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Abstract: The traditional combination forecasting model has good forecasting effect, but it needs
precise historical data. In fact, many random events are uncertain, and much of the data are imprecise;
sometimes, historical data are lacking. We need to study combination forecasting problems by means
of uncertainty theory. Uncertain least squares estimation is an important technique of uncertain
statistics, an important way to deal with imprecise data, and one of the best methods to solve
the unknown parameters of uncertain linear regression equations. On the basis of the traditional
combination forecasting method and uncertain least squares estimation, this paper proposes two
kinds of uncertain combination forecasting models, which are the unary uncertain linear combination
forecasting model and the uncertain relative error combination forecasting model, respectively. We
set up several piecewise linear regression models according to the data of different periods and,
according to certain weights, These piecewise linear regression models are combined into a unary
uncertain linear combination forecasting model with a better forecasting effect. The uncertain relative
error combination forecasting model is a new forecasting model that combines the traditional relative
error linear forecasting model and the uncertain least squares estimation. Compared with the
traditional forecasting model, the model can better deal with the forecasting problem of imprecise
data. We verify the feasibility of the uncertain combination forecasting model through a numerical
example. According to the data analysis, compared with the existing model, the forecasting effect of
the proposed model is better.

Keywords: combination forecasting model; relative error; least squares estimation; uncertainty
theory; linear regression model

1. Introduction

Regression analysis is a forecasting method for data analysis based on the causal
relationship of changes in things; that is, according to the actual statistical data, through
mathematical calculation, the interdependent quantitative relationship between variables
is determined, and a reasonable mathematical model is established to calculate the future
value of variables. Linear regression is a statistical analysis method that uses regression
analysis in mathematical statistics to determine the interdependent quantitative relationship
between two or more variables, which is widely used. Linear regression analysis is mainly
used to analyze the observed values and fit a reasonable model. When a new value
appears, it can be forecast using this model. The least squares method is a mathematical
optimization technique, which is one of the most commonly used methods to solve the
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unknown parameters of linear regression. By minimizing the sum of squares of errors, it can
find the best-matching data function and obtain a better linear regression fitting equation.
The combination forecasting model adopts different single-item forecasting models for the
same forecasting object, making full use of the information provided by various single
item forecasting methods, and assigning appropriate weighting coefficients to improve the
forecasting accuracy. There are many kinds of combination forecasting models, including
the linear regression model, exponential model, power function model, logistic model, and
neural network. Each model has its own characteristics and application scope. The idea of
combining various models to achieve a better forecasting effect is basis of the combination
forecasting. Many experts and scholars have conducted in-depth research on the linear
combination forecasting model, deduced some forecasting models, achieved good results
and carried out practical applications [1–5]. We know that precision and imprecision are
symmetrical, precise data are relative, and imprecision data are absolute. Many of the
observed data are imprecise. In other words, in practice, the obtained observation is often
not a definite value, and may even show an approximate range. At this time, the traditional
combination forecasting model cannot solve these problems. However, the uncertainty
theory proposed by Liu [6] can solve this problem.

The relation between certainty and uncertainty is symmetrical, and any random event
is uncertain. We need to study these problems by means of uncertainty theory. Liu [7]
founded the uncertainty theory and gradually improved it [6,8–10]. Uncertainty theory is a
branch of mathematics concerned with the analysis of degree of belief. Its main theories
include uncertain measure, uncertain variable, uncertain distribution, uncertain inverse
operation and expected value. Uncertainty theory has become an important branch of
axiomatic mathematics to deal with uncertainty problems in reality. It has been widely
used in uncertain planning, uncertain statistics, comprehensive evaluation and production
planning [11–13], and has achieved fruitful results, which has aroused great attention.
In 2010, Liu [6] began his research on uncertainty statistics, which is a methodology for
collecting and interpreting expert experience data through uncertainty theory. Uncer-
tainty statistics mainly include uncertain regression equation, uncertain estimation and
uncertain hypothesis testing. Based on the keen interest in uncertain regression equations,
many uncertain regression models have been proposed by experts and scholars [14–18].
Yao and Liu [19] proposed the least squares estimation to solve the unknown parameters of
the uncertain regression equation. Wang et al. [20–22] proposed two new uncertain linear
regression models. Shi et al. [23] proposed total least squares estimation model based on
uncertainty theory. Uncertainty statistics also have real applications; when COVID-19 was
spreading rapidly in most countries around the world, Liu Z. [24] proposed an uncertain
growth model for the cumulative number of COVID-19 infections in China.

