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Abstract: In this paper, we suggest a design for a chiral metasurface at optical frequencies that
shows a high level of circular dichroism (CD) of 0.94. By breaking the in-plane asymmetry and
exciting the quasi-bound states in the continuum (quasi-BICs), a high Q-factor was obtained, which
greatly enhances the interaction between light and matter. Then, the multipole decomposition was
confirmed to analyze its mode of excitation. The proposed design may provide new possibilities for
high-performance optical devices.

Keywords: chiral metasurface; circular dichroism

1. Introduction

Two-dimensional (2D) metamaterials, or synthetic materials with a thickness less than
the working wavelength, are known as metasurfaces. The majority of conventional meta-
materials use valuable metals as a medium to achieve surface plasmon resonance, which
results in light waves with various characteristics at various frequencies in terms of reflec-
tion, transmission, and absorption [1]. The metasurface scale is minuscule in comparison
to synthetic three-dimensional (3D) metamaterials. It can make possible the management
of the amplitude, phase, polarization, and other features of incident light, which has drawn
a great deal of attention, by assembling metaatoms with specific electromagnetic prop-
erties in diverse ways to produce a two-dimensional planar structure. Researchers have
become fascinated with optical devices based on all-dielectric metasurfaces because of its
low loss, affordable production costs, straightforward manufacturing methods and high
compatibility with Complementary Metal Oxide Semiconductors (CMOS) [2].

Chirality is an inherent characteristic of chiral molecules and a manifestation of vital
signs, which are ubiquitous in the organic world [3–5]. However, in nature, there are
very few chiral structures for achieving specific functions, and the relevant modeling and
theoretical analysis are limited to the characterization of the original structure. At present,
the research on chiral metamaterials is gradually expanding from the microwave band to
the terahertz, infrared, and even optical bands [4,6,7].

With the development of the field of optical metasurfaces, chiral metasurfaces
have also received widespread attention and research, with studies mainly utilizing
micro- and nanostructures to generate strong chiral optical responses at subwavelength
thicknesses [8,9]. Chirality refers to the characteristic in geometry where the mirror
image of an object cannot coincide with itself. Chiral materials can be divided into
natural chiral materials and artificial chiral materials [10–12]. If an object is different
from its mirror image, it is called ‘chiral’, and its mirror image cannot overlap with
the original object, just as the left and right hands are mirror images of each other and
cannot overlap. Detecting chiral signals in substances has become a hot research topic
for researchers. However, the existing chiral metasurfaces, whether dielectronic or based
on plasmons, still produce weak circular dichroism (CD) signals [13–15]. In 2022, Jie
Gao’s research group experimentally demonstrated the selective CD in dual bands of
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4–5 µm and 5–6 µm. This structure provides dual-band regulation, but the CD did not
reach a high level (close to 0.6) [16]. In 2023, Xiangkai Zeng et al. proposed a chiral
metasurface that displays a high CD value of greater than 0.57 as the chiral plasmonic
resonance wavelength varies from 4.96 µm to 5.82 µm [17]. This structure provides a
high CD for a single band, but it fails to achieve dual-band regulation.

More importantly, the quality factor (Q-factor) of the resonance peak is not high,
resulting in limited intrinsic chiral interaction between light and matter. Bound states in
the continuum (BICs), electromagnetic eigenstates that exist in the radiative continuous
spectrum but still remain localized, have the characteristics of maximum Q-factor and
strong interactions between light and matter [18–20]. BICs comprise a special resonance
mode in the metasurface whose frequency is located in the radiation continuous domain
but is completely bound without any energy leakage. In theory, such a state has an infinite
Q-factor, and it could be widely used to enhance the interaction between light and matter
in various fields, such as ultra-low threshold lasers, enhanced nonlinear optical effects, and
enhanced chiral optical responses. They are generally divided into two patterns: symmetry-
protected BICs [21] and accidental BICs [22]. Ultra-sensitive sensing has received great
attention in recent years. However, because the resonance linewidth of the ideal BIC is
zero, although the energy can be perfectly bound, it is invisible in the spectrum. Therefore,
only by transforming BICs into quasi-bound states in the continuum (quasi-BICs) can
observation be guaranteed. At present, the main way to obtain quasi-BICs is to break the
shape or size symmetry of nanoparticles [23]. In order to obtain an ultra-high Q-factor,
the asymmetry factor must be very small [24], which puts forward extremely stringent
requirements for nanoprocessing and greatly limiting the application of quasi-BICs in the
real world [25]. In 2022, a new method for the formation of quasi-BICs was created which
breaks the structural symmetry in the lattice units by adjusting the relative displacement
of nanoparticles in the metasurface. This method reduces processing difficulty without
changing the size and shape of the nanoparticles, laying the foundation for the practical
application of quasi-BICs [26–28].

