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Abstract: Bearings are the backbone of industrial machines that can shut down or damage the
whole process when a fault occurs in them. Therefore, health diagnosis and fault identification
in the bearings are essential to avoid a sudden shutdown. Vibration signals from the rotating
bearings are extensively used to diagnose the health of industrial machines as well as to analyze
their symmetrical behavior. When a fault occurs in the bearings, deviations from their symmetrical
behavior can be indicative of potential faults. However, fault identification is challenging when
(1) the vibration signals are recorded from variable speeds compared to the constant speed and (2) the
vibration signals have diverse fault depths. In this work, we have proposed a highly accurate Deep
Convolution Neural Network (DCNN)-Long Short-Term Memory (LSTM) model with a SoftMax
classifier. The proposed model offers an innovative approach to fault diagnosis, as it obviates
the need for preprocessing and digital signal processing techniques for feature computation. It
demonstrates remarkable efficiency in accurately diagnosing fault conditions across variable speed
vibration datasets encompassing diverse fault conditions, including but not limited to outer race fault,
inner race fault, ball fault, and mixed faults, as well as constant speed datasets with varying fault
depths. The proposed method can extract the features automatically from these vibration signals
and, hence, are excellent to enhance the performance and efficiency to diagnose the machine’s health.
For the experimental study, two different datasets—the constant speed with different fault depths
and variable speed rotating machines—are considered to validate the performance of the proposed
method. The accuracy achieved for the variable speed rotating machine dataset is 99.40%, while for
the diverse fault dataset, the accuracy reaches 99.87%. Furthermore, the experimental results of the
proposed method are compared with the existing methods in the literature as well as the artificial
neural network (ANN) model.

Keywords: vibration signals; variable-speed rotating machine; artificial neural network; deep convolution
neural network; long short-term memory; softmax; deep learning

1. Introduction

Different sorts of rotating machines are used in the industry that are equipped with
bearings as a fundamental rotating element. These rotating machines include industrial
motors, compressors, fans, turbines, and so on [1-4]. It is crucial for the rotating machines
to work smoothly in the industrial environment, without which a sudden switch-off could
occur in the entire industrial processing. To avoid this situation, predictive maintenance
of the rotating machines is required. Vibration signals from the rotating element bearings
possess efficient information about the rotating machine conditions. Vibration signals from
rotating machines are evaluated using different digital signal processing (DSP) techniques
and machine learning (ML) technologies to detect the condition of the machine. The
symmetrical behavior of these signals provides valuable insights into the functioning
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and condition of the bearings. When a fault occurs in the bearings, deviations from their
symmetrical behavior can be indicative of potential issues or faults. Therefore, by examining
the symmetrical characteristics of the vibration signals, it becomes possible to identify and
diagnose faults accurately, allowing for timely maintenance and prevention of sudden
shutdowns or damages to the entire industrial process.

DSP methods are employed to extract relevant information from vibration signals.
The vibration signals acquired from a rotating machine possess background noise and un-
wanted signals, which cause a low signal-to-noise ratio, and, consequently, it is challenging
to diagnose the condition of the rotating machines [5]. To solve this issue, filtering is used
to reduce noise or isolate certain frequency ranges of interest. Envelope analysis using
power spectrum density (PSD) is also widely employed to determine the faults in rotating
machines [6], but the vibration signals must have a high signal-to-noise ratio. Alternatively,
kurtosis is an excellent statistical index to determine the transient in the vibration signal.
Spectral Kurtosis (SK) [7-9] computes kurtosis over each frequency band in the vibration
signal. In the literature, different results are presented for the fault diagnosis in vibration
signals using kurtosis and SK [5,9-11]. However, it is challenging to determine the faults
and machine conditions because of the non-ideal vibration signals.

ML technologies, on the other hand, are employed to train algorithms on labeled
data to categorize the condition of the machine as normal or abnormal based on vibration
patterns. Clustering, decision trees, neural networks, and support vector machines are
some of the approaches that are used in ML techniques [12-18]. Furthermore, intelligent
health diagnosis efficiently detects the faults in the rotating machine and generates results
on its own using ML methods [19,20]. These intelligent methods are usually composed of
two main steps: the first one is feature learning using a neural network or signal processing,
and the second one is classification using pattern reorganization methods [21].

Moreover, deep learning methods have shown better performance in many fields
including image classification, object detection, segmentation, and speech precogitation [22].
Deep learning methods can handle high-dimensional complex data and learn features
because of their multi-layer neural networks [23-25]. Deep learning is a form of ML
that includes training multiple-layer artificial neural networks to discover complicated
patterns and correlations in data. Deep learning approaches come in a variety of flavors,
including [26]:

*  Autoencoders: These are neural networks that have been trained to learn a compressed
representation of input data. The network is initially trained to encode the input data
into a lower-dimensional representation before decoding it back into its original format.
Autoencoders are frequently used to extract features and reduce dimensionality.

*  Deep belief networks: These are generative models with numerous layers of hidden
units. Deep belief networks are trained through unsupervised learning and may be
utilized for image and voice recognition.

*  Deep Boltzmann machines: These are similar to deep belief networks, but they employ
a different form of model known as a Boltzmann machine. Deep Boltzmann machines
are also learned via unsupervised learning and may be utilized for tasks such as
collaborative filtering and anomaly detection.

*  Recurrent neural networks (RNNs) are neural networks that are designed to process
sequential input, such as text or time series data. RNNs include loops in their network
design that allow them to recall prior inputs and learn dependencies over time. RNNs
are frequently used for language modeling and speech recognition.

¢  Convolutional neural networks (CNNs): These are neural networks that employ
convolutional layers to learn spatial patterns in a picture or audio input. CNNs are
frequently used for object identification and speech recognition.

