other iterations. Our results generalize and improve several relevant results in
the literature.
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1. Introduction

Some physical problems in engineering, physics, economics, etc., are generally em-
ulated into a fixed-point problem, more precisely, to a problem aiming at finding a ∈ X
such that Sa = a, where S is a nonlinear mapping (self or non-self) of an arbitrary space
X. Many researchers have paid very good attention to finding an analytical solution, but
this has been almost practically impossible. In view of this, iterative processes have been
adopted to find approximate solutions.

The Picard iterative process is one of the very first iterative processes used to ap-
proximate a fixed point of a contraction mapping S on a metric space (X, m). Note that
a mapping S : X → X is called a contraction if there exists a constant k ∈ [0, 1) such that

m(Sa, Sb) ≤ km(a, b), ∀a, b ∈ X.

If k = 1 in inequality above, then S is said to be a nonexpansive mapping. Even though
the existence of the fixed point is guaranteed in the case of nonexpansive mapping, the
Picard iterative process fails to approximate the fixed point of S. To overcome this problem,
researchers of this field developed different iterative processes to approximate fixed points
of nonexpansive mappings and other mappings, which are more general than nonexpansive.
For example, look at Mann [1], Ishikawa [2], Noor [3], Agarwal et al. [4], Abbas et al. [5],
Thakur et al. [6,7], M-iteration [8], etc.

In 2017, Pant and Shukla [9] introduced the class of generalized α-nonexpansive
mappings, which is a larger class of mappings than the classes of nonexpansive, Suzuki-
generalized nonexpansive, and α-nonexpansive mappings. A vast of researchers studied
the approximation of fixed points of these mappings in different spaces, such as Banach,
CAT(0), and hyperbolic metric spaces; see [10–14].
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Recently, in 2021, Akutsah and Narain [15] introduced a new mapping, namely general-
ized (α, β)-nonexpansive type 1, which generalizes a lot of mappings as well as generalized
α-nonexpansive mappings in the literature.

Very recently, in 2022, Ullah et al. [16] and Temir and Korkut [17] introduced a new
iteration process involving generalized α-nonexpansive mappings. If S is a self-mapping
on a convex subset Y of a Banach space X, then the iteration process is stated as follows:

a1 ∈ Y,
cn = S((1− ηn)an + ηnSan),

bn = Scn,
an+1 = S((1− σn)San + σnSbn), ∀n ≥ 1,

(1)

where {σn}∞
n=1 and {ηn}∞

n=1 are real sequences in [0, 1]. This iteration is called the KF-
iteration process by Ullah et al. [16]. Throughout this paper, we will use this name for the
iteration process (1).

Motivated by the above results, in this paper, we study the weak w2-stability, data
dependence, and convergence of the iteration process (1) in hyperbolic metric spaces. This
paper is organized as follows: In Section 2, we collect some basic definitions and needed
results. Section 3 proves the weak w2-stability and data dependence results using the
KF-iteration process for contraction mappings in hyperbolic metric spaces. In Section 4, we
establish some results related to the strong and ∆-convergence of the KF-iteration process
for generalized (α, β)-nonexpansive type 1 mappings in hyperbolic metric spaces. Finally,
in Section 5, we give a numerical example of this class of mappings and show that the
KF-iteration process converges faster than some iteration processes. Our results extend the
corresponding results of [16,17].

2. Preliminaries

Let (X, m) be a metric space and Y be a nonempty subset of X. A mapping S : Y → Y
is said to be the following:

(i) (Ref. [18]) Quasi-nonexpansive if m(Sa, e) ≤ m(a, e) for all a ∈ Y and e ∈ Fix(S),
where Fix(S) is the set of all fixed points of S;

(ii) (Ref. [19]) Mean nonexpansive mapping if, for all a, b ∈ Y, there exist α, β ∈ [0, 1),
with α + β ≤ 1 such that m(Sa, Sb) ≤ αm(a, b) + βm(a, Sb);

(iii) (Ref. [20], p. 1089) Suzuki-generalized nonexpansive (or satisfy condition (C)) if
1
2 m(Sa, a) ≤ m(a, b)⇒ m(Sa, Sb) ≤ m(a, b) for all a, b ∈ Y;

(iv) (Ref. [21], Definition 2) Satisfy condition (Cλ) if λm(Sa, b) ≤ m(a, b)⇒ m(Sa, Sb) ≤
m(a, b) for all a, b ∈ Y;

(v) (Ref. [9], Definition 3.1) Generalized α-nonexpansive mapping if, for all a, b ∈ Y, there
exists α ∈ [0, 1) such that 1

2 m(Sa, a) ≤ m(a, b)⇒ m(Sa, Sb) ≤ αm(Sa, b)+ αm(a, Sb)+
(1− 2α)m(a, b).

Akutsah and Narain [15] introduced the class of generalized (α, β)-nonexpansive type
1 mappings, which generalizes the mappings above, and they gave some basic properties
for this class of mappings.

Definition 1 ([15], Definition 3.1). Let Y be a nonempty subset of a metric space (X, m). A map-
ping S : Y → Y is said to be generalized (α, β)-nonexpansive type 1 if there exist α, β, λ ∈ [0, 1),
with α ≤ β and α + β < 1 such that

λm(Sa, a) ≤ m(a, b)⇒ m(Sa, Sb) ≤ αm(Sa, b) + βm(a, Sb) + (1− (α + β))m(a, b)

for all a, b ∈ Y.