We believe that planar chiral metasurfaces controlled by BIC physics may have many
applications in chiral lasers, nonlinear filters, and other active chiral optical devices. A
chiral BIC is completely decoupled from circularly polarized light in one spin direction and
strongly interacts with circularly polarized light in another spin direction, producing the
largest CD and an extremely high Q-factor at the same time.

In this paper, we propose a design for a novel chiral metasurface based on etching
silicon blocks with two quarter-elliptical cylinders. Transferring the BIC to quasi-BICs is
the recommended approach for constructing the structure with intrinsic planar chirality.
The physical mechanism of the process of transitioning from a symmetry-protected BIC
to quasi-BICs is that when the symmetry of the metasurface is disrupted, new radiation
channels are established, allowing this mode to have a relatively tiny resonant linewidth
and a high Q-factor because it can radiate to the external continuum. The leakage of
energy enables the BIC to complete the transition to quasi-BICs. We defined the degree of
asymmetry δ. By calculating the area difference between the two etched apertures, it was
found that the structure satisfies the inverse square law, which verifies the excitation of the
quasi-BIC modes. After parameter adjustment, the maximum CD value of this structure
was 0.94. Meanwhile, we utilized the electromagnetic multipole decomposition method to
analyze the dominant electromagnetic modes as electric dipole and magnetic dipole modes.
This study is of great significance in promoting the interaction between light and matter
and enhancing chiral sensing.

2. Structure Design

In Figure 1a, the parameters and details of the metasurface structure are displayed.
The structural unit cell is a cubic silicon block on which two quarter-elliptical cylinders are
etched. The substrate is glass, and the material data is referenced in the Palik manual [29].
It is surrounded by a gas environment with a refractive index of 1. The period of the unit
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cell is 850 nm. The plane wave electric field is incident perpendicular to the metasurface
and polarized along the x-axis (polarization angle θ = 0◦).
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Figure 1. (a) Schematic diagram of the designed symmetric all-dielectric metasurface. (b) Schematic
diagram of the designed asymmetric all-dielectric metasurface. (c) Top view of the unit cell of the
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By changing the major and minor axes of the ellipse (r1, r2, r3, r4), the symmetry within
the plane is broken, as shown in Figure 1b. To better illustrate the asymmetric structure,
the top view of the unit cell is drawn as shown in Figure 1c.

Equations (1) and (2) define in-plane geometry symmetry breaking parameter δ and
asymmetry parameter α:

δ =
πr1r2

4
− πr3r4

4
(1)

α =
δ

S
(2)

where S is the area of the square silicon block.
We calculated the optical properties of this structure using the finite-difference time

domain (FDTD) method, and due to its repeating design, obtaining the response only
required simulation of a single period with a periodical boundary condition in the x and y
directions and perfectly matched layers (PMLs) in the z direction [26,30].

3. Results and Discussion

The measured parameters of the simulated incident circularly polarized light with
different rotations under symmetric conditions are shown in Figure 2a. Trl represents the
right-handed component transmitted when the left-handed circularly polarized light is
incident, r represents RCP, and l represents LCP [31]. There is no resonance with Trl = Tlr
and Tll = Trr due to reciprocity, and CD = 0. This state is symmetry-protected BIC.

The symmetry-protected BIC largely depends on the geometric symmetry of the
structure. The electromagnetic waves of the BIC remain completely localized in space, and
theoretically their lifespan can become infinitely long, even if they reside in a continuous
spectrum of extended states. This special optical confinement phenomenon stems from
the special solution of the Wave Equation, in which the wave function is localized in the
radiation band. BIC is a dark mode embedded in the parameter space, exhibiting an
infinite-radiation Q-factor.

In Figure 2b, we generated asymmetry by adjusting the major and minor axes of two
ellipses, and we excited two modes at 1431.1 nm (mode I) and 1574.7 nm (mode II), respec-
tively. In mode I, the component Trr was significantly higher than the other components
Trl, Tll and Tlr. In mode II, the components Trl and Tll were significantly higher than the
other components Trr and Tlr. The CD values are shown in Figure 2c.
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asymmetric metasurfaces.

Here, the CD is defined as the transmittance difference under right-handed polariza-
tion (RCP) and left-handed polarization (LCP) incidence [32].

CD =
|(Trr + Tlr)− (Trl + Tll)|
(Trr + Tlr) + (Trl + Tll)

(3)

We performed simulated computations to examine the impact of structural factors on
the CD values of chiral metasurfaces. As shown in Figure 3a, we found that in this design,
as thickness increased, the CD values of both modes showed a decreasing trend, and the
position of mode resonance also underwent a red shift.

Furthermore, we changed the radius of the lower ellipse to achieve another structural
design under asymmetric parameters. The specific parameters are as follows: r3 = 280 nm;
r4 = 320 nm.
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∣∣∣π × 440 × 200
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∣∣∣ = 400π).