Many researchers have combined CNN with other methods to improve the perfor-
mance of fault diagnosis in rotating machines. For example, CNN is combined with
a hierarchical convolution network [27] and hierarchical symbolic analysis [28,29], re-
spectively, for bearing fault diagnosis. In [30], vibration signals are preprocessed using
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continuous wavelet transform and then CNN is applied to diagnose the condition. Fea-
ture alignment method is used in [31] with multiscale CNN and multivariate encoder
information-based CNN is applied in [32] for gearbox fault diagnosis. In [33], normalized
deep CNN (DCNN) is applied for imbalanced fault diagnosis, and in [23], DCNN is applied
to a noisy environment under different working loads.

Each of these deep learning approaches has advantages and disadvantages, and the
methods used are determined by the goals and data at hand. Among these methods, DCNN
is one of the most efficient methods for vibration fault diagnosis and prognosis in rotating
machines because of two reasons [21,34]. The first reason is that raw vibration data can
directly be applied to DCNN without manually extracting features because DCNN has the
ability to extract the features automatically from raw data. The second reason for DCNN’s
popularity is that it has better performance with less training data compared to other neural
network architectures [21,35]. However, the performance of DCNN is affected by raw
vibration datasets from variable-speed rotating machines and variations in fault depths.

To improve the performance of DCNN, different sorts of classifiers are reported in the
literature, including the Bayesian classifier, Artificial Neural Network (ANN), and Support
Vector Machine (SVM) [14,36-38]. The Bayesian classifier is a statistical classifier that uses
Bayes’ theorem to assess the likelihood of a data point belonging to a certain class based
on the likelihood of the attributes associated with that class. It is a simple and effective
classifier, but it implies that the characteristics are independent of one another and that
the feature distribution is known. ANNSs are a type of machine learning model that is
inspired by the structure and function of the human brain. ANNs are made up of linked
nodes or neurons that execute mathematical operations on input data to anticipate output.
Since they can learn complicated patterns and correlations in data, ANNSs are frequently
employed for categorization jobs. SVMs are a sort of supervised learning algorithm that is
used for classification and regression analysis. SVMs seek a hyperplane that best separates
the distinct classes in the input space. SVMs are frequently used for fault classification
because they are good at managing high-dimensional data and can manage non-linear
correlations between features.

Other classifiers that are commonly used for fault classification include decision trees,
random forests, and k-nearest neighbors (KNN). The choice of the classifier will depend on
the specific requirements of the task, such as the size and complexity of the dataset, the num-
ber of classes, and the desired level of accuracy and interpretability. The first two classifiers
work efficiently if enough training data are available; otherwise, their performance is poor.
On the other hand, SVM works efficiently with less training data because of its efficient
network generalization capability and high classification accuracy [39]. However, if the
data are redundant, the performance of SVM decreases because of its shallow structure [40].

Recently, researchers have been working on new techniques in order to analyze the
rotating machine conditions; however, the accuracy and sensitivity of vibration analysis
techniques, including digital signal processing and machine learning, can be affected by
changes in working conditions or by constraints such as limited sensor data, high levels of
noise, and complex vibration patterns. Furthermore, the above-mentioned literature review
relies on huge training data, which is challenging for rotating machines in real industrial
fault diagnosis environments. Moreover, there is little literature on condition diagnosis
for variable speed vibration data using CNN, and even less has been researched about
intelligent fault diagnosis for variable speed vibration data using DCNN.

The Long Short-Term Memory (LSTM) architecture excels at capturing and modeling
long-term dependencies, which is crucial for fault classification in variable-speed rotating
machines. The following are how LSTM addresses specific requirements in this context:

*  Variable-speed rotating machines generate sequential data where each time step is
influenced by the preceding ones. LSTM’s recurrent connections allow for the capture
of temporal dependencies in the data. By retaining information from previous time
steps in its memory cell, LSTM can learn and exploit the patterns and relationships
that exist across different speed regimes and time periods.
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*  Variable-speed machines produce data sequences of varying lengths depending on
the duration of operation or the occurrence of faults. LSTM is designed to handle
variable-length sequences as it processes data in a step-by-step manner, adapting to
the varying time lengths. This flexibility makes LSTM well-suited for accommodating
the dynamic nature of variable-speed rotating machines.

¢ LSTM'’s ability to recognize and learn speed-dependent features is crucial for fault
classification in variable-speed rotating machines. By training on historical data that
include speed information, LSTM can capture the relationships between speed and
fault characteristics. It can then leverage these learned associations to make accurate
fault predictions and classifications when new data are presented, considering the
specific speed regime of the machine.

¢  Faults in rotating machines can exhibit complex patterns that may be difficult to
detect using traditional techniques. LSTM’s architecture allows it to learn and model
complex relationships within the data. It can automatically extract relevant features,
recognize subtle fault patterns, and capture the interactions between speed variations
and fault signatures. This enables LSTM to provide accurate fault classifications even
in challenging scenarios.

By utilizing LSTM’s architecture, operators can leverage its ability to handle tempo-
ral dependencies, accommodate variable-length sequences, recognize speed-dependent
features, and learn complex fault patterns. This makes LSTM a suitable choice for fault
classification in variable-speed rotating machines. It can enhance the accuracy and relia-
bility of fault diagnosis, enabling timely maintenance actions and improving the overall
performance and longevity of the machines.

