
Citation: Herisanu, N.; Marinca, B.;

Marinca, V. Longitudinal–Transverse

Vibration of a Functionally Graded

Nanobeam Subjected to Mechanical

Impact and Electromagnetic

Actuation. Symmetry 2023, 15, 1376.

https://doi.org/10.3390/

sym15071376

Academic Editors: Renhai Wang and

Pengyu Chen

Received: 5 June 2023

Revised: 22 June 2023

Accepted: 23 June 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Longitudinal–Transverse Vibration of a Functionally Graded
Nanobeam Subjected to Mechanical Impact and
Electromagnetic Actuation
Nicolae Herisanu 1,2,* , Bogdan Marinca 3 and Vasile Marinca 1,2

1 Department of Mechanics and Strength of Materials, University Politehnica Timisoara,
300006 Timisoara, Romania; vasile.marinca@upt.ro

2 Center for Advanced and Fundamental Technical Research, Department of Electromechanics and Vibration,
Romanian Academy, 300223 Timisoara, Romania

3 Department of Applied Electronics, University Politehnica Timisoara, 300006 Timisoara, Romania;
bogdan.marinca@upt.ro

* Correspondence: nicolae.herisanu@upt.ro

Abstract: This study addresses the nonlinear forced vibration of a functionally graded (FG) nanobeam
subjected to mechanical impact and electromagnetic actuation. Two symmetrical actuators were
present in the mechanical model, and their mechanical behaviors were analyzed considering the
symmetry in actuation. The model considered the longitudinal–transverse vibration of a simple
supported Euler–Bernoulli beam, which accounted for von Kármán geometric nonlinearity, includ-
ing the first-order strain–displacement relationship. The FG nanobeam was made of a mixture of
metals and ceramics, while the volume fraction varied in terms of thickness when a power law
function was used. The nonlocal Eringen theory of elasticity was used to study the simple supported
Euler–Bernoulli nanobeam. The nonlinear governing equations of the FG nanobeam and the associ-
ated boundary conditions were gained using Hamilton’s principle. To truncate the system with an
infinite degree of freedom, the coupled longitudinal–transverse governing equations were discretized
using the Galerkin–Bubnov approach. The resulting nonlinear, ordinary differential equations, which
took into account the curvature of the nanobeam, were studied via the Optimal Auxiliary Functions
Method (OAFM). For this complex nonlinear problem, an explicit, analytical, approximate solution
was proposed near the primary resonance. The simultaneous effects of the following elements were
considered in this paper: the presence of a curved nanobeam; the transversal inertia, which is not
neglected in this paper; the mechanical impact; and electromagnetic actuation. The present study
proposes a highly accurate analytical solution to the abovementioned conditions. Moreover, in
these conditions, the study of local stability was developed using two variable expansion meth-
ods, the Jacobian matrix and Routh–Hurwitz criteria, and global stability was studied using the
Lyapunov function.

Keywords: functionally graded beam; mechanical impact; electromagnetic actuator; OAFM; local
stability; Lyapunov function

1. Introduction

Functionally graded (FG) materials were first introduced by Japanese scientists [1] and
represent a new, improved kind of composite material that is fabricated to have spatially
varied material properties, providing a nonuniform microstructure. FG materials are
generally composed of two different parts, ceramic and metal, and they can improve the
properties of thermal barrier systems, as cracking and delamination are reduced by the
smooth transition of material properties. These new materials have been employed in
many engineering applications in various fields, such as nuclear reactors, the biomedical
industry, aerospace structures, chemical plants, the defense industry, electronics, etc.
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FG materials have attracted considerable interest from many researchers in structural
dynamics and statics, and they have been extensively studied, especially in the last few
years. Alimoradzadeh et al. [2] proposed the nonlinear vibration analysis of a simply
supported axial FG beam subjected to a moving harmonic load and resting on a Winkler–
Pasternak nonlinear elastic foundation using Green’s strain tensor. An approximate ana-
lytical solution for forced nonlinear vibration was obtained using the variational iteration
method. The nonlinear forced vibration of FG carbon nanotube-reinforced composite beams
resting on a nonlinear viscoelastic foundation was considered by Shafiei and Setoodeh [3].
The Eshelby–Mori–Tanaka approach and extended rule of mixtures were used to predict
the material’s properties, and the variational iteration method was applied to solve the
nonlinear governing equation. A comprehensive study on the size-dependent coupled
longitudinal–transverse rotational free vibration behaviors of post-buckled FG micro- and
nanobeams based on Mindlin’s strain gradient theory was presented by Ansari et al. [4].
The model incorporated size effects and the first-order, shear, deformable beam, and von
Kármán geometric nonlinearity was considered. The governing equations were discretized
using generalized differential quadrature, and the shifted Chebyshev–Gauss–Lobatto grid
was employed to generate grid points.

Mu and Zhao [5] explored the fundamental frequency of sandwich beams with an
FG face sheet and a homogeneous core. The face sheet was composed of a mixture of
metal and ceramic, while the homogeneous core was made of foam metal. The transverse
normal and shear strains of the core were considered, the classical plate theory was used to
analyze the face sheet, and a higher-order theory was proposed to analyze the core of the
standard beams. The fundamental frequency was obtained via a theoretical model validated
using ABAQUS.

Ebrahimi and Barati [6] investigated the free vibration of size-dependent FG nanobeams
with simply supported boundary conditions using Reddy’s third-order beam theory and
assuming higher-order longitudinal displacement variations in the beam’s thickness. It
should be emphasized that this theory captures both microstructural and shear deformation
effects without requiring any shear correction factors. The effect of its small scale was
considered based on Eringen’s nonlocal elasticity. Nonlocal governing equations were
solved using the Navier method. Furthermore, the third shear deflection beam theory was
examined by Gangnian et al. [7] for the nonlinear bending of FG beams, and the differential
quadrature method was utilized to obtain numerical results. Reddy et al. [8] studied the
classical first-order and third-order shear deformation of FG straight beams, and analytical
solutions for bending were determined.

The analytical treatment of the size-dependent nonlinear secondary resonance of FG
porous materials subjected to periodical, strong excitations was proposed by Fattahi et al. [9]
in the simultaneous presence of nonlocality and strain gradient size dependencies. The
mechanical properties of the beam were studied for uniform and different porosity dis-
persions using the closed-cell Gaussian-random field scheme. An exact solution for the
nonlinear static behavior of an FG beam with porosities resting on an elastic foundation was
presented by Long et al. [10]. Based on the neutral surface concept, nonlinear governing
equations have simple forms which can be directly solved. Wu et al. [11] investigated the
nonlinear forced vibration of bidirectional FG porous material beams where the gradient of
the material components changed in terms of both their thickness and axial direction. Vibra-
tion response curves and bifurcation diagrams were obtained using the pseudo-arclength
technique, and it was found that the periodic motion of the beam may undergo cyclic fold
bifurcation. Alhaifi et al. [12] explored the deflection of FG-saturated porous rectangular
plates subjected to transverse loading. To describe the displacement components of the
plate, Biot’s model, which considers the effect of fluids within pores, the first-order shear
deformation theory, and the calculus of variation, was applied. The generalized differential
quadrature method was used to solve the nonlinear problem. Dang and Nguyen [13]
explored the buckling and nonlinear free vibration of an FG porous micro-beam resting on
an elastic foundation based on the nonlocal strain gradient theory and the Euler–Bernoulli
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beam theory. Two porosity distribution models, including even and uneven distributions,
were used to consider the porosity effect.