It is not easy to build a scientific forecasting model, because whether the forecasting
model is scientific depends on the accuracy of the forecasting results on the one hand,
and on the simplicity of the model itself on the other. However, these two aspects are
contradictory: when the model is simple, the forecasting results are often not too accurate;
when the forecasting is relatively accurate, the model is not too simple. On the basis of
the previous research [3–5] and uncertainty theory, this paper puts forward two kinds of
uncertain combination forecasting models, which are the unary uncertain linear combi-
nation forecasting model and the uncertain relative error combination forecasting model.
In general, the newer the data information, the greater the impact of the given data on
the model, but the historical data are also a factor affecting the accuracy of the model.
According to the principle of minimum error, the unary uncertain linear combination
forecasting model combines the piecewise linear regression of the data corresponding to
different periods into a prediction model with higher accuracy. The uncertain relative
error combination forecasting model is based on the least squares principle and relative
error, combined with the uncertainty theory, which can better deal with the regression and
forecasting of imprecision data. The two kinds of uncertain linear combination forecasting
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models can be used for both imprecise data and precise data, and the forecasting effect of
the models is very good.

In this paper, we propose the unary uncertain linear combination forecasting model
and the uncertain relative error combination forecasting model. Both of these models can
solve the regression equation of imprecise observation data better, and the forecasting
effect is better. The main organizational structure is as follows: In Section 2, we propose
the unary uncertain linear combination forecasting model. This model aims to establish
several piecewise linear regression models according to the data of different periods, and
combine the piecewise linear regression into an uncertain combination forecasting model.
In Section 3, we propose the uncertain relative error combination forecasting model. This
model is a new model, which combines relative error and uncertainty theory together
and has a good forecasting effect. In the Section 4, the feasibility of the uncertain linear
regression combination forecasting model is verified by numerical example. The forecasting
effect of the model is good. Finally, we summarize the proposed model and point out the
future research direction.

2. Uncertain Regression Model

Certainty and uncertainty are symmetrical, and precision and imprecision are also
symmetrical. In order to resolve uncertainty problems such as imprecise data, Liu [7]
founded uncertainty theory. The main content of uncertainty theory includes the basic
theory of uncertainty variable, uncertainty measure and uncertainty distribution, as well
as the calculation methods of uncertainty operational laws and expected value. If you are
interested in uncertainty theory and uncertainty statistics, please study Reference [10]. In
this section, we mainly introduce the uncertain least squares estimation method of the
uncertain regression equation.

Assume that (x1, x2, · · · , xn) is an independent variables vector, and y is a dependent
variable. If the functional relationship is between (x1, x2, · · · , xn), then y can be expressed
by a regression model

y = f (x1, x2, · · · , xn | β) + ε, (1)

where β is an unknown vector of parameters, ε is a disturbance term and ε is an uncertain
variable. If the regression equation fits well, its expected value E[ε] should be 0 [10].

In particular, Liu [10] call

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε (2)

a linear regression model.
Assume that we have a set of imprecisely observed data,

(x̃i1, x̃i2, · · · , x̃in, ỹi), i = 1, 2, · · · , m (3)

where x̃i1, x̃i2, · · · , x̃in, ỹi are independent uncertain variables with regular uncertainty
distributions Φi1, Φi2, · · · , Φin, Ψi, i = 1, 2, · · · , m, respectively.

Yao-Liu [19] proposed the least squares estimate of unknown parameter β of linear
regression model. The parameter β is the solution of the following minimization problem

min
β

m

∑
i=1

E[(ỹi − f (x̃i1, x̃i2, · · · , x̃in | β))2]. (4)

If the minimization solution is β∗, then the fitted regression equation is determined by
y = f (x1, x2, · · · , xn | β∗ ). Then, for each index i(i = 1, 2, · · · , m), the term

ε̃i = ỹi − f (x̃i1, x̃i2, · · · , x̃in | β∗) (5)

is called the ith residual.
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Let the disturbance term ε is uncertain variable, its expected value and variance can
be estimated as