Proposition 1. (i) ([15], Proposition 3.6) If S is a generalized (α, β)-nonexpansive type 1 mapping
and has a fixed point, then S is quasi-nonexpansive.
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(ii) ([15], Lemma 3.14) If S is a generalized (α, β)-nonexpansive type 1 mapping, then for all
a, b ∈ Y,

m(a, Sb) ≤ 2 + α + β

1− β
m(a, Sa) + m(a, b).

(iii) ([15], Theorem 3.7) If S is a generalized (α, β)-nonexpansive type 1 mapping, then Fix(S)
is closed.

Definition 2 ([22]). Let (X, m) be a metric space and {an}∞
n=1 and {bn}∞

n=1 be two sequences in
X. We say that these sequences are equivalent if limn→∞ m(an, bn) = 0.

Timiş [23] gave the following definition of weak w2-stability using equivalent se-
quences.

Definition 3 ([23], Definition 2.4). Let (X, m) be a metric space, S be a self-mapping on X, and
{an}∞

n=1 ⊂ X be an iterative sequence defined by{
a1 ∈ X,

an+1 = f (S, an), ∀n ≥ 1,

where f is a function. Suppose that {an}∞
n=1 converges strongly to e ∈ Fix(S). If for any equivalent

sequence {bn}∞
n=1 ⊂ X of {an}∞

n=1,

lim
n→∞

m(bn+1, f (S, bn)) = 0⇒ lim
n→∞

bn = e,

then the iterative sequence {an}∞
n=1 is said to be weak w2-stable with respect to S.

In 1990, Reich and Shafrir [24] introduced hyperbolic metric spaces and studied
an iteration process for nonexpansive mappings in these spaces. In 2004, Kohlenbach [25]
introduced a more general hyperbolic metric space as follows.

Definition 4. Let (X, m) be a metric space, and then (X, m, W) will be the hyperbolic metric space
if the function W : X× X× [0, 1]→ X is satisfying

(i) m(c, W(a, b, α)) ≤ (1− α)m(c, a) + αm(c, b),
(ii) m(W(a, b, α), W(a, b, β)) = |α− β|m(a, b),
(iii) W(a, b, α) = W(b, a, 1− α),
(iv) m(W(a, c, α), W(b, w, α)) ≤ (1− α)m(a, b) + αm(c, w),

for all a, b, c, w ∈ X and α, β ∈ [0, 1].

A linear example of a hyperbolic metric space is a Banach space, and nonlinear
examples are Hadamard manifolds, the Hilbert open unit ball equipped with the hyperbolic
metric (see [26]), and CAT(0) spaces in the sense of Gromov (see [27]).

Definition 5. We consider a hyperbolic metric space (X, m, W). If a, b ∈ X and α ∈ [0, 1], then
we will use (1− α)a⊕ αb for W(a, b, α).

(i) A subset Y of this hyperbolic metric space is called convex if a, b ∈ Y implies that
W(a, b, α) ∈ Y. The following equalities hold even for the more general setting of a convex
metric space (see [28], Proposition 1.2):

m(b, W(a, b, α)) = (1− α)m(a, b) and m(a, W(a, b, α)) = αm(a, b)

for all a, b ∈ X and α ∈ [0, 1]. As a consequence, we obtain

W(a, b, 0) = a and W(a, b, 1) = b. (2)
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(ii) This hyperbolic metric space is called uniformly convex (see [29]) if for any r > 0 and
ε ∈ (0, 2], there exists a constant δ ∈ (0, 1] such that

m(W(a, b,
1
2
), u) ≤ (1− δ)r

for all u, a, b ∈ X with m(a, u) ≤ r, m(b, u) ≤ r and m(a, b) ≥ rε.
(iii) A mapping η : (0, ∞)× (0, 2] → (0, 1] is said to be a modulus of uniform convexity if

δ = η(r, ε) for a given r > 0 and ε ∈ (0, 2]. Furthermore, the mapping η is called monotone if it
decreases with respect to r for a fixed ε.

Definition 6. Let {an}∞
n=1 be a bounded sequence in a nonempty subset Y of a metric space (X, m).

Then, the mapping r(·, {an}) : X → [0, ∞) is defined by

r(a, {an}) = lim sup
n→∞

m(a, an), a ∈ X.

The infimum of r(., {an}) over Y is called the asymptotic radius of {an}∞
n=1 relative to Y and is

denoted by r(Y, {an}). A point c ∈ Y is said to be an asymptotic center of the sequence {an}∞
n=1

relative to Y if
r(c, {an}) = inf {r(a, {an}) : a ∈ Y},

and the set of all asymptotic centers of {an}∞
n=1 relative to Y is denoted by A(Y, {an}).

In 1976, Lim [30] introduced the concept of ∆-convergence, which is an analog of weak
convergence, in metric spaces using the asymptotic center.

Definition 7 ([30]). A sequence {an}∞
n=1 in a metric space (X, m) is said to ∆-converge to a point

a ∈ X if a is the unique asymptotic center of {un}∞
n=1 for every subsequence {un}∞

n=1 of {an}∞
n=1.

In this case, we write ∆− limn→∞ an = a and call a as ∆-limit of {an}∞
n=1.

We end this section with the upcoming three lemmas that will be helpful in proving
our main results.