Motivated by the aforementioned literature, this paper proposes an efficient model
consisting of DCNN-LSTM with SoftMax classifier to diagnose the faults in raw vibration
signals. The proposed model is efficient for multiple fault diagnoses such as outer race fault,
inner race fault, ball fault, and mixed faults in vibration signals acquired from variable
speed rotating machines and diverse fault depths datasets. Different from the existing
DCNN models, the proposed model consists of DCNN and LSTM with SoftMax classifier
for multiple faults diagnosis and is efficient for both (1) variable speed rotating machines
where the vibration data were recorded when the speed of the rotating machine was first
increased and then decreased, and (2) a diverse fault depths dataset that consists of healthy
bearings, inner race faults, outer race faults, and ball faults with different fault depths.
The experimental results driven using the proposed model are compared with the existing
models in the literature, and it is concluded that, for both datasets, the proposed model is
more efficient in terms of accuracy to diagnose the different fault conditions.

The rest of the paper is arranged as follows. Section 2 includes the materials and
methods that describe the proposed model and experimental setups used to record the
vibration datasets. This section includes two different datasets utilized to validate the
proposed model. In Section 3, the simulation results are presented for both datasets. This
section also compares the results concluded for the proposed DCNN-LSTM model with the
existing models in the literature and the ANN model with SoftMax classifier to illustrate
the superiority of the proposed model over the existing models in the literature. Finally,
the conclusion of this research work is presented at the end.

2. Materials and Methods
2.1. Structure of DCNN Model

This section elaborates on the DCNN model with SoftMax classifier as depicted in
Figure 1. DCNN is the sub-branch of deep neural networks (DNNs). Recently, DCNNs
are extensively used in image processing, object detection, natural language processing,
and speech recognition. DCNN5s analyze spatial correlations between nearby pixels and
represent input data better than autoencoders and multilayer perceptrons. DCNN has
achieved great advances in image recognition research as a standard approach for collecting
data features in deep learning models. We have applied the DCNN-LSTM with the SoftMax
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classifier for fault classification in one-dimensional data from rotating bearings having
variable speed settings in this study. DCNN illustrated in Figure 1 has three fundamental
layers including the (i)convolutional layer, (ii) fully-connected layer, and (iii) output layer.

&
S
&

O
& = —
Feature Map. Max Pooling |
Training data ﬁ i
1 x N Kernel
Convolutional Layer Fully-connected Layer Output Layer

Figure 1. Block diagram of the DCNN model for fault classification in rotating machines.

The convolution layer is the essential layer in the DCNN that is equipped with a
kernel. The input vibration signals fed to the convolution layer are filtered to extract the
feature maps. To learn the multiple features, a convolutional kernel is used to perform the
convolutions with input signals. Convolution procedures produce a powerful feature map
in the convolution layer. By conducting local feature extraction on input data, the number of
network parameters and model complexity is minimized. The following is the convolution
formula:

m

ht) = (x*xw)(t) = Y, x(t—1)w(T); (1)

T=—m

where x € R" is the input vibration signal and w € R?"~! is the kernel.

The constructed feature map is then forwarded to the pooling layer, which is the
subsection of the convolutional layer as shown in Figure 1. The pooling layer reduces the
parameters and dimensions of the network by applying a down-sampling tool. A down-
sampling tool combines comparable features. Average pooling and maximum pooling are
two commonly used pooling techniques. In average pooling, the average value of the patch
is computed on the activation map, whereas in maximum pooling, the maximum value
of the patch is computed on the activation map. To compute the pooling, the following
expression is used:

xj = f(ﬁ?down(x?fl) + b?); )

where x]V»’ is the output, x;l_l is the input to the layer #n, and b;? is the network bias. The

operator down(.) represents the down-sampling tool, f(.) is the activation function, and
represents the network’s weight.

An activation function is a function that interacts with a neural network’s neurons and
is in charge of translating inputs to outputs. In the literature, different activation functions
are frequently used including the sigmoid, tanh, rectified linear unit (ReLU), and its deriva-
tives. The sigmoid and tanh functions are significant to the gradient vanishing problem
because they are saturated activation functions. ReLU, an unsaturated activation function,
on the other hand, partially eliminates gradient vanishing and accelerates convergence.
ReLU returns positive numbers precisely as they are, while instantly changing negative
values to zero. Following convolution, the ReLU function is computed. Negative input
causes ReLU activation to be zero and is defined as follows:

xifx >0
ReLU—{ 0ifx <0 ° ®)
A dying ReLU problem arises when the ReLU is used as an activation unit; if the input
is 0 or negative, the slope of the function is zero, and the network cannot be backpropagated
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or learned. To resolve this problem, the Leaky ReLU activation function can be used as
given below:

x ifx>0
Leaky ReLU = { Odxifx <0 ° 4)
The pooling layer sends the data features to the fully connected layer where a linear
transformation is applied to the input data x(*~1) through a weighted matrix w*. Where k
is the network of hidden layers. The outputs of the fully connected layer are influenced by
each input and can be represented as follows:

v = f@ 1), 5)

where b* represents the network offset.

SoftMax is also an activation function that is usually used at the output layer. The out-
put layer classifies the different sorts of predicted outputs. In this paper, DCNN also
possesses a SoftMax classifier at the output layer to perform this task. A classifier applies a
probability distribution to the input data to convert it into a vector form whose total sum is
one. Compared to the other classifiers, the SoftMax classifier computes quickly, is simple
to implement, and performs better. It can efficiently determine the probability P(y()=/ )
of x(0) for each label j,wherei =1,2,3,..,K, and x(@ and y(i) are the training set and its
corresponding labels, respectively; where i € M, and M is the total number of training
samples. Figure 2 shows the standard form of the SoftMax classifier.

1.2 0.02

4.8 0.89 Predicte:
2.1 (XN ammd Not-Predicted
0.8 0.02 Not-Predicted
14 0.02 Not-Predicted

SoftMax Function
Figure 2. SoftMax classifier.