ê =
1
n

m

∑
i=1

E[ε̃i], (6)

and

σ̂2 =
1
n

m

∑
i=1

E[(ε̃i − ê)2], (7)

where ε̃i are the ith residual, i = 1, 2, · · · , m, respectively [25].
Let (x1, x2, · · · , xn) be a new independent variables vector; the forecast uncertain

variable of dependent variable ŷ is

ŷ = f (x1, x2, · · · , xn | β∗) + ε̂, ε̂ ∼ N (ê, σ̂). (8)

Lio-Liu [25] suggested that the forecast value is defined as the expected value of the
uncertain variable ỹ, i.e.,

û = f (x1, x2, · · · , xn | β∗) + ê. (9)

Taking α (e.g., 95%) as the confidence level, the confidence interval of dependent
variable ỹ is

û± σ̂
√

3
π

ln
1 + α

1− α
. (10)

3. Unary Uncertain Linear Regression Combination Forecasting Model

In this section, we derive the unary uncertain linear combination forecasting model,
which is abbreviated as UULCFM. We all know that timely updated data have a greater
effect on the forecasting model, so when establishing the forecasting model scientifically, we
should fully consider the changes in time and conditions. The data information of different
periods has different influences on the model and recent data information is obviously more
valuable than long-term data information. The idea of UULCFM is to establish m regression
models by discarding a certain amount of previous historical data according to the existing
data, and then assemble m regression models into a forecasting model according to the
principle of minimum error.

Assume that (x̃i, ỹi) (i = 1, 2, · · · , n) be a set of imprecise data, where x̃i, ỹi are independent
uncertain variables with regular uncertainty distributions Φi, Ψi(i = 1, 2, · · · , n), respectively.
We always assumed that there is a linear relationship between x̃i and ỹi (i = 1, 2, · · · , n),
and y can be expressed by an uncertain regression model y = α + βx + ε, where α, β are
unknown parameters, and ε is an uncertain disturbance term.

The main steps of the UULCFM are as follows.

Step 1. For the original n sets of data, we obtained the following unary linear regression
model using uncertain least squares estimation.

y1 = α1 + β1x, (11)

where α1 and β1 are unknown parameters.
Step 2. Discarding the first N1 sets of data, we can obtain the following unary linear regres-

sion model for the remaining n− N1 sets of data through least squares estimation.

y2 = α2 + β2x. (12)

where α2 and β2 are unknown parameters, N1 is positive integer and N1 < n.
Step 3. Discarding the first N2 sets of data, we can obtain the following unary linear regres-

sion model for the remaining n− N2 sets of data through least squares estimation.

y3 = α3 + β3x. (13)



Symmetry 2023, 15, 1379 5 of 12

where α3 and β3 are unknown parameters. Both N1, N2 are positive integers, and
N1 < N2 < n.

By analogy, we can obtain the mth unary linear regression equation.
Step m. Discarding the first Nm−1 sets of data, we can obtain the following unary linear

regression model for the remaining n− Nm−1 sets of data through least squares estimation.

ym = αm + βmx. (14)

where αm and βm are unknown parameters. Both N1, N2, · · · , Nm−1 are positive integers,
and N1 < N2 < · · · < Nm−1 < n.

In this way, m unary linear regression models are obtained as follows,

yi = αi + βix, i = 1, 2, 3, · · · , m. (15)

where αi, βi are unknown parameters.
Each regression equation of Equation (5) is fitted to the remaining n− Nm−1 sets of

data, and the generated errors are, respectively,

εij = yij − ỹj,

i = 1, 2, 3, · · · , m, j = Nm, Nm+1, · · · , n.
(16)

Since ỹi, i = 1, 2, · · · , n is a set of imprecise data, Equation (6) is deformed into the
following form according to the uncertain expected value formula [10].

εij = yij − E[ỹj] = yij −
∫ 1

0
Ψ−1

j (α)dα, i = 1, 2, 3, · · · , m, j = Nm, Nm+1, · · · , n. (17)

The purpose of this paper is to find m numbers k1, k2, k3, · · · , km that satisfy
k1 + k2 + k3 + · · ·+ km = 1. Then, we construct the composite model

y =
m

∑
i=1

kiyi. (18)

This minimizes the sum of the squares R =
n
∑

j=Nm

ε j of error εij = yij − E[ỹj],

i = 1, 2, 3, · · · , m, j = Nm, Nm+1, · · · , n. This model is called the linear regression combina-
torial model.