Lemma 1 ([31], Proposition 3.3). Let (X, m, W) be a complete uniformly convex hyperbolic
metric space with the monotone modulus of uniform convexity η and Y be a nonempty closed and
convex subset of X. Then, every bounded sequence {an}∞

n=1 in X has a unique asymptotic center
relative to Y.

Lemma 2 ([32], Lemma 2.5). Let (X, m, W) be a uniformly convex hyperbolic metric space with
the monotone modulus of uniform convexity η. Let a ∈ X and {σn} be a sequence in [p, q] for some
p, q ∈ (0, 1). If {an}∞

n=1 and {bn}∞
n=1 are sequences in X such that

lim sup
n→∞

m(an, a) ≤ r, lim sup
n→∞

m(bn, a) ≤ r, lim
n→∞

m(W(an, bn, σn), a) = r

for some r ≥ 0, then
lim

n→∞
m(an, bn) = 0.

Lemma 3 ([33]). Let {gn}∞
n=1, {rn}∞

n=1 and {tn}∞
n=1 be non-negative real sequences with rn ∈

(0, 1), ∀n ≥ 1, and ∑∞
n=1 rn = ∞. Suppose that there exists n0 ∈ N such that, for all n ≥ n0, one

has the inequality
gn+1 ≤ (1− rn)gn + rntn.

Then, the following inequality holds:

0 ≤ lim sup
n→∞

gn ≤ lim sup
n→∞

tn.
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3. Weak w2-Stability and Data Dependence Results

First, we extend the iteration process (1) into the hyperbolic metric spaces as follows:
a1 ∈ Y,

cn = S(W(an, San, ηn)),
bn = Scn,

an+1 = S(W(San, Sbn, σn)), ∀n ≥ 1,

(3)

where Y is a nonempty convex subset of a hyperbolic metric space X, S is a self-mapping
on Y, and {σn}∞

n=1,{ηn}∞
n=1 are two real sequences in [0, 1].

We have the following strong convergence theorem.

Theorem 1. Let Y be a nonempty closed convex subset of a hyperbolic metric space X, S : Y → Y
be a contraction mapping with the constant k ∈ [0, 1) such that Fix(S) 6= ∅, and {an}∞

n=1 be the
iterative sequence (3) with real sequences {σn}∞

n=1 and {ηn}∞
n=1 in [0, 1], satisfying ∑∞

n=1 σnηn =
∞. Then, the sequence {an}∞

n=1 converges strongly to a fixed point of S.

Proof. Because the contraction mapping S has a fixed point, then it is easily seen that the
fixed point of S is unique. Let the unique fixed point be e. Hence, from (3), we have

m(cn, e) = m(S(W(an, San, ηn)), Se)

≤ km(W(an, San, ηn), e)

≤ k[(1− ηn)m(an, e) + ηnm(San, e)]

≤ k[(1− ηn)m(an, e) + ηnkm(an, e)]

= k(1− ηn(1− k))m(an, e).

Because k ∈ [0, 1), then we obtain

m(bn, e) = m(Scn, Se) ≤ km(cn, e)

≤ k[k(1− ηn(1− k))m(an, e)]

= k2(1− ηn(1− k))m(an, e)

≤ (1− ηn(1− k))m(an, e).

Similarly, we obtain

m(an+1, e) = m(S(W(San, Sbn, σn)), Se)

≤ km(W(San, Sbn, σn), e)

≤ k[(1− σn)m(San, e) + σnm(Sbn, e)]

≤ k[(1− σn)km(an, e) + σnkm(bn, e)]

= k2[(1− σn)m(an, e) + σnm(bn, e)]

≤ k2[(1− σn)m(an, e) + σn(1− ηn(1− k))m(an, e)]

= k2(1− σnηn(1− k))m(an, e).

Repetition of the above processes gives the following inequalities:

m(an+1, e) ≤ k2(1− σnηn(1− k))m(an, e),

m(an, e) ≤ k2(1− σn−1ηn−1(1− k))m(an−1, e),

m(an−1, e) ≤ k2(1− σn−2ηn−2(1− k))m(an−2, e),
...

m(a2, e) ≤ k2(1− σ1η1(1− k))m(a1, e). (4)
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From (4), we can easily derive

m(an+1, e) ≤ m(a1, e)
(

k2
)n

∏n
m=1(1− σmηm(1− k)), (5)

where 1− σmηm(1− k) ≤ 1, because k ∈ [0, 1), and {σn}∞
n=1 and {ηn}∞

n=1 in [0, 1] for all
n ∈ N. It is well-known from the classical analysis that 1− a ≤ e−a for all a ∈ [0, 1]. Taking
into account this fact together with (5), we obtain

m(an+1, e) ≤ m(a1, e)k2ne−(1−k)∑n
m=1 σmηm . (6)

Taking the limit of both sides of (6) and then using the hypotheses k ∈ [0, 1) and ∑∞
n=1 σnηn =

∞, we obtain limn→∞ m(an, e) = 0, i.e., an → e as n→ ∞, as desired.

Now, we prove that the modified iteration process defined by (3) is weak w2-stable
with respect to S.

Theorem 2. Suppose that all conditions of Theorem 1 hold. Then, the iteration process (3) is weak
w2-stable with respect to S.