The thermal vibration of FG porous nanocomposite beams reinforced by graphene
platelets was analyzed by Yas and Rahimi [14]. The temperature varied linearly across
the thickness direction, and the elastic modulus of a nanocomposite was achieved using
the Halpin–Tsui micromechanics model. The governing equations were discretized and
then solved using the generalized differential quadrature method. Yang et al. [15] investi-
gated the dynamic pull-in instability of an FG carbon nanotube-reinforced nanoactuator’s
damping behavior. The material properties of FG nanotubes are temperature-dependent,
and the influences of van der Waals and Casimir force were considered. The effect of
temperature field on the natural frequencies of FG beams was analyzed by Kashyzadeh
and Asfarjani [16] using a finite element model simulated in ANSYS. It was found that
the natural frequency of the system was reduced as the temperature increased under all
support conditions. The free and forced vibrations of an FG Timoshenko beam in a thermal
environment were examined by Nguyen and Bui [17] using a higher-order finite beam and
hierarchical functions to interpolate the kinematic variables. The material properties are
temperature-dependent, and the temperature is nonlinearly distributed throughout the
beam’s thickness. The nonlinear vibration of FG carbon nanotube-reinforced composite
beams resting on a nonlinear elastic foundation in a thermal environment was explored
by Fan and Huang [18] using the Haar wavelet discretization method. The thickness and
temperature were assumed to be FG. Nonlinear governing equations are based on the
first-order shear deformation beam theory in combination with von Kármán nonlinearity.

The vibration analysis of a rotary, axially tapered FG Timoshenko nanobeam was
performed by Shafiei et al. [19]. This model was studied in a thermal environment using the
nonlocal theory. The solution was obtained using the generalized differential quadrature
element method. The isogeometric analysis of the free vibration of FG double-tapered
Timoshenko beams was performed by Zhou et al. [20] using nonuniform rotational B-spline
(NURBS) basis functions, while Sari et al. [21] studied the vibration of an FG, axially double-
tapered Euler–Bernoulli beam using the nonlocal elasticity theory. Herein, the Chebyshev
spectral collocation method is proposed to transform coupled governing equations of
motion into algebraic equations.

A unified solution for the free and transient vibration analysis of an FG piezoelectric
curved Timoshenko beam was developed by Su et al. [22]. The study was derived using
the variational principle in conjunction with a modified Fourier series, which consists of
standard Fourier cosine series and supplementary functions. The finite element method
was employed to understand the buckling behavior and bifurcation point of an FG piezo-
electric Euler–Bernoulli beam in a thermal environment. Direct and inverse piezoelectric
effects were considered, and the buckling of the beam in the sensor state was investi-
gated. Nadirzadeh et al. [23] explored the buckling behavior and bifurcation point of an
FG piezoelectric beam using the finite element method. Ma et al. [24] investigated the
electromechanical behavior of FG piezoelectric composite beams subjected to an electrical
load. Employing the electromechanical coupling theory and load simulation method, the
expression of the simulation loading of piezoelectric actuators was obtained. Singh and
Kumari [25] explored the two-dimensional piezoelasticity vibration of axially FG beams
integrated with piezoelectric layers. The extended Kantorovich method was proposed to
reduce governing equations into sets of ordinary differential equations along the axial and
thickness directions. Chen et al. [26] studied the mechanical and electrical properties of
FG flexo-piezoelectric beams. Deflection and induced electric potentials were given as
analytical expressions for the FG cantilever beam. The numerical results show that the flex-
oelectric effect, piezoelectric effect, and gradient distribution have a considerable influence
on the electro-mechanical performance of FG beams. El Khouddar et al. [27] proposed the
study of a geometrically, nonlinearly vibrated FG beam reinforced by surface-bounded
piezoelectric fibers located on an arbitrary number of supports subjected to excitation
forces and thermoelectric changes. Thermal and electrical changes, the volume fraction of
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structure, the harmonic force, and the number of supports have a great influence on the
forced nonlinear dynamic response.

Nazmul et al. [28] obtained an analytical solution for the vibration of bidirectional
FG nanobeams. The material characteristics of nanobeams vary along the axial and the
thickness directions. Eringen’s nonlocal elasticity theory of was applied to Euler–Bernoulli
and Timoshenko beams, and an analytical solution of the governing equations was obtained
using the Laplace transform function. Recently, other interesting studies in the field have
been reported in [29–39].

The present study is devoted to the nonlinear forced vibration of an FG nanobeam
using the nonlocal theory that was subjected to a mechanical impact and symmetrical
electromagnetic actuation. Coupled longitudinal–transverse governing equations were
discretized using the Galerkin–Bubnov procedure. Nonlinearity is caused by the curva-
ture of the nanobeam and by electromagnetic actuation. Nonlinear ordinary differential
equations were solved using the Optimal Auxiliary Functions Method. A very accurate
solution was obtained using a moderate number of convergence control parameters. The
local stability of equilibrium points was studied using the variable expansion method. For
global stability, the Lyapunov function and control law were established. According to the
authors’ knowledge, this is the first time that the Lyapunov function of such a dynamic
system has been defined to approximate solutions.

2. Derivation of the Governing Equations
2.1. Modeling of the Functionally Nanobeam

Here, we consider an FG nanobeam of length, L; width, b; and thickness, h, as shown
in Figure 1.
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Figure 1. The model of the FG simply supported nanobeam subjected to mechanical impact and two
symmetrical electromagnetic actuators.

The simply supported beam was subjected to a mechanical impact with force, F0, and
two symmetrical electromagnetic actuators with the same bias voltage, V.

Coordinates with x, y, and z axes along the length, width, and height directions,
respectively, were taken. The material properties of the nanobeam vary as a function of
the thickness coordinate. The FG nanobeam was assumed to be composed of a mixture
of ceramic (upper surface at z = h/2) and metal (lower surface at z = −h/2). The volume
fractions, Vc and Vm, were:

Vc(z) =
(

z
h
+

1
2

)n
; Vm = 1−

(
z
h
+

1
2

)n
(1)
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where n is the material power law index, which prescribes the material variation; z is the
thickness coordinate from the geometry neutral surface; and the subscript c and m denote
ceramic and metal phases, respectively. The effective material properties, P(z), can be stated as:

P(z) = PcVc + PmVm (2)

in which PC and Pm are the properties of materials, and the volume fraction of the materials
verify the identity:

Vc + Vm = 1 (3)

Taking into consideration the material properties, Young’s modulus and the mass
density can be expressed as:

E(z) = (Ec − Em)

(
z
h
+

1
2

)n
+ Em, ρ(z) = (ρc − ρm)

(
z
h
+

1
2

)n
+ ρm (4)

2.2. Kinematic Relations

Based on the Euler–Bernoulli beam theory, the displacement field of an arbitrary point
along the nanobeam along x, y, and z axes can be written as:

ux(x, t) = u(x, t)− z
∂W(x, t)

∂x
, uy(x, t) = 0, uz(x, t) = W(x, t) (5)

where u(x,t) and W(x,t) denote mid-plane stretching and middle surface displacements,
respectively, and t represents time.