The following hypothesis function estimates the probability of each label’s input data:

: :0) eei lei

. =2 . 9) 1 692 xU

(i)

f0° = : =<1 . |/ (6)
. EGka(’)

Py = K|x1;9) k=1 OFx

Ko o7 i
are the parameters of the SoftMax regression model and 6 }_ e’ W i
i=1
the normalized distribution such that the sum of this normalized distribution is equal to
one. In order to represent the probabilities for each class, this classifier function ensures

that the outputs are positive values between 0 and 1.

where [01,0,, ..., 0x]T

2.2. Structure of LSTM

LSTM is a type of recurrent neural network (RNN) architecture that is specifically
designed to handle and model sequential data. Figure 3 illustrates the structure of a typical
LSTM block. LSTM is particularly effective in capturing and learning long-term dependen-
cies and patterns in time series data, making it well-suited for time series vibration data.
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Figure 3. Structure of a typical LSTM block.

Traditional RNNs suffer from the vanishing gradient problem, which hinders their
ability to capture long-term dependencies. LSTM addresses this issue by introducing a
memory cell and a gating mechanism. The memory cell retains information over long
sequences, allowing the network to selectively remember or forget information based on
the input data.

The key components of an LSTM unit are the following:

e Cell State (c'): The cell state serves as the memory of the LSTM. It carries information
across time steps, allowing the network to maintain long-term dependencies.

e Input Gate (z'): The input gate controls the amount of new information that is added
to the cell state at each time step. It decides which parts of the input are relevant and
should be stored in the cell state.

e Forget Gate (z/): The forget gate determines which parts of the cell state should be
forgotten or discarded. It selectively removes information that is no longer relevant,
preventing the cell state from being cluttered with unnecessary information.

e Output Gate (z°): The output gate controls the amount of information that is output
from the cell state to the next layer or as the final prediction. It determines which parts
of the cell state are relevant for the current time step.

The following are the mathematical formulas of LSTM units:

z = tanh(w(x!, k1] 4 b) 7)
7 =o(w'[x!, kY] + b) (8)
2 =o(w/[x!, nt~ 1] 4+ b/) )
20 =0 (wO[xt, nt 1] 4 0) (10)

The cell state ¢’ is given by the sum of the Hadamard product (x) of forget gate and
the previous cell state and the Hadamard product of the input gate and cell update z.
Following is the formula of the cell state c':

=z w4 2wz (11)
Similarly, the new hidden state k' is given by:
ht = 20 x tanh(c); (12)
and the current output y' is given by:
y' = o(w'ht). (13)

The LSTM architecture enables the network to effectively capture and retain long-term
dependencies in sequential data. By selectively storing and forgetting information at each
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time step, the network can learn to recognize and leverage relevant patterns in the data,
even when they occur over long time spans.

In our research, we incorporate LSTM layers into our DCNN-LSTM model to capture
temporal dependencies in the vibration data. The LSTM layers act as a crucial component
for understanding the sequential nature of the signals, enabling our model to make accurate
fault classifications in variable-speed rotating machines and diverse fault depths.

2.3. Proposed Models

In the initial part of this section, the data segmentation process is examined in order
to create separate training and testing datasets. Subsequently, the development of the
proposed model takes place. This section further demonstrates the ANN model with
the SoftMax classifier, which is employed to compare the performance of the proposed
DCNN-LSTM model with the SoftMax classifier.

2.3.1. Data Segmentation

All vibration signals were divided into small sequences known as segments using
a sliding window. The length of the sliding window was 1000 which was moved left
with a stride of 200 to make the segments of the vibration signal as shown in Figure 4.
Each segment of the vibration signals was assigned the corresponding fault name as a tag.
The segmented data was then shuffled and divided into training and testing datasets with
70% and 30% of the total data segments, respectively.

Stride 1 2 o000

A—

——

Window Length

—

2
H

\/_

Training data 70%

[ 5]

| —

S—

F:

[}
. [ ]
* . —)
Kk J
W Testing data 30%
—

Figure 4. Data segmentation and training and testing dataset construction.

Shuffling is important before training the proposed model to improve the performance,
reduce bias, enhance generalization, optimize gradient descent, and mitigate overfitting.
These are detailed as follows:

*  Reduce bias: When the data are ordered in a certain way, such as being sorted by class
labels, it can introduce bias during training. Shuffling the data helps to ensure that the
model sees a diverse range of samples from different classes, reducing the potential
bias.

¢  Enhance generalization: If the data are not shuffled and there is a particular order or
pattern in the dataset, the model may learn to rely on that pattern instead of learning
the underlying relationships between features and labels. Shuffling the data helps to
break any sequential patterns and encourages the model to learn more generalized
representations.

*  Improve gradient descent optimization: Optimization algorithms like stochastic gradi-
ent descent (5GD) work by updating the model’s parameters based on mini-batches
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of data. Shuffling the data ensures that each mini-batch contains a random sample of
data, leading to more effective updates and faster convergence.

e  Mitigate overfitting: Shuffling the data helps to prevent overfitting by introducing
randomness in the training process. Overfitting occurs when a model becomes too
specialized in the training data and fails to generalize well to new, unseen data.
Shuffling the data helps to make the model more robust and less prone to overfitting.

2.3.2. DCNN-LSTM Model with SoftMax Classifier

The block diagram of the proposed DCNN-LSTM model is illustrated in Figure 5. We
designed a deep learning model consisting of Convolutional 1D (Conv1D) and LSTM layers
to effectively extract temporal and spatial features from the vibration data. The workings
of each layer in a general DCNN model and LSTM block are also elaborated on in the
previous section and given in Figures 1 and 3, respectively.