Proof. Let {an}∞
n=1 be the iterative sequence given by (3) and {pn}∞

n=1 ⊂ Y be an equivalent
sequence of {an}∞

n=1. Set

εn = m(pn+1, S(W(Spn, Sqn, σn))),

where qn = Srn with rn = S(W(pn, Spn, ηn)). Suppose that limn→∞ εn = 0. It follows that

m(cn, rn) = m(S(W(an, Sbn, ηn)), S(W(pn, Spn, ηn)))

≤ km(W(an, San, ηn), W(pn, Spn, ηn))

≤ k[(1− ηn)m(an, pn) + ηnm(San, Spn)]

≤ k[(1− ηn)m(an, pn) + ηnkm(an, pn)]

= k(1− ηn(1− k))m(an, pn). (7)

Using (7) together with the hypothesis k ∈ [0, 1), we have

m(bn, qn) = m(Scn, Srn)

≤ km(cn, rn)

≤ k2(1− ηn(1− k))m(an, pn)

≤ (1− ηn(1− k))m(an, pn). (8)

Similarly, by (8), we obtain

m(pn+1, e)

≤ m(pn+1, an+1) + m(an+1, e)

≤ m(pn+1, S(W(Spn, Sqn, σn))) + m(S(W(Spn, Sqn, σn)), S(W(San, Sbn, σn)))

+ m(an+1, e)

≤ εn + km(W(Spn, Sqn, σn), W(San, Sbn, σn)) + m(an+1, e)

≤ εn + k[(1− σn)m(Spn, San) + σnm(Sqn, Sbn)] + m(an+1, e)

≤ εn + k[(1− σn)km(pn, an) + σnkm(qn, bn)] + m(an+1, e)

≤ εn + k2[(1− σn)m(pn, an) + σn[(1− ηn(1− k))m(an, pn)] + m(an+1, e)

= εn + k2(1− σnηn(1− k))m(an, pn) + m(an+1, e). (9)
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From Theorem 1, it follows that limn→∞ m(an+1, e) = 0. Because {an}∞
n=1 and {pn}∞

n=1 are
equivalent sequences, we have limn→∞ m(an, pn) = 0. Now, taking the limit of both sides
of (9) and then using the assumption limn→∞ εn = 0, yield to limn→∞ m(pn+1, e) = 0. Thus,
{an}∞

n=1 is weak w2-stable with respect to S.

Definition 8 ([34], p. 166). Let (X, m) be a metric space and S, S̃ : X → X be two operators. S̃ is
called an approximate operator of S, if m(Sa, S̃a) ≤ ε for all a ∈ X and for a fixed ε > 0.

Next, we prove the data dependence result for the modified iteration process (3) using
the definition above.

Theorem 3. Let X, Y, and S be the same as in Theorem 1 and S̃ : Y → Y be an approximate
operator of S for given ε. Let {an}∞

n=1 be an iterative sequence generated by (3) and define an
iterative sequence {ãn}∞

n=1 as follows:
ã1 ∈ Y,

c̃n = S̃(W(ãn, S̃ãn, ηn)),
b̃n = S̃c̃n,

ãn+1 = S̃(W(S̃ãn, S̃b̃n, σn)), ∀n ≥ 1,

(10)

with real sequences {σn}∞
n=1 and {ηn}∞

n=1 in [0, 1] satisfying σnηn ≥ 1
2 , ∀n ≥ 1, and ∑∞

n=1 σnηn =
∞. If e = Se and ẽ = S̃ẽ such that limn→∞ ãn = ẽ, then one has

m(e, ẽ) ≤ 9ε

1− k
,

where k ∈ [0, 1).

Proof. It follows from (3) and (10) that

m(cn, c̃n) = m(S(W(an, San, ηn)), S̃(W(ãn, S̃ãn, ηn)))

≤ m(S(W(an, San, ηn)), S(W(ãn, S̃ãn, ηn)))

+m(S(W(ãn, S̃ãn, ηn)), S̃(W(ãn, S̃ãn, ηn)))

≤ km(W(an, San, ηn), W(ãn, S̃ãn, ηn)) + ε

≤ k[(1− ηn)m(an, ãn) + ηnm(San, S̃ãn)] + ε

≤ k(1− ηn)m(an, ãn) + kηn[m(San, Sãn) + m(Sãn, S̃ãn)] + ε

≤ k(1− ηn)m(an, ãn) + kηn[km(an, ãn) + ε] + ε

= k(1− ηn(1− k))m(an, ãn) + kηnε + ε. (11)

By (11), we have

m(bn, b̃n) = m(Scn, S̃c̃n)

≤ m(Scn, Sc̃n) + m(Sc̃n, S̃c̃n)

≤ km(cn, c̃n) + ε

≤ k[k(1− ηn(1− k))m(an, ãn) + kηnε + ε] + ε

= k2(1− ηn(1− k))m(an, ãn) + k2ηnε + kε + ε. (12)
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Similarly, using (12) and the hypothesis k ∈ [0, 1), we obtain

m(an+1, ãn+1) = m(S(W(San, Sbn, σn)), S̃(W(S̃ãn, S̃b̃n, σn)))

≤ m(S(W(San, Sbn, σn)), S(W(S̃ãn, S̃b̃n, σn)))

+m(S(W(S̃ãn, S̃b̃n, σn)), S̃(W(S̃ãn, S̃b̃n, σn)))