Similar to this, we changed the thickness t and discovered that the CD value of mode
II increased as thickness did as well. Both modes exhibited a red shift at the same moment,
although mode I had a wider range of motion, bringing the two modes closer together.
As shown in Figure 3b, we found that the CD value of mode II continuously increased with
increasing thickness, with 380 nm being the critical maximum value (CD = 0.942).

We carried out an investigation of the period parameters to look into how the CD of
the structure changed, as shown in Figure 4. When the period gradually increased from
840 nm to 860 nm, both of the modes underwent a red shift. However, regarding CD
values, that of mode I climbed gradually, whereas that of mode II increased initially and
subsequently decreased.
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An essential tool for examining how electromagnetic fields interact with material
systems is multipole decomposition. In all forms of all-dielectric metasurface spectroscopy,
it can aid in understanding the physical mechanisms of resonant mode formation. The
source’s multipole moment effectively captures all the details of electromagnetic field
coupling and radiation for a specific charge density distribution. The multipole moment
of the charge current distribution completely describes the electromagnetic radiation of
the source and the coupling of the external field to it. Each multipole moment is uniquely
coupled to a corresponding multipole field.

In the Cartesian coordinate system, the form of multipole moments is [33]:
Electric dipole (ED) moment

→
P = 1

iω
∫ →

j d3r (4)

Magnetic dipole (MD) moment

→
M = 1

2c
∫
(
→
r ×

→
j )d3r (5)

Toroidal dipole (TD) moment

→
T = 1

10c
∫ [

(
→
r ·
→
j )
→
r − 2r2

→
j
]

d3r (6)

Electric quadrupole (EQ) moment

Qαβ = 1
iω
∫ [

rα jβ + rβ jα − 2
3 (
→
r ·
→
j )
]

d3r (7)

Magnetic quadrupole (MQ) moment

Mαβ = 1
3c
∫ [

(
→
r ×

→
j )αrβ + (

→
r ×

→
j )βrα

]
d3r (8)

where
→
j is the displacement current vector,

→
r is the position vector, ω is angular frequency,

and c is the speed of light in vacuum.
E. Radescu and G. Vaman derive the total radiant intensity of the far field as follows:

Isca =
2ω4

3c3 |
→
P |

2
+ 2ω4

3c3 |
→
M|

2
+ 2ω6

3c5 |
→
T |

2
+ 4ω5

3c4 (
→
P ·
→
T) + ω6

5c5 QαβQαβ+

ω6

20c5 Mαβ Mαβ +
2ω6

15c5 (
→
M · 〈

→
R

2
→
M〉) + o

(
1
c5

) (9)

Among them, the first and second terms correspond to the scattering of ED and MD
multipoles, the third term corresponds to the scattering of TD multipoles, and the fourth
term is the interference between ED multipoles and TD multipoles.

Following calculation, Figure 5 displays the fundamental electromagnetic source
dispersion. It is evident from the graphic that mode I was dominated by ED, whereas
mode II was dominated by MD.

In the case of asymmetry, the structure can produce a new Fano peak, and its trans-
mission spectrum can thereby be fitted using the Fano formula [34]:

TFano =

∣∣∣∣a1 + ia2 +
b

ω−ω0 + iγ

∣∣∣∣2 (10)

where a1, a2, and b are constants, ω0 is the resonant frequency, and γ is the damping ratio
of the resonant cavity.
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The Q-factor is calculated as follows [35]:

Q =
ω0

2γ
(11)

The deep relationship between the radiative Q-factors and the asymmetric parameters
is revealed by the following formula:

Q ∝ α−2 (12)

By using this method, we can obtain different asymmetric parameters. Here, asym-
metric parameters can be defined as α = ∆S/S, where S is the area of the unit molecule and
∆S is the area of the asymmetric part. Therefore, the Q-factor of the resonance mode can be
expressed as:

Q =
A

2k0
|p0|−2(α)−2 (13)

where p0 is the electric dipole moment at the bottom of the elementary molecule, A is the
area of the periodic unit, and k0 is the wave vector along the z-axis [25,36].

As shown in Figure 6, curve fitting was performed in a logarithmic coordinate system,
and the slope of the curve was close to −2. Therefore, it can be verified that this mode was
a quasi-BIC.
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4. Conclusions

In this paper, we propose a novel chiral metasurface. The unit cell was etched two
nanoholes from Si metasurface. Breaking the symmetry of the structure provided a radiation
channel for the metasurface device, thereby stimulating the quasi-BIC resonance mode with
a high Q-factor. An optical cavity with a high Q-factor can greatly enhance the interaction
between light and matter. By introducing in-plane structural asymmetry, intrinsic planar
chirality can be achieved under normal incidence with a maximum CD value of 0.94
at optical frequency. The proposed optical metasurface has the advantages of a simple
structure, easy integration, and good robustness, and it is expected to have potential value
in high-performance chiral sensing.
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