The proposed DCNN-LSTM model is more efficient compared to the existing models
in the literature as well as ANN in terms of accuracy of fault diagnosis using raw vibration
datasets from (1) variable speed rotating machines and (2) diverse fault depths datasets.
The proposed model used a kernel at the input layer that helps in the convolution and
construction of a feature map from the input signals.

—[ Convl ] Flatten ]_’[LSTM-I] Densel ] (a). Healthy
(b). IR Fault

(c). OR Fault
L] L (d). Ball Fault

Flatten [LSTM-Z [Densez l——ol Dense3 Output

Input
Figure 5. Block diagram of the proposed DCNN-LSTM model with SoftMax classifier.

The given architecture of the proposed model is given in Table 1. The CNN architecture
applies convolutions and pooling operations to extract features from the input data and
then uses dense layers for classification. ReLU activation functions are applied to introduce
non-linearity, while the SoftMax function produces a probability distribution over the
output classes.

Table 1. Proposed DCNN-LSTM model with SoftMax classifier.

Layer (Type) Activation Function = Output Shape  No. of Parameters
Layer 1 (Convolution) ReLU (None, 901, 64) 6464
Layer 2 (Convolution) ReLU (None, 852, 32) 102,432
Layer 3 (MaxPooling) - (None, 213, 32) 0
Layer 4 (Flatten) - (None, 6816) 0
Layer 5 (Reshape) - (None, 213, 32) 0
Layer 6 (LSTM) Sigmoid (None, 213, 64) 24,832
Layer 7 (LSTM) Sigmoid (None, 16) 5184
Layer 8 (Dense) ReLU (None, 100) 1700
Layer 9 (Dense) ReLU (None, 50) 5050
Layer 10 (Dense) SoftMax (None, 5) 255

The model starts with two Conv1D layers. The first Conv1D layer applies 64 filters
with a kernel size of 100 to capture important patterns in the input vibration signals.
The second Conv1D layer follows with 32 filters and a kernel size of 50 to further enhance
the learned features. The MaxPooling1D layer reduces the spatial dimensions of the output,
facilitating efficient information processing.

To bridge the gap between the CNN and LSTM layers, we used a Reshape layer
to adjust the output shape from the previous layers. This reshaping operation ensures
compatibility with the input requirements of the subsequent LSTM layer. In our model, we
reshaped the output to have a fixed number of time steps and 32 features.
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The LSTM layers are essential for capturing temporal dependencies in the vibration
data. We employed two LSTM layers to effectively model the sequential nature of the
signals. The first LSTM layer consists of 64 memory units and is configured to return
sequences, providing outputs for each time step. The second LSTM layer has 16 units and
does not return sequences, condensing the temporal information into a fixed-length repre-
sentation.

To further process the extracted features, we incorporated additional dense layers.
These fully connected layers transform the information from the previous layers into a
more abstract representation. The first dense layer has 100 units with ReLU activation,
which introduces non-linearity to the model. The second dense layer follows with 50 units,
aiding in the hierarchical abstraction of features.

For the final classification, we employed a dense output layer with a number of units
equal to the unique fault classes in the dataset. The SoftMax activation function was applied
to produce class probabilities, enabling multi-class fault classification.

Our model architecture was implemented using TensorFlow’s Keras APIL. The sum-
mary of the model reveals the layer-wise configuration, including the number of parameters
and the shapes of each layer’s output. Furthermore, the training process utilized a batch
size of 500 samples per iteration, and the model was trained for a total of 50 epochs.
The optimization algorithm employed was Adam, with a learning rate set to 0.005. The
proposed DCNN-LSTM model demonstrates the promising potential for fault classification
in variable-speed rotating machines by effectively leveraging both temporal and spatial
information from vibration datasets.

2.3.3. ANN Model with SoftMax Classifier

The block diagram of the ANN model is depicted in Figure 6. Each segment from the
training dataset was fed to the input layer of the ANN to train the model.

The developed ANN architecture is given in Table 2 and consists of five dense layers
with ReLU activation functions and a final dense layer with SoftMax activation function.
Here is a breakdown of each layer:

e Layer 1 (Dense): This layer has 1024 neurons with ReLU activation function. The out-
put shape of this layer is (None, 1024), where “None” indicates that the batch size can
be variable. The number of parameters in this layer is 1,025,024, which is calculated as
(input shape x number of neurons) + number of biases (1).

¢ Layer 2 (Dense): This layer has 512 neurons with ReLU activation function. The output
shape of this layer is (None, 512), and it has 524,800 parameters.

e Layer 3 (Dense): This layer has 256 neurons with ReLU activation function. The output
shape of this layer is (None, 256), and it has 131,328 parameters.

¢  Layer 4 (Dense): This layer has 128 neurons with ReLU activation function. The output
shape of this layer is (None, 128), and it has 32,896 parameters.

e Layer5 (Dense): This layer has 5 neurons with SoftMax activation function. The output
shape of this layer is (None, 5), which corresponds to the number of classes in the
classification task. The SoftMax function is used to convert the output of the previous
layer into a probability distribution over the classes. This layer has 645 parameters.

Health
assification

Figure 6. Block diagram of the ANN model for fault classification in rotating machines.

Training data

Output
ANN Layer
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Table 2. ANN model with SoftMax classifier.

Layer (Type) Activation Function Output Shape No. of Parameters
Layer 1 (Dense) RelLU (None, 1024) 1,025,024
Layer 2 (Dense) RelLU (None, 512) 524,800
Layer 3 (Dense) ReLU (None, 256) 131,328
Layer 4 (Dense) ReLU (None, 128) 32,896
Layer 5 (Dense) SoftMax (None, 5) 645

The ANN architecture is designed for fault diagnosis and is suitable for a classification
task with 5 classes. The ReLU activation functions are commonly used in deep learning
because they allow the network to learn nonlinear relationships between features and
labels, while the SoftMax function is used for multi-class classification problems to produce
a probability distribution over the possible classes.