Nonlinear strain–displacement relationships, including the mid-plane stretching effect,
can be estimated using the von Kármán formula in the form:

εxx =
∂u
∂x
− z

∂2W
∂x2 +

1
2

(
∂W
∂x

)2
, εxy = εxz = 0 (6)

The main components of the symmetrical section of stress tensor are given by:

σxx = [λ(z) + 2µ(z)]

[
∂u
∂x
− z

∂2W
∂x2 +

1
2

(
∂W
∂x

)2
]

; σxy = 0, σxz = 0 (7)

where λ(z) and µ(z) are Lame parameters.
The strain energy of the nanostructure can be written as:

Πs =
1
2

∫
V

σijεijdV (8)

where σij represents the nonlocal stress tensor.
In accordance with Eringen assumptions, the nonlocal stress constitutive equation is [40]:

(1− τ2∇2)σij = Cijklεkl (9)

in which ∇2 is the Laplacian operator, and τ = ε0a is a scalable length parameter. The
nonlocal parameter, τ, represents the significance of the inter-atomic long-range force,
which considers the influence of small scales on the response of nanostructures, including
mode shapes, boundary conditions, chirality, and the essence of motion. Eringen considers
τ = (π− 4)1/2/2π≈ 0.21. This parameter was experimentally obtained for various materials,
for example, τ < 4 (nm)2 for a single-walled carbon nanotube. In general, it is assumed that
τ is in the range 0–8 (nm)2.



Symmetry 2023, 15, 1376 6 of 22

For a material in one dimension, the constitutive relation of the nonlocal theory can be
expressed as [6]:

σxx − τ2 ∂2σxx

∂x2 = E(z)εxx (10)

where σ and ε are the nonlocal stress and strain, respectively, and E is the Young’s modulus.

2.3. The Governing Equation for FG Nanobeam

For the Euler–Bernoulli nanobeam structure, we have:

σxx − τ2 ∂2σxx

∂x2 = [λ(z) + 2µ(z)]

[
∂u
∂x
− z

∂2W
∂x2 +

1
2

(
∂W
∂x

)2
]

(11)

The strain energy (8) stored in an FG nanobeam obtained using the nonclassical
continuum theory became:

Πs =
1
2

∫ L

0

[
Nxx

(
∂u
∂x

+
1
2

(
∂W
∂x

)2
)
−Mxx

∂2W
∂x2

]
dx (12)

where

Nxx − τ2 ∂2Nxx

∂x2 = A11

[
∂u
∂x

+
1
2

(
∂W
∂x

)2
]
− B11

∂2W
∂x2 (13)

Mxx − τ2 ∂2Mxx

∂x2 = B11

[
∂u
∂x

+
1
2

(
∂W
∂x

)2
]
− D11

(
∂2W
∂x2

)
/

√
1 +

(
∂W
∂x

)2
(14)

in which

Nxx = b
∫ h

2
− h

2
σxxdz, Mxx = b

∫ h
2
− h

2
σxxzdz, (A11, B11, D11) = (λ(z) + 2µ(z))

(
1, z, z2)dz (15)

and in Expression (14), we considered the curvature of the nanobeam.
The last term in Equation (14), which defines the curvature of the nanobeam, can be

rewritten as: (
∂2W
∂x2

)
/

√
1 +

(
∂W
∂x

)2
≈ ∂2W

∂x2

[
1− 3

2

(
∂W
∂x

)2
]

(16)

The work conducted due to the mechanical impact and by the electromagnetic actuator
is given by:

Π =
∫ L

0
q(x, t)Wdx (17)

The kinetic energy of the nanobeam is:

Ke =
1
2

∫ L

0

∫
A

ρ(z)

[(
∂ux

∂t

)2
+

(
∂uz

∂t

)2
]

dAdx =
1
2

{
I0

[(
∂u
∂t

)2
+

(
∂W
∂t

)2
]
− 2I1

∂u
∂t

∂2W
∂x∂t

+ I2

(
∂2W
∂x∂t

)2}
dx (18)

where A denotes the cross-sectional area of the nanobeam, and inertia terms are defined as:

(I0, I1, I2) =
∫ h

2

− h
2

ρ(z)(1, z, z2)dz =
∫ h

2

− h
2

(ρc − ρm)

(
z
h
+

1
2

)
(1, z, z2)dz (19)

After some mathematical manipulations, from Equation (19), one can obtain:

I0 = h
(

ρc − ρm

n + 1
+ ρm

)
; I1 =

h2(ρc − ρm)n
2(n + 1)(n + 2)

; I2 = h3
[
(ρc − ρm)(n2 + n + 2)
4(n + 1)(n + 2)(n + 3)

+
ρm

12

]
(20)
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The Hamilton’s principle states that:∫ t2

t1

(δKe − δΠs + δΠ)dt = 0 (21)

By substituting Equations (12), (17), and (18) into (20), the following equations are obtained:

δu :
∂Nxx

∂x
− I0

∂2u
∂t2 + I1

∂3W
∂x∂t2 = 0 (22)

δW :
∂2Mxx

∂x2 +
∂

∂x

(
Nxx

∂W
∂x

)
− I0

∂2W
∂t2 − I1

∂3u
∂x∂t2 + I2

∂4W
∂x2∂t2 − q(x, t) = 0 (23)

Now, from Equations (13) and (22), we observed that:

Nxx = A11

[
∂u
∂x

+
1
2

(
∂W
∂x

)2
]
− B11

∂2W
∂x2 + µ2

(
I0

∂3u
∂x∂t2 − I1

∂4W
∂x2∂t2

)
, µ =

τ

L
(24)

By inserting Equation (24) into Equation (22), one can obtain:

A11

(
∂2u
∂x2 +

∂W
∂x

∂2W
∂x2

)
− B11

∂3W
∂x3 − I0

(
∂2u
∂t2 − µ2 ∂4u

∂x2∂t2

)
+ I1

(
∂3W
∂x∂t2 − µ2 ∂5W

∂x3∂t2

)
= 0 (25)

By inserting Equation (24) into (23), it follows that:

∂2Mxx

∂x2 = −A11

[
∂2u
∂x2

∂W
∂x

+
∂u
∂x

∂2W
∂x2 +

3
2

(
∂W
∂x

)2 ∂2W
∂x2

]
+ B11

[
∂3W
∂x3

∂W
∂x

+

(
∂2W
∂x2

)2

+ q + I0

(
∂2W
∂t2 − µ2 ∂4u

∂x2∂t2

−µ2 ∂3u
∂x∂t2

∂2W
∂x2

)
+ I1

(
∂3u

∂x∂t2 − µ2 ∂5W
∂x3∂t2

∂W
∂x
− µ2 ∂4W

∂x2∂t2
∂2W
∂x2

)
− I2

∂4W
∂x2∂t2

(26)

From Equations (14) and (26), it follows that:

Mxx = B11

[
∂u
∂x

+
1
2

(
∂W
∂x

)2
]
− D11

(
∂2W
∂x2

)/√
1 +

(
∂W
∂x

)2
− µ2 A11

[
∂2u
∂x2

∂W
∂x

+
∂u
∂x

∂2W
∂x2 +

3
2

(
∂W
∂x

)2 ∂2W
∂x2

]

+µ2B11

[
∂3W
∂x3

∂W
∂x

+

(
∂2W
∂x2

)2

+ µ2q + µ2 I0

(
∂2W
∂t2 − µ2 ∂4u

∂x2∂t2−µ2 ∂3u
∂x∂t2

∂2W
∂x2

)

+µ2 I1

(
∂3u

∂x∂t2 − µ2 ∂5W
∂x3∂t2

∂W
∂x
− µ2 ∂4W

∂x2∂t2
∂2W
∂x2

)
− µ2 I2

∂4W
∂x2∂t2

(27)