We know from the above derivation

ε j = yj − E[ỹj] =
m

∑
i=1

kiyij −
m

∑
i=1

kiE[ỹj] =
m

∑
i=1

ki[yij − E[ỹj]] =
m

∑
i=1

kiεij

= [ε1j, ε2j, · · · , εmj][k1, k2, k3, · · · , km]
T = [k1, k2, k3, · · · , km][ε1j, ε2j, · · · , εmj]

T .

(19)

So,

ε2
j = [k1, k2, k3, · · · , km][ε1j, ε2j, · · · , εmj]

T [ε1j, ε2j, · · · , εmj][k1, k2, k3, · · · , km]
T

= [k1, k2, k3, · · · , km]


ε2

1j ε1jε2j · · · ε1jεmj

ε1jε2j ε2
2j · · · ε2jεmj

· · · · · · · · · · · ·
ε1jεmj ε2jεmj · · · ε2

mj

[k1, k2, k3, · · · , km]
T .

(20)
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Therefore, we obtain

R =
n

∑
i=Nm

ε2
j = [k1, k2, k3, · · · , km]

n
∑

i=Nm

ε2
1j

n
∑

i=Nm

ε1jε2j · · ·
n
∑

i=Nm

ε1jεmj

n
∑

i=Nm

ε1jε2j
n
∑

i=Nm

ε2
2j · · ·

n
∑

i=Nm

ε2jεmj

· · · · · · · · · · · ·
n
∑

i=Nm

ε1jεmj
n
∑

i=Nm

ε2jεmj · · ·
n
∑

i=Nm

ε2
mj


[k1, k2, k3, · · · , km]

T .

(21)

Denoted as

K = [k1, k2, k3, · · · , km],

E =



n
∑

i=Nm

ε2
1j

n
∑

i=Nm

ε1jε2j · · ·
n
∑

i=Nm

ε1jεmj

n
∑

i=Nm

ε1jε2j
n
∑

i=Nm

ε2
2j · · ·

n
∑

i=Nm

ε2jεmj

· · · · · · · · · · · ·
n
∑

i=Nm

ε1jεmj
n
∑

i=Nm

ε2jεmj · · ·
n
∑

i=Nm

ε2
mj


.

(22)

There are
R = K · E · KT . (23)

Assuming that
U = [1, 1, · · · , 1]T . (24)

So, the linear regression combination model becomes the problem of finding the
minimum value of R = K · E · KT under the constraint condition K ·U = 1.

We use the Lagrange multiplier method to solve the conditional extremum. We
construct the Lagrange function as follows

L = K · E · KT + λ(KU − 1). (25)

The Lagrange function L is a binary elementary function and the minimum point is
the stagnation point of the function. If we take the first partial derivative of Lw.r.tK, then
we obtain

∂L
∂K

= 2E · KT + λU = 0. (26)

If we solve the Equation (26), we get

KT = −1
2

λE−1U. (27)

According to constraint K ·U = 1, we can solve Equation (27) and obtain

KT =
E−1U

UTE−1U
, λ =

−2
UTE−1U

. (28)

For m numbers m , numbers k1, k2, k3, · · · , km satisfy k1 + k2 + k3 + · · ·+ km = 1. Thus,

the linear regression combination model y =
m
∑

i=1
kiyi was obtained.
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The derivation process of the UULCFM involves the matrix inverse and matrix ele-
mentary transformation, which requires readers to have a certain matrix foundation and
linear algebra foundation.

4. Uncertain Relative Error Linear Combination Forecasting Model

In this section, we derive the uncertain relative error linear combination forecasting
model, which is abbreviated as UURELCFM. Suppose that we have a set of imprecise data
X = (x1, x2, · · · , xn)T . where x̃1, x̃2, · · · , x̃n ,ỹ are independent uncertain variables with
regular uncertainty distributions Φ1, Φ2, · · · , Φn, Ψ, respectively.