2.4. Experimental Setups and Datasets
2.4.1. Variable Speed Dataset

The prototype model is presented in Figure 7. Experiments were carried out to acquire
vibration data from bearings running at time-varying speeds in order to validate the efficacy
of the proposed technique for bearing failure diagnosis under unknown time-changing
speed settings [41,42]. The acquired dataset is different from the existing datasets in the
literature that are recorded under constant speed settings. The datasets were collected
with healthy bearings, inner race fault, outer race fault, ball fault, and combination fault.
The shaft was moved by a variable-speed motor operated by the AC controller. Two ER16K
bearings were linked to the shaft; the one on the right side is healthy, and the one on the left
side is replaced with three distinct bearings for independent testing. An accelerometer (ICP
accelerometer, Model 623C01) was installed on the left side of the bearing housing to collect
vibration data. The data were acquired by the NI data acquisition board (NIUSB-6212BNC)
and sampled by LABVIEW. The sampling frequency is 200 kHz with a 10 s sampling
duration. The inner race and outer race fault frequencies are 5.43f, and 3.57f;, respectively,
where f; is the shaft rotational frequency. The parameters of the bearing are listed in Table 3
and the datasets are available at http://dx.doi.org/10.17632 /v43hmbwxpm.1, (accessed
on 1 January 2022).

’ Healthy
bearing

',7,57,;;7‘7
I

G

aoe® 4 m Test - :
f ; bearing 3
{ s 1. TR P N -
‘ -

Figure 7. Experimental setup [42].

Vibration signals were recorded using different faulty bearings with variable speeds.
In the undertaken datasets, the speed was first increased and then decreased gradually.
The vibration signals in the time domain can be visualized in Figure 8. These signals
consist of a vibration signal from a healthy bearing, a vibration signal with a ball fault,
a vibration signal with an inner race fault, a vibration signal with an outer race fault, and a
vibration signal with combined faults composed of inner race fault, outer race fault, and ball
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fault. Table 4 illustrates the experimental dataset from the variable-speed rotating machine.
The fault signals in the variable-speed rotating machines experienced a change in speed,
with the average rotating speed increasing from 14.5 Hz to 24 Hz and then decreasing to
18 Hz. This variability in speed introduces an additional level of complexity when it comes
to fault classification. In total, 49,975 segments were built from all vibration signals.

Table 3. ER16K bearing specification.

Description Variable Value

Number of balls n 9

Ball diameter d 7.94 mm

Pitch diameter D 38.52 mm
o 0

Bearing contact angle

Table 4. Variable-speed dataset.

Fault Class Rotating Speed

Healthy bearing First increased then decreased
Ball fault First increased then decreased
Inner race fault First increased then decreased
Outer race fault First increased then decreased
Combined fault First increased then decreased

. . . .
0 2 4 6 8 10
Time(s)

Magnitude
o

. © ;
L oo ;o=

Magnitude

(e

Ny

Magnitude
o

o
13
T

o
N
ES
> -
®
5

Time(s)
Figure 8. Raw vibration signals with variable speed conditions: (a) vibration signal from healthy
bearing, (b) vibration signal with ball fault, (c) vibration signal with inner race fault, (d) vibration
signal with outer race fault, and (e) vibration signal with combined faults.
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The dimensionality increases when all the vibration signals are treated together for
fault classification. However, to visualize all vibration signals together in a 2D graph,
the t-Distributed Stochastic Neighbor Embedding (t-SNE) tool was used. t-SNE reduces
the dimensionality to visualize high-dimensional datasets. The resultant 2D graph can be
seen in Figure 9. From Figure 9, it can be seen that all the faults are mixed with each other
and difficult to distinguish.

30
Fault

Ball_Fault
Combination_Fault
Healthy_Bearing
Inner_Race_Fault
_Fault

20

=
o o
e e e

t-SNE component 2

|
=
o

=20

-20 -10 0 10 20 30
t-SNE component 1

Figure 9. Visualization of all fault types for variable speed rotating machine using t-SNE.

2.4.2. Diverse Fault Depths Dataset

The dataset used in this study is derived from the Case Western Reserve University
(CWRU). It comprises vibration signal data obtained from an experimental setup featuring
a 2-horsepower induction motor equipped with a deep ball bearing of type 6205-2RS JEM
SKM, as depicted in Figure 10. The vibration data were collected using accelerometers with
a sampling frequency of 12 kHz, while the motor operated under a load.

Figure 10. CWRU experimental setup.

This dataset encompasses various fault conditions, including healthy bearings, ball
faults, inner race faults, and outer race faults. Each fault category consists of multiple sub-
datasets, which were collected at different fault severities. These severity levels represent
different degrees of machinery damage.

The CWRU vibration datasets have gained significant recognition in the research
community and are widely employed for the development and evaluation of fault detection
and diagnosis algorithms. Researchers utilize these datasets to test and refine their methods.

To access the datasets used in this study, you can visit the CWRU Bearing Data
Center website at https://csegroups.case.edu/bearingdatacenter, (accessed on 1 January
2022). For reference, Table 5 provides an overview of the dataset specifically utilized in
this research.
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Table 5. CWRU dataset with different fault depths.