By substituting Equations (24) and (27) into Equation (23), one retrieves:

A11

[
∂2u
∂x2

∂W
∂x

+
∂u
∂x

∂2W
∂x2 +

3
2

(
∂W
∂x

)2 ∂2W
∂x2 − µ2

(
∂4u
∂x4

∂W
∂x

+ 3
∂3u
∂x3

∂2W
∂x2 + 3

∂3u
∂x3

∂2W
∂x2 +

∂u
∂x

∂4W
∂x4

+9
∂W
∂x

∂2W
∂x2

∂3W
∂x3 +

3
2

(
∂u
∂x

)2 ∂4W
∂x4 + 3

(
∂2W
∂x2

)3)]
+ B11

[
∂3u
∂x3 − µ2

(
∂5W
∂x5

∂W
∂x

+ 4
∂4W
∂x4

∂2W
∂x2 + 3

∂3W
∂x3

)]
−D11

[
∂4W
∂x4 −

21
2

∂W
∂x

∂2W
∂x2

∂3W
∂x3 −

3
2

∂4W
∂x4

(
∂W
∂x

)2
]
+ I0

[
−∂2W

∂t2 +µ2 ∂4W
∂x2∂t2 + µ2

(
∂4W

∂x2∂t2
∂W
∂x

+
∂3u

∂x∂t2
∂2W
∂x2

)
− µ4

(
∂6u

∂x4∂t2
∂W
∂x

+ 3
∂5u

∂x3∂t2
∂2W
∂x2 + 3

∂44u
∂x2∂t2

∂3W
∂x3 +

∂3u
∂x∂t2

∂4W
∂x4

)]
+ I1

[
∂3u

∂x∂t2 − µ2 ∂5u
∂x3∂t2

−µ4
(

∂7W
∂x7

∂W
∂x

+ 3
∂6W
∂x6

∂2W
∂x2 + 3

∂5W
∂x5

∂3W
∂x3 +

(
∂4W
∂x4

)2

− µ2
(

∂5W
∂x5

∂W
∂x

+
∂4W
∂x4

∂2W
∂x2

)]
+I2

(
∂4W

∂x2∂t2 − µ2 ∂6W
∂x4∂t2

)
= q− µ2 ∂2q

∂x2

(28)
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where the external moving transverse load with speed, v, can be considered a mechanical
impact under the action of the Dirac delta function:

qe = F0δ(x− vt) (29)

Nanobeam vibration depends on the action of the DC voltage source, such that
electromagnetic actuation can be considered as:

qel =
1
2

C0V2

(g0 −W(x, t))2 −
1
2

C0V2

(g0 + W(x, t))2 (30)

in which C0 is the capacitance of the actuator, g0 is the gap width, and V is the voltage.
Expression (30) can be simplified as:

1
2

C0V2

(g0 −W(x, t))2 −
1
2

C0V2

(g0 + W(x, t))2 =
C0V2

2g2
0

 1(
1− W

g0

)2−
1(

1 +
W
g0

)2

 ≈ C0V2

2g2
0

[
4

W
g0

+ 8
(

W
g0

)3
+ 12.37

(
W
g0

)5
]

(31)

The maximum error between the two functions from Equation (31):

F1

(
W
g0

)
=

1(
1− W

g0

)2 −
1(

1 + W
g0

)2 and F2 = 4
W
g0

+ 8
(

W
g0

)3
+ 12.37

(
W
g0

)5
(32)

is ε = 3.3·10−6, and therefore, F2 is a very good approximation for function F1.
For convenience, the following dimensionless variable were adopted:

W =
W
g0

; x =
x
L

; t =
t

g0

√
λ0 + 2µ0

ρ0
; v = v

√
ρ0

λ0 + 2µ0
; (a11, b11, d11) =

1
(λ0 + 2µ0)bg0

(A11,
B11

g0
,

D11

g0
)

(
I0, I1, I2

)
=

1
ρ0bg0

(
I0,

I1

g0
,

I2

g2
0

)
; f =

F0L2

(λ0 + 2µ0)bg2
0(1 + α2

1L2π2v2)
; α1 =

µ

L
; α2 =

g0

L

β1 =
2C0V2L2

(λ0 + 2µ0)bg0
; β2 =

2C0V2L2g0

(λ0 + 2µ0)b
; β3 =

2C0V2L2g3
0

(λ0 + 2µ0)b

(33)

where λ0, µ0, and ρ0 are the classical Lame constants and mass density for a homogeneous
nanobeam made of metal.

The nonlocal nonlinear governing equations of an FG nanobeam in dimensionless
terms of transverse and longitudinal displacements can be derived from Equations (25),
(28), (29), (31), and (33) by omitting the bar:

a11

(
∂2u
∂x2 + α2

∂W
∂x

∂2W
∂x2

)
− b11α2

∂3W
∂x3 − I0

(
∂2u
∂x2 − α2

1
∂4u

∂x2∂t2

)
+ I1

(
∂3W
∂x∂t2 − α2

1
∂5W

∂x3∂t2

)
= 0 (34)
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a11

[
α2

(
∂2u
∂x2

∂W
∂x

+
∂u
∂x

∂2W
∂x2 +

3
2

(
∂W
∂x

)2 ∂2W
∂x2

)
− α2

1α2(
∂4u
∂x4

∂W
∂x

+ 3
∂3u
∂x3

∂2W
∂x2 + 3

∂2u
∂x2

∂3W
∂x3

+
∂u
∂x

∂4W
∂x4 + 3

∂W
∂x

(
∂2W
∂x2

)2

+ 9
∂W
∂x

∂2W
∂x2

∂3W
∂x3 +

3
2

(
∂W
∂x

)2 ∂4W
∂x4 + 3

(
∂2W
∂x2

)2

, )

]
+ b11

[
α2

∂3u
∂x3

−α2
2α1(

∂5W
∂x5

∂W
∂x

+
∂4W
∂x4

∂2W
∂x2 + 3

(
∂3W
∂x3

)2

)

]
− d11

[
α2

2
∂4W
∂x4 − α4

2

(
21
2

∂W
∂x

,
∂2W
∂x2 ,

∂3W
∂x3

)

+
3
2

∂4W
∂x4

(
∂W
∂x

)2
]
+ I0

[
−∂2W

∂x2 + α2
1

∂4W
∂x2∂t2 + α2

1α2

(
∂4u

∂x2∂t2 +
∂3u

∂x∂t2
∂2W
∂x2

)

−α4
1α2

(
∂6u

∂x4∂t2
∂W
∂x

+ 3
∂5u

∂x3∂t2
∂2W
∂x2 + 3

∂4u
∂x2∂t2

∂3W
∂x3

+
∂3u

∂x∂t2
∂4W
∂x4

)]
+ I1

[
∂3u

∂x∂t2 − α2
1

∂5u
∂x3∂t2 − α2

1α2
2

(
∂5W
∂x5

∂W
∂x

+
∂4W
∂x4

∂2W
∂x2

)

−α4
1α2

2

((
∂7W
∂x7

∂W
∂x

+ 3
∂6W
∂x6

∂2W
∂x2 + 3

∂5W
∂x5

∂3W
∂x3 +

(
∂4W
∂x4

)2]
+ I2

(
∂4W

∂x2∂t2 − α2
1

∂6W
∂x4∂t2

)