≤ km(W(San, Sbn, σn), W(S̃ãn, S̃b̃n, σn)) + ε

≤ k[(1− σn)m(San, S̃ãn) + σnm(Sbn, S̃b̃n)] + ε

≤ k(1− σn)[m(San, Sãn) + m(Sãn, S̃ãn)]

+kσn[m(Sbn, Sb̃n) + m(Sb̃n, S̃b̃n)] + ε

≤ k(1− σn)[km(an, ãn) + ε] + kσn[km(bn, b̃n) + ε] + ε

= k2(1− σn)m(an, ãn) + k(1− σn)ε + k2σnm(bn, b̃n) + kσnε + ε

≤ k2(1− σn)m(an, ãn) + k(1− σn)ε

+k2σn[k2(1− ηn(1− k))m(an, ãn) + k2ηnε + kε + ε] + kσnε + ε

= k2(1− σn)m(an, ãn) + k(1− σn)ε + k4σn(1− ηn(1− k))m(an, ãn)

+k4σnηnε + k3σnε + k2σnε + kσnε + ε

≤ [σn(1− ηn(1− k)) + (1− σn)]m(an, ãn)

+(1− σn)ε + σnηnε + σnε + σnε + σnε + ε

= (1− σnηn(1− k))m(an, ãn) + σnηnε + 2σnε + 2ε.

Because σn ≤ 1 for all n ≥ 1, then we obtain

m(an+1, ãn+1)

≤ (1− σnηn(1− k))m(an, ãn) + σnηnε + 4ε

= (1− σnηn(1− k))m(an, ãn) + σnηnε + 4(1− σnηn + σnηn)ε. (13)

By the assumption σnηn ≥ 1
2 , we have 1− σnηn ≤ σnηn. Using this together with (13), we

obtain

m(an+1, ãn+1) ≤ (1− σnηn(1− k))m(an, ãn) + 9σnηnε

= (1− σnηn(1− k))m(an, ãn) + σnηn(1− k)
9ε

1− k
. (14)

Let gn = m(an, ãn), rn = σnηn(1− k), and tn = 9ε
1−k , and then from Lemma 3 together with

(14), we have

0 ≤ lim sup
n→∞

gn ≤ lim sup
n→∞

9ε

1− k
. (15)

By Theorem 1, we have limn→∞ an = e, and by the assumption in the hypotheses, we have
limn→∞ ãn = ẽ. Using these together with (15), we obtain

m(e, ẽ) ≤ 9ε

1− k

as required.

4. Convergence Results

We first prove several preparatory results, which are needed for developing our
convergence theorems.

Lemma 4. Let S be a generalized (α, β)-nonexpansive type 1 mapping defined on a nonempty
convex subset Y of a hyperbolic metric space X with Fix(S) 6= ∅. If e ∈ Fix(S) and {an}∞

n=1 is the
iterative sequence defined by (3), then limn→∞ m(an, e) exists.
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Proof. By Proposition 1 (i), we have

m(cn, e) = m(S(W(an, San, ηn)), e)

≤ m(W(an, San, ηn), e)

≤ (1− ηn)m(an, e) + ηnm(San, e)

≤ (1− ηn)m(an, e) + ηnm(an, e)

= m(an, e), (16)

which implies that

m(bn, e) = m(Scn, e) ≤ m(cn, e) ≤ m(an, e). (17)

Similarly, using Proposition 1 (i) and the inequality (17), we obtain

m(an+1, e) = m(S(W(San, Sbn, σn)), e)

≤ m(W(San, Sbn, σn), e)

≤ (1− σn)m(San, e) + σnm(Sbn, e)

≤ (1− σn)m(an, e) + σnm(bn, e)

≤ (1− σn)m(an, e) + σnm(an, e)

= m(an, e). (18)

Hence, we obtain
m(an+1, e) ≤ m(an, e).

This shows that {m(an, e)}∞
n=1 is a non-increasing sequence and it is bounded from the

below for each e ∈ Fix(S). So, we obtain that limn→∞ m(an, e) exists for any e ∈ Fix(S).

Theorem 4. Let Y be a nonempty closed convex subset of a complete uniformly convex hyperbolic
metric space X with the monotone modulus of uniform convexity η and S : Y → Y be a generalized
(α, β)-nonexpansive type 1 mapping. Let {an}∞

n=1 be the iterative sequence (3) with real sequences
{σn}∞

n=1 and {ηn}∞
n=1 in [p, q] for some p, q ∈ (0, 1). Then, Fix(S) 6= ∅ if and only if {an}∞

n=1 is
bounded and limn→∞ m(an, San) = 0.

Proof. Suppose Fix(S) 6= ∅ and choose e ∈ Fix(S). Then, by Lemma 4, limn→∞ m(an, e)
exists and {an}∞

n=1 is bounded. Therefore, we can consider that

lim
n→∞

m(an, e) = r for some r ≥ 0. (19)

By Proposition 1 (i), we obtain

m(San, e) ≤ m(an, e),

and taking lim sup of both sides of the inequality above, we obtain that

lim sup
n→∞

m(San, e) ≤ r. (20)

However, from the inequality (17), we know that

m(bn, e) ≤ m(an, e),

and using a procedure similar to the one mentioned above, we obtain

lim sup
n→∞

m(bn, e) ≤ r. (21)
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From the relation (18), it follows that

m(an+1, e) ≤ (1− σn)m(an, e) + σnm(bn, e)

= m(an, e) + σn(m(bn, e)−m(an, e)),

which implies
m(an+1, e)−m(an, e)

σn
≤ m(bn, e)−m(an, e).