Fault Class Symbol Fault Depth

Healthy bearing N -

Ball fault 007_BA 0.007 inch
Ball fault 014_BA 0.014 inch
Ball fault 021_BA 0.021 inch
Ball fault 028_BA 0.028 inch
Inner race fault 007_IR 0.007 inch
Inner race fault 014_IR 0.014 inch
Inner race fault 021_IR 0.021 inch
Inner race fault 028_IR 0.028 inch
Outer race fault 007_OR1 0.007 inch
Outer race fault 007_OR2 0.007 inch
Outer race fault 007_OR3 0.007 inch
Outer race fault 014_OR1 0.014 inch
Outer race fault 021_OR1 0.021 inch
Outer race fault 021_OR2 0.021 inch
Outer race fault 021_OR3 0.021 inch

Figure 11 represents the 2D plot of all the fault types for the CWRU dataset using t-SNE.
It is a popular dimensionality reduction technique used for visualizing high-dimensional
data in a lower-dimensional space.

801 Fault

007_BA
007_IR
601 007_OR1
007_OR2
007_OR3
014_BA
014_IR
014_OR1
021_BA
021_IR
021_OR1
021_0R2
021_0R3
028_BA
028_IR

N IS
5] S
> © 0000 0 0 ¢
[ A B

t-SNE component 2

!
IS
S

—60

-80

-60 —40 -20 0 20 40 60 80

t-SNE component 1
Figure 11. Visualization of all fault types of the CWRU dataset using t-SNE.

3. Experimental Results
3.1. Case I: Variable-Speed Vibration Dataset

In this section, simulation results are presented for both the ANN and DCNN-LSTM
models and are compared with each other to differentiate the efficiencies of both models.
The ANN and DCNN-LSTM model with SoftMax classifier were applied to the vibration
data with variable speed of the rotating machine to classify the different sorts of faults.
The constructed high-dimensional dataset was divided into training and testing datasets
with 70% and 30% ratios, respectively.

The training and validation accuracy using the ANN model described in Table 2 was
99.40% and 95.08%, respectively. Figure 12 shows the accuracy graph of the developed
ANN model. The green line shows the training accuracy, while the red line shows the
validation accuracy.
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Figure 12. Accuracy of ANN model.

The accuracy was improved to 99.40% when the DCNN-LSTM model with SoftMax
classifier was trained using the vibration data from variable-speed rotating machines.
Figure 13 shows the accuracy graph of the model.

1.0 1 geavesgeon 000000e0R00000000008ge0s00%0
,,r
> |
© 0.81%
=] i
(@] 1
) i
< ;
0.6
-®- accuracy
¢ -0- Yal_accuracy
0 20 40

No. of data epochs
Figure 13. Accuracy of the proposed DCNN-LSTM model.

Furthermore, the confusion matrix illustrates the accuracy of each fault type. Figures 14 and 15
show the confusion matrices concluded from both the ANN and DCNN-LSTM models.
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Figure 14. Confusion matrix of the ANN model for variable speed rotating machine.
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Figure 15. Confusion matrix of the DCNN-LSTM model for variable speed rotating machine.

From the confusion matrices of both models, it can be concluded that the DCNN-LSTM
is more efficient compared to the ANN model. From the diagonal entries of the confusion
matrix of the DCNN-LSTM model, it can be seen that the ball faults, combined faults,
and healthy signals are 100% classified, while the inner race faults and outer race faults are
99% classified. Moreover, the t-SNE graph shown in Figure 16 illustrates that each fault can
be classified and visualized in a 2D plot.

8
Fault
6 Combination_Fault
Ball_Fault
Healthy_Bearing
41 . oOuter Race Fault

Inner_Race_Fault

t-SNE component 2
o

-8 -6 -4 =2 0 2 4 6 8
t-SNE component 1

Figure 16. t-SNE graph of the validation dataset with variable speed rotating machine.

Table 6 displays a comparison between the findings of the proposed model and the
existing literature. In Reference [43], four methods (EEMD, VMD, BMD, and GBMD) were
proposed for analyzing the variable speed vibration dataset and their accuracy rates were
73.33%, 80.00%, 86.67%, and 96.67%, respectively. However, this study solely focused on
the normal, inner race fault, and outer race fault classes. In contrast, our investigation
considered five categories of classes, which include healthy bearing, ball fault, inner race
fault, outer race fault, and combination fault.

Reference [44] introduced five methods (FEE-SVM, DFF-MLP, DFF-1DCNN, DFF-
TICNN, and DFF-Lightweight 1IDCNN) for diagnosing fault conditions in variable speed
data. The accuracy rates for these techniques were reported as 45.60%, 55.16%, 90.08%,
93.06%, and 96.26%, respectively. The experimental results were also derived using the
ANN model with SoftMax classifier that had an accuracy of 95.08%. In comparison to the
above results, our proposed approach, which utilizes a DCNN-LSTM model with SoftMax
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classifier, offers a more efficient means of fault diagnosis for the variable speed rotating
machinery, achieving an accuracy of 99.40%.

Table 6. Comparison with existing literature for variable speed dataset.

References Models Accuracy
EEMD 73.33%
VMD 80.00%
[43] BMD 86.67%
GBMD 96.67%
DFF-SVM 45.60%
DFF-MLP 55.16%
[44] DFF-1DCNN 90.08%
DFF-TICNN 93.06%
DFF-Lightweight IDCNN 96.26%
Proposed method ANN with SoftMax 95.08%
DCNN-LSTM with SoftMax 99.40%

3.2. Case II: Diverse Fault Depths Vibration Dataset

The proposed model of the DCNN-LSTM model with the SoftMax classifier was
evaluated to diagnose the fault conditions using a diverse fault depths vibration dataset
having different fault depths and a load. The CWRU dataset consists of one healthy and
fifteen faulty conditions. The faulty conditions are further classified into three categories:
ball fault, inner race fault, and outer race fault with different fault depths as described in
Table 5. The confusion matrices for the DCNN-LSTM model with SoftMax classifier and
the ANN model with SoftMax classifier were generated using the test dataset and shown
in Figure 17.