The basic principles of UURELCFM are as follows. The forecasting result of the ith
(i = 1, 2, . . . , m) forecasting method is Xi = (x1i, x2i, · · · , xni)

T . The linear combination of
the m forecasting result is

Y = (y1, y2, · · · , yn)
T = ω1X1 + ω2X2 + · · ·+ ωmXm. (29)

The relative error between the forecasting value and the original data can be defined as

E = (e1, e2, · · · , en)
T . (30)

Among them,

ej =
|yj − x̃j|
|x̃j|

=

|
m
∑

i=1
ωixji − x̃j|

|x̃j|
= |

m

∑
i=1

ωi
xji

x̃j
− 1|, j = 1, 2, · · · , n. (31)

Since (x̃1, x̃2, · · · , x̃n, ỹ)T nleads toimprecise data, we have to solve Equation (31) by
means of uncertain expectations [10].

ej = |
m

∑
i=1

ωiE[
xji

x̃j
]− 1| = |

m

∑
i=1

ωixji

∫ 1

0

1
Φ−1

j (1− α)
dα− 1|, j = 1, 2, · · · , n. (32)

The uncertain relative error linear combination forecasting model I (URELCFM I) with
the minimum sum of squares of relative errors is

minQ =
n

∑
j=1

e2
j , (33)

and the constraint of the model is
m

∑
i=1

ωi = 1. (34)

Denoted as

Yi = (y1i, y2i, · · · , yni)
T = (E[

x1i
x̃1

]− 1, E[
x2i
x̃2

]− 1, · · · , E[
xni
x̃n

]− 1)T

= (x1i

∫ 1

0

1
Φ−1

1 (1− α)
dα− 1, x2i

∫ 1

0

1
Φ−1

2 (1− α)
dα− 1,

· · · , xni

∫ 1

0

1
Φ−1

n (1− α)
dα− 1)T ,

(35)
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and
R = [1, 1, · · · , 1]T , W = [ω1, ω2, · · · , ωn]

T ,

Y =


YT

1 Y1 YT
1 Y2 YT

1 Y3 · · · YT
1 Ym

YT
2 Y1 YT

2 Y2 YT
2 Y3 · · · YT

2 Ym
YT

3 Y1 YT
3 Y2 YT

3 Y3 · · · YT
3 Ym

· · · · · · · · · · · · · · ·
YT

mY1 YT
mY2 YT

mY3 · · · YT
mYm

.
(36)

The sum of squares of relative errors is

Q =
n

∑
j=1

e2
j =

n

∑
j=1

(
m

∑
i=1

ωiE[
xji

x̃j
]− 1)2 =

n

∑
j=1

(
m

∑
i=1

ωiE[
xji

x̃j
]−

m

∑
i=1

ωi)
2

=
n

∑
j=1

[
m

∑
i=1

ωi(E[
xji

x̃j
]− 1)]2 =

n

∑
j=1

[
m

∑
i=1

ωiyji]
2 =

n

∑
j=1

[WT(yj1, yj2, · · · , yjm)
T ]2

=
n

∑
j=1

WT(yj1, yj2, · · · , yjm)
T(yj1, yj2, · · · , yjm)W = WTYW.

(37)

Equation (33) is transformed into

minQ = WTYW, (38)

and the constraint is transformed into

RTW = 1. (39)

According to the Lagrange multiplier method, the optimal coefficient W∗ is

W∗ =
Y−1R

RTY−1R
. (40)

The solution of model I sometimes has a negative component, which does not achieve
the expected effect of the linear combination forecasting model. In order to overcome the
limitations of URELCFM I, we put forward an uncertain combination forecasting model
with the minimum sum of squares of relative errors of non-negative weights, namely, the
uncertain relative error linear combination forecasting model II (URELCFM II)

minQ =
n

∑
j=1

e2
j , (41)

and the constraint of the model is

m

∑
i=1

ωi = 1, ωi ≥ 0, i = 1, 2, · · · , m. (42)

According to the derivation of URELCFM I, we can obtain

minQ = WTYW, (43)

and the constraint is transformed into

RTW = 1, W ≥ 0. (44)

URELCFM II belongs to quadratic convex programming and can be solved by the
simplex algorithm of quadratic convex programming. This method needs to be solved
by the linear programming method of finite number or can also be solved by MATLAB
optimization toolbox.
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Both URELCFM I and URELCFM II require that the sum of the weighting coefficients
is 1. In fact, there is no need for this limitation. The weight can also be negative, and the
goal is to minimize the sum of squares of the combined forecasting errors. Although it is
controversial that the weight is negative, it is also common from a mathematical perspective;
for example, multiple regression often has negative coefficients. By removing the limitation
of the weighting coefficient, we can obtain the uncertain relative error linear combination
forecasting model III (URELCFM III) with the minimum sum of squares of relative errors

minQ =
n

∑
j=1

e2
j . (45)