Because {σn}∞
n=1 is a sequence in [p, q], we obtain

1
q
(m(an+1, e)−m(an, e)) ≤ m(an+1, e)−m(an, e)

σn
≤ m(bn, e)−m(an, e).

Using this last inequality and (19), we obtain that

r ≤ lim inf
n→∞

m(bn, e). (22)

Obviously, from (21) and (22), we have

lim
n→∞

m(bn, e) = r. (23)

By (17), (19) and (23), we obtain

lim
n→∞

m(cn, e) = r. (24)

From (16), we know that

m(cn, e) ≤ m(W(an, San, ηn), e) ≤ m(an, e),

and from this inequality, (19) and (24), it follows that

lim
n→∞

m(W(an, San, ηn), e)) = r. (25)

Finally, from (19), (20), (25) and Lemma 2, we deduce that limn→∞ m(an, San) = 0. Con-
versely, we assume that {an}∞

n=1 is bounded and limn→∞ m(an, San) = 0. Let e ∈ A(Y, {an}).
By Proposition 1 (ii), we have

r(Se, {an}) = lim sup
n→∞

m(an, Se)

≤ 2 + α + β

1− β
lim sup

n→∞
m(an, San) + lim sup

n→∞
m(an, e)

= lim sup
n→∞

m(an, e)

= r(e, {an}).

This implies that Se ∈ A(Y, {an}). Because the sequence {an}∞
n=1 is bounded, by Lemma 1,

A(Y, {an}) consists of exactly one point. Hence, we have Se = e. Thus, Fix(S) 6= ∅.

Considering the previous two results, we are now ready to prove the ∆-convergence
theorem of the modified iterative sequence {an}∞

n=1 defined by (3) for a generalized (α, β)-
nonexpansive type 1 mapping.

Theorem 5. Let Y be a nonempty closed convex subset of a complete uniformly convex hyperbolic
metric space X with the monotone modulus of uniform convexity η and S : Y → Y be a generalized
(α, β)-nonexpansive type 1 mapping with Fix(S) 6= ∅. Let {an}∞

n=1 be the iterative sequence (3)
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with real sequences {σn}∞
n=1 and {ηn}∞

n=1 in [p, q] for some p, q ∈ (0, 1). Then, the sequence
{an}∞

n=1 ∆-converges to a fixed point of S.

Proof. By Lemma 1, the sequence {an}∞
n=1 has a unique asymptotic center A(Y, {an}) =

{a}. Let {un}∞
n=1 be any subsequence of {an}∞

n=1 such that A(Y, {un}) = {u}. Then, by
Theorem 4, we have

lim
n→∞

m(un, Sun) = 0. (26)

It follows similarly from the proof of Theorem 4 that u is a fixed point of S. Next, we
claim that the fixed point u is the unique asymptotic center for each subsequence {un}∞

n=1
of {an}∞

n=1. On the contrary, we assume that a 6= u. From Lemma 4, we deduce that
limn→∞ m(an, u) exists. Therefore, by the uniqueness of the asymptotic center, we can
see that

lim sup
n→∞

m(un, u) < lim sup
n→∞

m(un, a)

≤ lim sup
n→∞

m(an, a)

< lim sup
n→∞

m(an, u)

= lim sup
n→∞

m(un, u),

which is obviously a contradiction. So, u ∈ Fix(S) is the unique asymptotic center for each
subsequence {un}∞

n=1 of {an}∞
n=1. This proves that the sequence {an}∞

n=1 ∆-converges to
a fixed point of S.

Next, we prove two strong convergence results for a generalized (α, β)-nonexpansive
type 1 mapping.

Theorem 6. Under the assumptions of Theorem 5, if Y is a compact subset of X, then the sequence
{an}∞

n=1 converges strongly to a fixed point of S.

Proof. We consider an element e ∈ Y. Because Y is a compact set, we can say that there
exists a subsequence {ank}∞

k=1 of {an}∞
n=1 such that limk→∞ m(ank , e) = 0. By Proposition 1

(ii), we have

lim
k→∞

m(ank , Se) ≤ 2 + α + β

1− β
lim
k→∞

m(ank , Sank ) + lim
k→∞

m(ank , e).

From Theorem 4, we obtain limk→∞ m(ank , Sank ) = 0. Then, we obtain Se = e, that is,
e ∈ Fix(S). Using Lemma 4, limn→∞ m(an, e) exists and hence {an} converges strongly
to e.

Theorem 7. Let X, Y, S and {an}∞
n=1 be the same as in Theorem 5. Then, the sequence {an}∞

n=1
converges strongly to a fixed point of S if and only if

lim inf
n→∞

m(an, Fix(S)) = 0 or lim sup
n→∞

m(an, Fix(S)) = 0,

where m(a, Fix(S)) = inf{m(a, e) : e ∈ Fix(S)}.