The results suggest that the DCNN-LSTM model with SoftMax classifier outperformed
the ANN model with SoftMax classifier in terms of accuracy, with an accuracy of 99.87%
compared to 97.88%. The difference in accuracy could be due to the superior ability of
the DCNN-LSTM model in learning complex patterns in the dataset, which is crucial
for accurate classification. Furthermore, the experimental results demonstrate that the
proposed model is effective in classifying faulty conditions and provide insights into the
superior performance of the DCNN-LSTM model with SoftMax classifier over the ANN
model with SoftMax classifier in this specific classification problem. Figure 18 shows the
fault classification and representation in a 2D graph using t-SNE. From Figure 18, it can be
concluded that the fault conditions can be distinguished for the test dataset.

Table 7 shows how the accuracy of the proposed DCNN-LSTM model with SoftMax
classifier compares to other existing models in the literature. As we can see from Table 7,
the model referenced in [45] achieves an accuracy of 99.17%. However, it is important to
note that the authors of [45] only considered normal bearings, inner race faults, and two
types of outer race faults in their experiments. In contrast, this paper considers 16 different
classes of bearing conditions, as shown in Table 5. In [46], five different methods (CNN,
MAML, Reptile, Reptile with GC, and EML) were evaluated, with accuracies of 90.46%,
92.51%, 92.63%, 93.48%, and 98.78%, respectively. In this paper, only two fault depths
(0.007 inches and 0.021 inches) were considered. In [47], six methods (RF, GRU, CNN,
CNN-GRU, MSCNN, and MDRMA-MSCM) were evaluated for the CWRU dataset and
the accuracy of each method was 87.28%, 97.33%, 97.54%, 98.22%, 99.06%, and 99.71%,
respectively. However, the 0.028-inch fault depth was not considered for the experimental
results. In contrast to the above-mentioned literature, the proposed model in this paper
was developed using the DCNN-LSTM model with SoftMax classifier, and all available
fault depths (0.007 inches, 0.014 inches, 0.021 inches, and 0.028 inches) were considered for
the experimental work to evaluate the performance and superiority of the proposed model.
The results illustrated in Table 7 show the superiority of the proposed model.
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Figure 17. Confusion matrix for diverse fault depths vibration dataset: (a) ANN model and (b) DCNN-
LSTM model.
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Figure 18. t-SNE graph of the validation dataset for diverse fault depths vibration dataset.



Symmetry 2023, 15, 1413

19 of 22

Table 7. Comparison with existing literature for the CWRU dataset.

References Models Accuracy
[45] - 99.17%
CNN 90.46%
MAML 92.51%
[46] Reptile 92.63%
Reptile with GC 93.48%
EML 98.78%
RF 87.28%
GRU 97.33%
[47] CNN 97.54%
CNN-GRU 98.22%
MSCNN 99.06%
MDRMA-MSCM 99.71%
Proposed method ANN with SoftMax 97.88%
DCNN-LSTM with SoftMax 99.87%

4. Conclusions

This paper proposes an efficient model of the DCNN-LSTM model with SoftMax
classifier for diagnosing faults in rotating machines, capable of diagnosing faults in both
variable speed and diverse fault depths datasets. In contrast to the current DCNN-LSTM
models, the novel model presented in this study exhibits enhanced efficacy in two distinct
scenarios. Firstly, it demonstrates efficiency in analyzing vibration data obtained from
variable-speed rotating machines. The recorded data encompass instances where the
rotational speed of the machine undergoes a sequential increase and subsequent decrease.
This characteristic sets it apart from prior DCNN-LSTM models that primarily focus on
constant-speed operating conditions. The proposed DCNN-LSTM model achieved an
impressive overall condition prediction accuracy of 99.40% for variable-speed rotating
machines. In addition, when compared to the existing literature, it was found that the
proposed model outperformed the other approaches in terms of prediction accuracy.

Secondly, the proposed model showcases its effectiveness in handling a diverse fault
depths dataset. This dataset comprises various fault categories, including healthy bearings,
inner race faults, outer race faults, and ball faults. Notably, each fault category incorporates
fault instances with different levels or depths of damage to the machinery. This aspect
distinguishes the proposed model from existing approaches, which often concentrate on
specific fault types or do not explicitly consider varying fault depths. The DCNN-LSTM
model proposed in this study demonstrated an outstanding overall condition prediction
accuracy of 99.87% when applied to a diverse fault depths dataset. Furthermore, when
compared to existing literature, it is evident that the proposed model surpasses other
approaches in terms of prediction accuracy.

Moreover, the proposed model eliminates the need for manual feature extraction from
the vibration datasets. This examination of symmetrical characteristics enables accurate
identification and diagnosis of faults, leading to timely maintenance and the prevention
of sudden shutdowns or damages to the entire industrial process. It streamlines the
analysis process by directly feeding the raw vibration signals into the model. This feature
circumvents the laborious task of manually identifying and extracting relevant features,
thus enhancing the efficiency and simplicity of the diagnostic process.

The performance of the proposed model was compared with an ANN model for
both datasets, and it was found that the proposed DCNN-LSTM model with the SoftMax
classifier is more efficient in diagnosing fault conditions. Additionally, the results of the
proposed model were compared with existing models in the literature, demonstrating
its ability to effectively diagnose faults in both variable speed and diverse fault depths
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datasets with a load. Overall, it was concluded that the proposed DCNN-LSTM model
with SoftMax classifier is a promising tool for fault diagnosis in rotating machines with
raw vibration datasets.
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