Define
Zi = (z1i, z2i, · · · , zni)

T = (E[
x1i
x̃1

], E[
x2i
x̃2

], · · · , E[
xni
x̃n

])T

= (x1i

∫ 1

0

1
Φ−1

1 (1− α)
dα, x2i

∫ 1

0

1
Φ−1

2 (1− α)
dα,

· · · , xni

∫ 1

0

1
Φ−1

n (1− α)
dα)T , i = 1, 2, · · · , m.

(46)

The sum of squares of relative errors is

Q =
n

∑
j=1

e2
j =

n

∑
j=1

(
m

∑
i=1

ωiE[
xji

x̃j
]− 1)2 =

n

∑
j=1

(
m

∑
i=1

ωizji − 1)2. (47)

Q in Equation (47) is an elementary function. In order to solve the minimum value of
Q, we take the partial derivative of ωi(i = 1, 2, · · · , m and equal to 0, respectively, to obtain
the following equations

ω1

n

∑
i=1

Z2
i1 + ω2

n

∑
i=1

Zi1Zi2 + ω3

n

∑
i=1

Zi1Zi3 + · · ·+ ωm

n

∑
i=1

Zi1Zim =
n

∑
i=1

Zi1,

ω1

n

∑
i=1

Zi2Zi1 + ω2

n

∑
i=1

Z2
i2 + ω3

n

∑
i=1

Zi2Zi3 + · · ·+ ωm

n

∑
i=1

Zi2Zim =
n

∑
i=1

Zi2,

ω1

n

∑
i=1

Zi3Zi1 + ω2

n

∑
i=1

Zi3Zi2 + ω3

n

∑
i=1

Z2
i3 + · · ·+ ωm

n

∑
i=1

Zi3Zim =
n

∑
i=1

Zi3,

· · ·

ω1

n

∑
i=1

ZimZi1 + ω2

n

∑
i=1

ZimZi2 + ω3

n

∑
i=1

ZimZi3 + · · ·+ ωm

n

∑
i=1

Z2
im =

n

∑
i=1

Zim.

(48)

Denoted as

Z =


ZT

1 Z1 ZT
1 Y2 ZT

1 Z3 · · · ZT
1 Zm

ZT
2 Z1 ZT

2 Z2 ZT
2 Z3 · · · ZT

2 Zm
ZT

3 Z1 ZT
3 Z2 ZT

3 Z3 · · · ZT
3 Zm

· · · · · · · · · · · · · · ·
ZT

MZ1 ZT
mZ2 ZT

mZ3 · · · ZT
mZm

,

M =


ZT

1 R
ZT

2 R
ZT

3 R
· · ·

ZT
mR

.

(49)

We express the above equations by matrix equations, and obtain

ZW = M. (50)
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The matrix Z is invertible and the solution W is

W = Z−1M. (51)

URELCFM I has more constraints than URELCFM III, and the accuracy of URELCFM I
is lower than that of URELCFM III, while URELCFM II has more constraints than UREL-
CFM I. Therefore, URELCFM III has the highest accuracy, that is, the sum of relative error
squares QIII ≤ QI ≤ QII.

5. Numerical Example

To verify the feasibility and effectiveness of the model proposed in this paper, we
provide a numerical example of imprecise data. Moreover, we followed the numerical
analysis method for the disturbance term in Reference [25], calculated the expected values
and variance of the disturbance term, and forecasting and solved the confidence interval.
The numerical analysis results show that the model proposed in this paper can lead to
better forecasting data.

Assuming that (x̃i, ỹi), i = 1, 2, · · · , 8 are imprecise data provided in Table 1, where
x̃i, ỹi, i = 1, 2, · · · , 8 are independent linear uncertain variables with regular uncertainty
distributions Φi and Ψi, i = 1, 2, · · · , 8, respectively.