Proof. If the sequence {an}∞
n=1 converges strongly to a point e ∈ Fix(S), then

limn→∞ m(an, e) = 0. Because 0 ≤ m(an, Fix(S)) ≤ m(an, e), we have
limn→∞ m(an, Fix(S)) = 0.
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For the converse part, assume that lim infn→∞ m(an, Fix(S)) = 0. It follows from
Lemma 4 that limn→∞ m(an, Fix(S)) exists and hence limn→∞ m(an, Fix(S)) = 0. Therefore,
there exist a subsequence {ank}∞

k=1 of {an}∞
n=1 and a sequence {ek}∞

k=1 in Fix(S) such that

m(ank , ek) <
1
2k for all k ≥ 1.

By the proof of Lemma 4, we have

m(ank+1 , ek+1) ≤ m(ank , ek) <
1
2k ,

which implies that

m(ek+1, ek) ≤ m(ek+1, ank+1) + m(ank+1 , ek)

<
1

2k+1 +
1
2k <

1
2k−1

→ 0 as k→ ∞.

Hence, {ek}∞
k=1 is a Cauchy sequence in Fix(S). By Proposition 1 (iii), Fix(S) is closed and

so {ek}∞
k=1 converges strongly to e ∈ Fix(S). On the other hand, we have

m(ank , e) ≤ m(ank , ek) + m(ek, e).

Taking the limit of both sides of this inequality, we obtain that {ank}∞
k=1 converges strongly to

e ∈ Fix(S). Because limn→∞ m(an, e) exists by Lemma 4, e is the strong limit of {an}∞
n=1.

In 1974, Senter and Dotson [35] introduced a mapping satisfying Condition (I), which
is stated as follows:

A mapping S : Y → Y is said to satisfy Condition (I) if there exists a non-decreasing
function f : [0, ∞) → [0, ∞) with f (0) = 0 and f (r) > 0 for all r ∈ (0, ∞) such that
m(a, Sa) ≥ f (m(a, Fix(S))) for all a ∈ Y.

Now, we present the final strong convergence result using Condition (I).

Theorem 8. Let Y be a nonempty closed convex subset of a complete uniformly convex hyperbolic
metric space X with the monotone modulus of uniform convexity η and S : Y → Y be a generalized
(α, β)-nonexpansive type 1 mapping with Fix(S) 6= ∅. If S satisfies Condition (I) and {an}∞

n=1 is
the iterative sequence defined by (3) with real sequences {σn}∞

n=1 and {ηn}∞
n=1 in [p, q] for some

p, q ∈ (0, 1), then {an}∞
n=1 converges strongly to a point of Fix(S).

Proof. By Theorem 4, we have limn→∞ m(an, San) = 0. Then, by Condition (I), we obtain
limn→∞ f (m(an, Fix(S))) ≤ limn→∞ m(an, S(an)) = 0, that is, limn→∞ f (m(an, Fix(S))) = 0.
Because f : [0, ∞) → [0, ∞) is a function with f (0) = 0 and f (r) > 0 for all r ∈ (0, ∞),
we have limn→∞ m(an, Fix(S)) = 0. All the conditions of Theorem 7 are now satisfied;
therefore, {an}∞

n=1 converges strongly to a point of Fix(S).

Remark 1. In this section, we used the generalized (α, β)-nonexpansive type 1 mapping which
contains the class of generalized α-nonexpansive mapping on the hyperbolic metric space. Thus,
Theorems 5–8 generalize the results of [16,17] in two ways: (1) the class of underlying space, and
(2) the class of mappings.

5. Numerical Example

In this section, we construct the following example of a generalized (α, β)-nonexpansive
type 1 mapping.
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Example 1. Let X = R with the usual metric and Y = [0, ∞). Define a mapping S : Y → Y by

Sa =

{
0 if a ∈ [0, 6

5 ),
5a
12 if a ∈ [ 6

5 , ∞).

Clearly, a = 0 is the fixed point of S. Then, the following:
(i) Because S is not continuous at the point a = 6

5 , S is not a nonexpansive mapping.
(ii) Let a = 4

5 and b = 6
5 . Then,

1
2
|a− Sa| = 2

5
≤ 2

5
= |a− b|.

On the other hand,

|Sa− Sb| = 1
2
>

2
5
= |a− b|.

Thus, S is not a Suzuki-generalized nonexpansive mapping.
(iii) Let a = 4

5 and b = 6
5 . Then,

|Sa− Sb| ≤ α|a− b|+ β|a− Sb|
1
2
≤ 2α

5
+

3β

10
5 ≤ 4α + 3β.

Therefore, the implications fail to be satisfied, which leads to the conclusion that S is not a mean
nonexpansive mapping.
(iv) Now, we prove that S is a generalized (α, β)-nonexpansive type 1 mapping. For this purpose,
let λ = 1

3 , α = 5
12 , β = 6

12 , and consider the following cases:

• Case A: a ∈ [0, 6
5 ). Then, λ|a− Sa| = 1

3 a ≤ |a− b|, which gives two possibilities:
(1) Let a < b. Then, 1

3 a ≤ b− a =⇒ a ≤ 3b
4 =⇒ b ∈ [0, 8

5 ).
(a) If b ∈ [0, 6

5 ), then we have

|Sa− Sb| = 0 ≤ 5
12
|b|+ 6

12
|a|+ 1

12
|a− b|.

(b) If b ∈ [ 6
5 , 8

5 ), then we have

|Sa− Sb| = 5
12
|b| ≤ 5

12
|b|+ 6

12

∣∣∣∣a− 5b
12

∣∣∣∣+ 1
12
|a− b|.