−β1

(
W − α2

1
∂2W
∂x2

)
− 2β1

[
W3 − 3α2

1

(
2W
(

∂W
∂x

)2
+ W2 ∂2W

∂x2

)]

−3.0925β3

[
W5 − 5α2

1

(
4
(

∂W
∂x

)3(∂2W
∂x2

)2

+

(
∂W
∂x

)4 ∂3W
∂x3

)]
= f δ(x− vt)

(35)

Using the Galerkin–Bubnov procedure, the solutions of Equations (34) and (35) can be
expressed in a discretized form. For this purpose, it was assumed that u(x,t) and W(x,t) can
be written as follows:

u(x, t) = X(x)θ(t); W(x, t) = Y(x)T(t) (36)

where the expressions X(x) and Y(x) are analytical forms corresponding to the boundary conditions.
It is worth mentioning that the considered governing equations are slightly different

from Equation (46) in paper [38] and from Equation (28) in paper [39] because the studied
problems are slightly different. The transversal inertia, ∂2u

∂t2 , is not neglected in the present

paper: ∂2u
∂t2 = −

√
2Aω2

1sinπxcosω1t, where the term
√

2Aω2
1 cannot be always neglected.

However, ∂2u
∂t2 can be neglected if A

∣∣ω2
1

∣∣� 1.
After the substitution of Equation (36) into Equations (34) and (35), multiplying

Equation (34) by X(x) and Equation (35) by Y(x) and integrating the domain [0,1], and using
the expression: ∫ 1

0
f (x)δ(x− vt)dx = f (vt) (37)

one can obtain the following nonlinear differential equations:

..
θ + ω2

1θ + P0
..
T + P1T + P2T2 = 0 (38)

..
T + ω2

2T + q0
..
θ + q1θT + q2θ + a2T2 + a3T3 + a5T5 = f X(vt) (39)

where the dot denotes the derivative with respect to the dimensionless term, t, and the
coefficients that appear in Equations (38) and (39). These are given in the Appendix A.

In the case of the simply supported beam, the boundary conditions are [9]:
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u(0, t) = u(1, t) = 0; W(0, t) =
∂2W(0, t)

∂x2 =
∂4W(0, t)

∂x4 = 0; W(L, t) =
∂2W(L, t)

∂x2 =
∂4W(0, t)

∂x4 = 0 (40)

such that Equations (38) and (39) can be rewritten as:

..
θ + ω2

1θ = 0 (41)

..
T + ω2

2T + a2T2 + a3T3 + a5T5 =
√

2 f0 sin πvt (42)

where, for Equations (41) and (42), we took into consideration that from Equation (40), one
can obtain X(x) = Y(x) =

√
2sinπx. It is worth mentioning that the proposed solution

procedure can be applied to any other boundary conditions without difficulty.
The initial conditions for Equations (41) and (42) are:

θ(0) = A,
.
θ(0) = 0, T(0) = B,

.
T(0) = 0 (43)

The solution of Equations (41) and (43) may be written as:

θ(t) = A cos ω1t (44)

3. Solution Procedure

In this section, we will remark on how we found approximate analytical solutions to
Equations (42) and (43) using the OAFM [41–45]. With the help of the following transformation:

T(t) = Bψ(τ), τ = Ωt (45)

where Ω is the unknown frequency of the system, Equations (42) and (43) can be rewritten as:

..
ψ +

ω2
2

Ω2 ψ +
a2B
Ω2 ψ2 +

a3B2

Ω2 ψ3 +
a5B4

Ω2 ψ5 =

√
2 f0

BΩ2 sin ωt, ω = πv, ψ(0) = 1,
.
ψ(0) = 0 (46)

Following this, we considered the nonlinear problem near the primary resonance:

ω2
2 ≈ ω2 (47)

The linear and nonlinear operators corresponding to Equation (46) are, respectively:

L[ψ(τ)] = ψ′′ + ψ; N[ψ(τ)] =

(
ω2

2
Ω2 − 1

)
ψ +

a2B
Ω2 ψ2 +

a3B2

Ω2 ψ3 +
a5B4

Ω2 ψ5 −
√

2 f0

BΩ2 sin
ω

Ω
τ (48)

where prime denotes differentiation with respect to τ.
According to [41–45], the approximate solution for Equation (46) can be written as:

ψ(τ) = ψ0(τ) + ψ1(τ) (49)

The initial approximation, ψ0(τ), from the last expression is defined as solution of the
linear equation:

L[ψ0(τ)] = 0, ψ0(0) = 1, ψ′(0) = 0 (50)

which can be rewritten in the form:

ψ′′ 0(τ) + ψ0(τ) = 0, ψ0(0) = 1, ψ′0(0) = 0 (51)

whose solution is:
ψ0(τ) = cos τ (52)
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Inserting Equation (52) into the second expression of Equation (48), it was found that:

N[ψ0(τ)] = D0 + D1 cos τ + D2 cos 2τ + D3 cos 3τ + D5 cos 5τ −
√

2 f
BΩ2 sin

ω

Ω
τ (53)

where

D0 =
a2B
2Ω2 ; D1 =

ω2
2

Ω2 − 1 +
3a3B2

4Ω2 +
5a5B4

8Ω2 ; D2 =
a2B
Ω2 ; D3 =

a3B2

4Ω2 +
5a5B4

16Ω2 ; D5 =
a5B4

16Ω2 (54)

The first approximation, ψ1(τ), from Equation (49) was determined from the lin-
ear equation:

ψ′′ 1 + ψ1 = (C1 + 2C2 cos τ + 2C3 cos 2τ + 2C4 cos 3τ)(D0 + D1 cos τ + D2 cos 2τ), ψ1(0) = ψ′1(0) = 0 (55)

As we mentioned in [41–45], the expression from the right side of Equation (55)
is not unique. Also, we can choose any of the following forms of the equation for the
first approximation:

ψ′′ 1 + ψ1 = (C1 + 2C2 cos τ + 2C3 cos 5τ)(D0 + D1 cos τ + D2 cos 2τ) (56)

or

ψ′′ 1 + ψ1 = (C1 + 2C2 cos τ + 2C3 cos 3τ + 2C4 cos 4τ)(D0 + D1 cos τ + D2 cos 2τ + D3 cos 3τ) (57)

or
ψ′′ 1 + ψ1 = (C1 + 2C2 cos τ)(D0 + D1 cos τ + D2 cos 3τ + D4 cos 5τ) (58)

and so on. In these last equations, Ci, i = 1, 2, . . . are unknown parameters.
Considering only Equation (55), this can be rewritten as:

ψ′′ 1 + ψ1 = C1D0 + C2D1 + C3D2 + (C1D1 + 2C2D0 + C2D1 + C3D1 + C4D2) cos τ + (C1D2 + C2D1 + 2C3D0

+C4D2) cos 2τ + (C2D2 + C3D1 + 2C4D0) cos 3τ + (C3D2 + C4D1) cos 4τ + C4D2 cos 5τ, ψ1(0) = ψ′1(0) = 0
(59)

By avoiding the secular term in Equation (59), we can find the frequency of the system:

Ω2 = ω2
2 +

3a3B2

4
+

5a5B4

8
+

2C2 + C4

C1 + C2
a2B (60)

The solution of Equation (59) becomes:

ψ1(τ) = (C1D0 + C2D1 + C3D2)(1− cos τ) +
C1D2 + (C2 + C4)D1 + 2C3D0

3
(cos τ − cos 2τ)