Table 1. Imprecise data (Linear uncertainty distribution).

i 1 2 3 4

x̃i L (1, 3) L (3, 5) L (5, 7) L (7, 9)

ỹi L (4, 6) L (5, 6) L (7, 9) L (10, 12)

i 5 6 7 8

x̃i L (9, 11) L (11, 13) L (13, 15) L (15, 17)

ỹi L (12, 14) L (15, 16) L (20, 22) L (18, 20)

We carried out linear regression using the uncertain uncertain slope mean method
(USMM) [20] and uncertain equation deformation method (UEDM) [21] respectively, and
then solved the linear regression equations according to the combination forecasting model
proposed in this paper. The results are shown in Table 2.

Table 2. The linear regression equations.

Model Linear Regression Equations

UEDM y = 1.6258 + 1.1805x
USMM y = 1.5406 + 1.1901x

UULCFM y = 1.5336 + 1.1906x
URELCFM I y = 1.5346 + 1.1906x
URELCFM II y = 1.5321 + 1.1907x
URELCFM III y = 1.5355 + 1.1905x

It can be seen from Table 2 that there are some differences in the coefficients of the
linear regression equation of USMM and UEDM. The coefficients of the linear regression
equation of the model proposed in this paper are almost the same, the stability of the model
is strong, and the difference in fitting effect is small, which can be ignored.

The estimated expected values and estimated variances of the each model disturbance
term are shown in Table 3.

As can be seen from Table 3, the estimated expected values of the disturbance terms
of the URELCFM I, URELCFM II and URELCFM III are all 0.0000, and the variance is
relatively small, indicating that the three models have a better fitting effect and better
forecast effect, and URELCFM III has the best performance.
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Table 3. The expected value and variance in the disturbance term.

Model Expected Values Variances

UEDM −0.2124 12.3274
USMM −0.0120 5.6523

UULCFM 0.0080 4.4235
URELCFM I 0.0000 2.2146
URELCFM II 0.0000 2.4678
URELCFM III 0.0000 1.6131

We forecast the data according to the URELCFM III and obtained the confidence
interval. We assumed that x̃ ∼ L (17, 19) is a new imprecise form of data, and we take
the confidence level to be α = 95%. According to References [25], the forecast value and
confidence interval were obtained as shown in Table 4.

Table 4. The forecast value and confidence interval.

Model Forecast Value Confidence Interval

URELCFM III 22.9645 22.9645 ± 2.5666

From the perspective of numerical examples, all four models proposed in this paper
are feasible. From the perspective of data analysis and comparison with existing models,
the prediction effect of the four models proposed in this paper is better.

6. Conclusions

Traditional forecasting models all require data to be precise. In fact, statistics can be
imprecise. For example, after the college entrance examination, we invited a teacher to
estimate the score of a certain candidate. If the teacher believes that the candidate’s score is
bound to exceed 500, we would obtain an expert’s experience data (500, 0), if the teacher
thinks the candidate’s score is less than 520 is 0.3, we obtain an expert’s experience data
(520, 0.3), if the teacher thinks the candidate’s score is less than 550 is 0.6, we obtain an
expert’s experience data (550, 0.6), if the teacher thinks the candidate’s score is less than
580 is 0.8, we obtain an expert experience data (580, 0.8), and the teacher believes that the
candidate will score no higher than 600, we obtain an expert experience data (600, 1). This
gives us five pieces of expert experience data (500, 0), (520, 0.3), (550, 0.6), (580, 0.8), (600, 1),
all of which are imprecise data.

Based on traditional combination forecasting methods and uncertainty theory, this
paper proposes two kinds of uncertain combination forecasting models. The forecasting
models proposed in this paper are all aimed at imprecise data, and they rely on uncertainty
theory when solving. Univariate uncertain linear combination forecasting model is a
relatively basic linear model. It establishes several piecewise linear regression models
based on data in different periods and combines them into an uncertain combination
forecasting model with high accuracy. The uncertain relative error combination forecasting
model is based on the principle of minimizing the sum of squares of relative errors, setting
weight restrictions, and obtaining three kinds of uncertain relative error combination
forecasting models with good forecasting results. The four models proposed in this paper
are all feasible, and the forecasting effect of the models proposed in this paper is better than
the existing models obtained through data analysis.

The numerical example in this paper is a univariate linear forecasting problem, and the
model solution and data analysis are not too complicated. The derivation and calculation
of multivariable uncertain linear combination forecasting model are relatively complex,
and can only be realized with the help of computer programs or MATLAB programming.
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