(2) Let a > b. Then, 1
3 a ≤ a− b =⇒ b ≤ 2a

3 =⇒ b ∈ [0, 4
5 ) ⊂ [0, 6

5 ), which is already
included in case (1)(a).

• Case B: a ∈ [ 6
5 , ∞). Then, λ|a − Sa| = 1

3 |a −
5

12 a| = 7
36 a ≤ |a − b|, which gives two

possibilities:
(1) Let a < b. Then, 7

36 a ≤ b− a =⇒ b ≥ 43a
36 =⇒ b ∈ [ 43

30 , ∞) ⊂ [ 6
5 , ∞). So,

|Sa− Sb| =
5

12
|a− b|

<
5

12

(∣∣∣∣17a
12
− 17b

12

∣∣∣∣)+
1

12
|a− b|

≤ 5
12

∣∣∣∣5a
12
− b
∣∣∣∣+ 5

12

∣∣∣∣a− 5b
12

∣∣∣∣+ 1
12
|a− b|

≤ 5
12

∣∣∣∣5a
12
− b
∣∣∣∣+ 6

12

∣∣∣∣a− 5b
12

∣∣∣∣+ 1
12
|a− b|.

(2) Let a > b. Then, 7
36 a ≤ a− b =⇒ a ≥ 36b

29 =⇒ b ∈ [ 29
30 , ∞).
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(a) If b ∈ [ 29
30 , 6

5 ), then we have

|Sa− Sb| = 5
12
|a| ≤ 5

12

∣∣∣∣5a
12
− b
∣∣∣∣+ 6

12
|a|+ 1

12
|a− b|.

(b) b ∈ [ 6
5 , ∞) is already included in case (1).

Hence, S is a generalized ( 5
12 , 6

12 )-nonexpansive type 1 mapping with Fix(S) 6= ∅.

We now present the convergence analysis involving the above mapping via different
iterations by choosing a1 = 50,000 ∈ Y and σn = ηn = γn = n

n+10 for all n ≥ 1. We obtain
the following, Table 1 and Figure 1.

Table 1. The comparison of convergence of different iterations for mapping S of Example 1.

Iteration
Number Agarwal Abbas Thakur Thakur

New M KF

1 50,000 50,000 50,000 50,000 50,000 50,000
2 20,732.8971 9646.8733 8638.7071 19,633.4253 8220.2230 8021.1525
3 8498.7280 1977.8457 1475.4736 7265.5898 1288.3740 1196.8442
4 3431.1309 420.5066 248.2010 2538.4195 193.5658 167.0390
5 1361.5599 91.3799 41.0385 839.4244 28.0043 21.9129
6 530.5461 20.1147 6.6629 263.4896 3.9164 2.7135
7 202.9269 4.4589 1.0618 78.7354 0.5312 0
8 76.1902 0.9915 0 22.4611 0 0
9 28.0879 0 0 6.1336 0 0

10 10.1715 0 0 1.6074 0 0
11 3.6200 0 0 0 0 0
12 1.2669 0 0 0 0 0
13 0.2399 0 0 0 0 0

0 2 4 6 8 10 12 14
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lu
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Figure 1. Graph corresponding to Table 1.

Clearly, the KF-iteration process is moving fast to the fixed point of S as compared to
other iteration processes.
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Remark 2. We used MATLAB online software to obtain the numerical results and the graph in the
proposed example.

6. Conclusions

In the above sections, we have modified the KF-iterative scheme into the hyperbolic
metric space and established the weak w2-stability and data dependence results for contrac-
tion mappings and derived some convergence results for generalized (α, β)-nonexpansive
type 1 mappings using this modified iterative scheme. Using similar approaches of this ar-
ticle, the generalized (α, β)-nonexpansive type 2 mapping, which is introduced by Akutsah
and Narain [15], can be studied in hyperbolic metric spaces as a future work. Moreover, some
numerical examples for this class of mappings in hyperbolic metric spaces can be constructed.
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23. Timiş, I. On the weak stability of Picard iteration for some contractive type mappings. Annal. Uni. Craiova Math. Comput. Sci. Ser.

2010, 37, 106–114.
24. Reich, S.; Shafrir, I. Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 15, 537–558. [CrossRef]
25. Kohlenbach, U. Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 2004, 357, 89–128.

[CrossRef]
26. Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984.
27. Bridson, M.; Haefliger, A. Metric Spaces of Non-Positive Curvature; Springer: Berlin, Germany, 1999.
28. Takahashi, W. A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 1970, 22, 142–149. [CrossRef]
29. Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal.

1996, 8, 197–203. [CrossRef]
30. Lim, T.C. Remarks on some fixed point theorems. Proc. Am. Math. Soc. 1976, 60, 179–182. [CrossRef]
31. Leustean, L. Nonexpansive iterations in uniformly convex W-hyperbolic spaces. In Nonlinear Analysis and Optimization I:

Nonlinear Analysis; Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A. J., Eds.; Contemporary Mathematics; Israel Math.
Conf. Proc.; American Mathematical Society: Providence, RI, USA; Bar Ilan University: Ramat-Gan, Israel, 2010; Volume 513,
pp. 193–210.

32. Khan, A.R.; Fukhar-ud-din, H.; Khan, M.A.A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic
spaces. Fixed Point Theory Appl. 2012, 2012, 54. [CrossRef]
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