+
2C4D0 + C3D1 + C2D0

8
(cos τ − cos 3τ) +

C3D2 + C4D1

15
(cos τ − cos 4τ) +

C4D2

24
(cos τ − cos 5τ)

(61)

The approximate solution of Equations (42) and (43) can be obtained from Equations
(45), (49), (53), and (61):

T(t) = B[cos Ωt + C1D0 + C2D1 + C3D2)(1− cos Ωt) +
C1D2 + (C2 + C3)D1 + 2C3D0

2
(cos Ωt− cos 2Ωt)

+
2C4D0+C3D1 + C3D1

3
(cos Ωt− cos 3Ωt) +

C1D2 + C4D1

15
(cos Ωt− cos 4Ωt) +

C4D2

24
(cos Ωt− cos 5Ωt)]

(62)

where Ω is given by Equation (6).
The values of the convergence control parameters, Ci, i = 1, 2, 3, 4, can be optimally

determined using the least square method, Ritz method, collocation method, Galerkin
method, and so on.
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To prove the efficiency of our procedure, we considered the case from the data pre-
sented in Appendix A: B = 1, ω = 0.812, ω2 = 0.811, a2 = 0.051, a3 = 0.31, a5 = 1.77, f0 = 0.03.
Using the collocation approach, the optimal values of the convergence control parameters
and frequency were found to be C1 = −0.02618575067906715; C2 = 0.0004574655408149;
C3 = −0.9299640963105; and C4 = −0.001457943137, Ω = 1.389.

The approximate solution (62) became:

T(t) = −0.0124766608 + 0.9623366275 cos [1.389 t] + 0.00842690485 cos [2.778 t]

+0.040858722003 cos [4.167 t] + 0.000853603579 cos [5.556 t] + 8.02906610209 · 10−7 cos [6.945 t]
(63)

To validate the obtained results derived from using the OAFM, we created Figure 2,
which compares the analytical approximate solution (63) and numerical integration results
obtained using a fourth-order Runge–Kutta approach.
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Figure 2. Comparison between analytical solution (63) and numerical integration results for Equa-
tions (42) and (43): ______ numerical solution; _ _ _ _ _ analytical solution.

It is easy to observe that the approximate solution for the FG nanobeam obtained
using the OAFM is nearly identical to the numerical integration results, which proves the
efficiency of our technique.

In Figures 3–6, we present the effects of the coefficients, α1, α2, β1, and β2, respectively,
in the solution of Equation (42).
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By neglecting the terms of 0(ε2) after collecting terms, one can obtain: 

Figure 6. The effect of the coefficient, β2: β2 = 0.2 (blue); β2 = 0.1 (red); β2 = 0.05 (green).

From Figure 3, we deduced that if α1 increases, then the abscissa of the intersection
point of T(t) with the horizontal axis decreases. Also, from Figure 3, one can conclude
that if α1 increases, then the frequency increases, while the effect of the parameter, α2, is
inverse in Figure 4. From Figure 5, it follows that if β1 increases, then the above-mentioned
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abscissa decreases, and from Figure 6, it follows that the effect of β2 is inverse to the effect
of β1. If β1 increases, then the frequency increases.

4. Stability of the Steady–State Motion for the FG Nanobeam

The approach applied in this section was used to distinguish between two-time scales
by associating a separate independent variable with each one. We reconsidered the primary
resonance for Equation (42): ω =ω2 + σε,ω = πv, with σ being a detuning parameter and
ε being a small parameter. We use notation ξ, which represents stretched time, ωt, and
notation, η, which represents slow time, εt (two-variable expansion method [46]):

ξ = ωt, η = εt (64)

To substitute these transformations into Equation (42), we need expressions:

dT
dt

=
∂T
∂ξ

dξ

dt
+

∂T
∂η

dη

dt
= ω

∂T
∂ξ

+ ε
∂T
∂η

d2T
dt2 = ω2 ∂2T

∂ξ2 + 2ωε
∂2T

∂ξ∂η
+ ε2 ∂2T

∂η2 = (ω2 + σε)2 ∂2T
∂η2 + 2(ω2 + σε)ε

∂2T
∂ξ∂η

+ ε2 ∂2T
∂η2

(65)

By expanding the power series and inserting Equation (65) into (42), one obtains the
following partial differential equation:

(ω2 + σε)2
(

∂2T0

∂ξ2 + ε
∂2T1

∂η2

)
+ 2(ω2 + σε)ε

(
∂2T0

∂ξ∂η
+ ε

∂2T1

∂ξ∂η

)
+ ε2

(
∂2T0

∂η2 + ε
∂2T1

∂η2

)
+ ω2

2(T0 + εT1) + εa2(T2
0

+2εT0T1 + ε2T2
1 ) + εa3(T3

0 + 3T2
0 T1ε + 3T0T2

1 ε2 + T3
1 ε3) + εa5(T5

0 + 5T4
0 T1ε + 10T3

0 T2
1 ε2 + 10T2

0 T3
1 ε3

+5T0T4
1 ε4 + T5

1 ε5)−
√

2 f0 sin ξ = 0

(66)

By neglecting the terms of 0(ε2) after collecting terms, one can obtain:

ω2
2

(
∂2T0

∂ξ2 + T0

)
= 0 (67)

ω2
2

(
∂2T1

∂ξ2 + T1

)
+ 2ω2σ

∂2T0

∂ξ2 + 2ω2
∂2T0

∂ξ∂η
+ a2T2

0 + a3T3
0 + a5T5

0 −
√

2 f0 sin ξ (68)

The general solution to the linear differential Equation (67) is:

T0(ξ, η) = A(η) cos ξ + B(η) sin ξ (69)

For a nonresonant term in Equation (68), the coefficients of sin ξ and cos ξ need to
vanish, such that we have the following slow flow formula:

2
dA
dη
− 3a3

4ω2
B(A2 + B2)− 5a5

8ω2 B(A2 + B2) + 2σB = −
√

2 f0

ω2
(70)

2
dB
dη

+
3a3

4ω2 A(A2 + B2) +
5a5

8ω2
A(A2 + B2)

2 − 2σA = 0 (71)

The equilibrium points of the slow flow Equations (70) and (71) correspond to the
periodic motion of Equation (42). To determine them, we determined:

dA
dη

=
dB
dµ

= 0 (72)
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From Equations (70)–(72), equilibrium points (Ae and Be) can be obtained from the
algebraic equations:

Be

[
a3(A2

e + B2
e ) + 5a5(A2

e + B2
e )

2 − 16σω2

]
= 8
√

2 f0 (73)

Ae

[
6a3(A2

e + B2
e ) + 5a5(A2

e + B2
e )

2 − 16σω2 = 0
]

(74)

Only the following case is possible:

Ac = 0; 5a5B5
e + 6a3B3

e − 16σω2Be − 8
√

2 f0 = 0 (75)

For the data presented in Section 3 (ω2 = 0.811; a3 = 0.31; a5 = 1.77; f0 = 0.0212131) in
Figure 7, equilibrium points Be are depicted in respect to parameter σ.

It was observed that there are one or three equilibrium points. More precisely, for
σ < 0, there is a unique equilibrium point, and for σ ≥ 0, there are three equilibrium points.
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The stability of steady-state motion is determined using eigenvalues of the Jacobian
matrix obtained from Equations (70) and (71) (the Routh–Hurwitz criterion):

[J] =
[

a11 a12
a21 a22

]
(76)

where

a11 =
∂A′
∂A

∣∣∣∣
Ae

; a12 =
∂A′
∂B

∣∣∣∣
Ae

; a21 =
∂B′
∂A

∣∣∣∣
Ae

; a22 =
∂B′
∂B

∣∣∣∣
Ae

; A′ = dA
dη

; B′ = dB
dη

(77)

After some manipulations, from Equations (70), (71), and (77), the coefficient ai, has
the forms:

a11 = 0; a12 =
18a3B2

e + 25a5B4
e

16ω2 − 2σ; a21 = 2σ− 18a3B2
e + 5a5B4

e
16ω2 ; a22 = 0 (78)

The eigenvalues of the Jacobian matrix were obtained using the characteristic equation:

det([J]− λ[I2]) = 0 (79)

where Iz is the unity matrix of the second order, and λ is the eigenvalue of the Jacobian matrix.
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Considering Expression (77), the characteristic Equation (79) becomes:

λ2 + tr[J]λ + det[J] = 0 (80)

where the trace of the Jacobian matrix is given by:

tr[J] = −(a11 + a12) = 0

and the determinant of J is:

det[J] = a11a22 − a12a21 = −a12a21 =

(
2σ− 18a3B2

e + 25a5B4
e

16ω2

)(
2σ− 18a3B2

e + 5a5B4
e

16ω2

)
(81)

In this way, the characteristic equation can be rewritten as:

λ2 +

(
2σ− 18a3B2

e + 25a5B4
e

16ω2

)(
2σ− 18a3B2

e + 5a5B4
e

16ω2

)
(82)

Using the second side of Equation (75), one obtains:

2σ =
5a5B2

e + 6a5B2
e

8ω2
− f
√

2
ω2Be

(83)

Such that Equation (82) can be rewritten as:

λ2 +

(
f0
√

2
ω2Be

− 15a5B4
e + 6a3B2

e
16ω2

)(
f0
√

2
ω2Be

− 5a5B4
e − 65a3B2

e
16ω2

)
= 0 (84)

We have the following possible cases.
Case 4.1: If

f0 = −15a5B5
e + 6a3B3

e

16
√

2
or f0 = −5a5B5

e − 6a3B3
e

16
√

2
(85)

then one or two eigenvalues are equal to zero; thus, there is no motion.
Case 4.2.a: If a5 > 0 and

−15a5B4
e + 6a3B2

e
16

<
f0

B
<

5a5B4
e − 6a3B2

e
16

(86)

then λ1 = −λ2 is real. The points move toward the equilibrium in one situation, but away
from the equilibrium point in the other. This is called a saddle.

Case 4.2.b: If a5 > 0, but
√

2 f0

Be
>

5a5B4
e − 6a3B2

e
16

or

√
2 f0

Be
< −15a5B4

e + 6a3B2
e

16
(87)

then there is a pair of eigenvalues that are purely imaginary, and the signs of their imaginary
parts must be opposite. The resulting motion involves points around an ellipse; this
means that there is no net motion towards or away from the equilibrium (centers) of
Hopf bifurcation.

Case 4.3.a: If a5 < 0 and

5a5B4
e − 6a3B2

e
16

<

√
2 f

Be
< −15a5B4

e + 6a3B2
e

16
(88)

then similar to Case 4.2.a, λ1 and λ2 are real with opposite signs.



Symmetry 2023, 15, 1376 17 of 22

Case 4.3.b: If a5 < 0 and
√

2 f
Be

> −15a5B4
e + 6a3B2

e
16

or

√
2 f

Be
<

5a5B4
e − 6a3B2

e
16

(89)

then, this situation is similar to Case 4.2.b.

5. Numerical Examples

For a3 = 0.31 and a5 = 1.77, local stability is depicted in Figure 8, and for a3 = 0.31 and
a5 = −0.9, local stability is depicted in Figure 9.
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6. Global Stability by the Lyapunov Function

The governing equation of the FG nanobeam dynamics of a mechanical impact and
electromagnetic actuation can be written by adding the control input, U, as:

.
T1 = T2 (90)

.
T2 = −ω2

2T1 − a2T2
1 − a3T3

1 − a5T5
1 −
√

2 sin ωt + U(T1, T2) (91)

We defined the tracking errors, E1 and E2, as:

E1 = T1 − T, E2 = T2 −
.
T + θE1 (92)
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where T is the approximate analytical solution of Equation (42) above, which was obtained
using the OAFM, θ is a positive parameter, which is defined later, and U is the control.

If ω2
2, a2, a3, a5, and f are defined as estimated parameters, then the estimations of

errors of these parameters are defined as [47]:

ω̃2
2 = ω2

2 −ω2
2; ã2 = a2 − a2; ã3 = a3 − a3; ã5 = a5 − a5; f̃ = f − f (93)

The following Lyapunov function form was used:

V(E1, E2, ω̃2, ã2, ã3, ã5, f̃ ) =
1
2
(λ1E2

1 + λ2E2
2 + λ3ω̃2

2 + λ4 ã2
2 + λ5 ã2

3 + λ6 ã2
5 + λ7 f̃ 2) (94)

where λi, i = 1, 2, . . . , 7 are any positive parameters. The time derivative of the Lyapunov
function can be written, considering Equations (92)–(94) in the following form:

dV
dt = λ1E1(E2 − θE1) + λ2E2[−ω2

2T1 − a2T2
1 − a3T3

1 − a5T5
1 +
√

2 f sin ωt + U −
..
T

+θ(E2 − θE1) + λ3ω̃2
.

ω̃2 + λ4 ã2
.
ã2 + λ5 ã3

.
ã3 + λ6 ã5

.
ã5 + λ7 f̃

.

f̃
(95)

The input control is defined using Equation (95) in the following form:

U = ω2
2T1 + a2T2

1 + a3T3
1 + a5T5

1 − f
√

2 sin ωt +
..
T − θE2 (96)

such that Equation (95) can be rewritten as:

dV
dt = λ1E1E2 − λ1θE2

1 − λ2E2[ω
2
2T1 + ã2T2

1 + ã3T3
1 + ã5T5

1 −
√

2 f̃ sin ωt]−
λ2θ2E1E2 + λ3ω̃2

.
ω̃2 + λ4 ã2

.
ã2 + λ5 ã3

.
ã3 + λ6 ã5

.
ã5 + 2λ7 f̃

.

f̃

After some simple manipulations, the last equation can be rewritten as:

dV
dt = (λ1 − λ2θ2)E1E2 − λ1θE2

1 + ω̃2(λ2E2ω2T1 + λ3
.

ω̃2) + ã2(λ4
.
ã2 + λ2E2T2

1 )

+ã3(λ5
.
ã3 + λ2E2T3

1 + ã5(λ6
.
ã5 + λ2E2T5

1 ) +
√

2 f̃ (λ7
√

2
.

f̃ − λ2E2 sin ωt)
(97)

The estimate parameters
∼
ω2,

∼
a2,
∼
a3,
∼
a5, and f from the last equation are defined as:

dω̃2

dt
= −λ2

λ3
E2ω2T1;

dã2

dt
= −λ2

λ4
E2T2

1 ;
dã3

dt
=

λ2

λ5
E2T3

1

dã5

dt
= −λ2

λ6
E2T3

1 ;
d f̃
dt

= E2
λ2

λ7
√

2
sin ωt

(98)

or considering Equation (92):

dω̃2

dt
= −λ2

λ3
ω2[

.
T −

.
T + θ(T − T)]T;

dã2

dt
= −λ2

λ4
T2[

.
T −

.
T + θ(T − T)];

dã3

dt
= −λ2

λ5
T3[

.
T −

.
T + θ(T − T)]

dã5

dt
= −λ2

λ6
T5[

.
T −

.
T + θ(T − T)];

d f̃
dt

=
λ2√
2λ7

T3[
.
T −

.
T + θ(T − T)] sin ωt

(99)

Equation (97) becomes:

dV
dt

= (λ1 − λ2θ2)E1E2 − λ1θE2
1 (100)

A positive parameter is defined as:

θ =

√
λ1

λ2
(101)
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from which it is clear that dV/dt < 0.
Using the Lyapunov function and La Salle’s invariance principle, the system studied in

the present work is globally asymptotically stable because function V is a positive definite
function and dV/dt is negative definite function.

7. Conclusions

The present study is devoted to the longitudinal–transverse vibration of an FG us-
ing von Kármán geometric nonlinearity, the nonlocal Eringen theory of elasticity, and
a first-order, shear, deformable beam. The Euler–Bernoulli nanobeam was subjected to
mechanical impact using the Dirac delta function and to electromagnetic actuation. Cou-
pled longitudinal–transverse governing equations were discretized using the classical
Galerkin–Bubnov procedure.

The resulting nonlinear differential equation contains a term dependent on the cur-
vature of the nanobeam and was solved near the primary resonance using the OAFM.
The proper procedure leads to a very accurate solution after the first iteration for a com-
plex problem. The main novelties of our technique are the presence of some auxiliary
functions and convergence control parameters and the original construction of the initial
and first iterations. It should be emphasized that any nonlinear differential equations
of practical interest were reduced to two linear differential equations. To the best of the
authors’ knowledge, no papers in the literature have investigated or reported the effects of
the simultaneous actions of the following elements considered in the present paper—the
presence of a curved nanobeam, the transversal inertia, which is not neglected in our paper,
the mechanical impact, and electromagnetic actuation—and this encapsulates the main
novelty of this paper. Practical applications of the present work may be identified in the
fields of aerospace structures, nuclear reactors, the biomedical industry, chemical plants,
optical semiconductors, the defense industry, and electronics.

Our original technique is a powerful tool that can be used to solve a nonlinear problem
without the presence of any small parameters in the governing equation or in the boundary
conditions. The best quality of our procedure is the existence of so-called “auxiliary
functions”. These functions were gained from two sources, more precisely, from the
initial approximation and from the term defined through the corresponding nonlinear
operator calculated for the initial approximation. The presence of some convergence
control parameters assures the rapid convergence of approximate solutions after the first
iteration. The convergence control parameters were evaluated using rigorous mathematical
procedures. We have great freedom to select both auxiliary functions and the number of
convergence control parameters. Our technique has proved to be very accurate, simple,
and easy to implement for any complicated nonlinear problems.

The local stability of an FG nanobeam was studied using Routh–Hurwitz criteria
and eigenvalues of the Jacobian matrix. The local stability depends on the nature of the
solutions of the characteristic equation and on the signs of the eigenvalues, which leads to
the study of borderline cases.

Global stability was analyzed using Lyapunov’s direct method and La Salle’s invari-
ance principle. We pointed out that the Lyapunov function depends on the approximate
solution obtained using the OAFM. To the best of our knowledge, a highly accurate ap-
proximate solution was employed for the first time in the construction of the Lyapunov
function. Also, the control variable of Pontryagin’s principle was applied.

The effects of some physical parameters have been highlighted.
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Appendix A

ω2
1 =

a11
∫ 1

0 X′′ (x)X(x)dx

I0(α
2
1

∫ 1
0 X′′ (x)X(x)dx−

∫ 1
0 X2(x)dx)

, P0 =
I1

(∫ 1
0 Y′(x)X(x)dx− α2

1
∫ 1

0 Y′′′ (x)X(x)dx
)

I0

(
α2

1

∫ 1
0 X′′ (x)X(x)dx−

∫ 1
0 X2(x)dx

)
P1 = −

b11α2
∫ 1

0 Y′′′ (x)X(x)dx

I0

(
α2

1

∫ 1
0 X′′ (x)X(x)dx−

∫ 1
0 X2(x)dx

) , P2 =
a11α2

∫ 1
0 Y′(x)Y′′ (1x)X(x)dx

I0

(
α2

1

∫
0 X′′ (x)X(x)dx−

∫ 1
0 X2dx

)
ω2

2 =
d11

[
β1

(∫ 1
0 Y2(x)dx− α2

1Y′′ (x)Y(x)dx
)
− α2

2
∫ 1

0 Y′′ (x)Y(x)dx
]

I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]

q0 =

I0

[
α2

1α2

(∫ 1
0 X′′Y′Ydx +

∫ 1
0 X′Y′′Ydx

)
− α4

1

(∫ 1
0 X(IV)YY′dx + 3

∫ 1
0 X′′′Y′′Ydx + 3

1∫
0

XY(IV)Ydx

)]
I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]
q1 =

a11α2

(∫ 1
0 X′′Y′Ydx +

∫ 1
0 X′Y′′Ydx

)
− a11α2

1α2

(∫ 1
0 X(IV)Y′Ydx + 3

∫ 1
0 X′′′Y′′Ydx + 3

∫ 1
0 X′Y(IV)Ydx

)
I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]
q2 =

b11α2
∫ 1

0 X′′′ (x)Y(x)dx

I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]
a2 = −

b11α2
2α1

[∫ 1
0 Y{V}Y′Ydx + 4

∫ 1
0 Y(IV)Y′′Ydx+3

∫ 1
0 Y′′′ 2Ydx

]
+ I0α4

1α2
2

[
3
∫ 1

0 Y(IV)Y′′Ydx + 3
∫ 1

0 Y(V)Y′′′Y +
∫ 1

0 Y(IV)Ydx
]

I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]

a3 =

a11

[
3
2

α2
∫ 1

0 Y′′ 2Y′Ydx− α2
1α2

(
3
∫ 1

0 Y′Y′′ 2Ydx + 9
∫ 1

0 Y′Y′′Y′′′Ydx +
3
2
∫ 1

0 Y′2Y(IV)Ydx + 3
∫ 1

0 Y′′ 3Ydx
)]

I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]

+

d11

[
α2

2

(∫ 1
0

21
2

Y′Y′′Y′′′Y +
3
2
∫ 1

0 Y(IV)Y′2Y
)
− 2β2

∫ 1
0 Y4dx− 3α2

1

(
2
∫ 1

0 Y′2Y2dx +
1∫

0
Y′′Y3dx

)]
I0

[
α2

1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx

]
+ I2

[∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx

]
a5 =

−
3.0125β3[

∫ 1
0 Y6(x)dx− 5α2

1(4
∫ 1

0 Y′3(x)Y′′′ 2(x)Y(x)dx +
∫ 1

0 Y′4(x)Y′′′ (x)Y(x)dx)]

I0[α
2
1

∫ 1
0 Y′′ (x)Y(x)dx−

∫ 1
0 Y2(x)dx] + I2[

∫ 1
0 Y′′ (x)Y(x)dx− α2

1

∫ 1
0 Y(IV)(x)Y(x)dx]

The prime denotes the derivative with respect to x.
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