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Abstract: Let G be a group. A k-coloring of G is a surjection λ : G → {1, 2, . . . , k}. Equivalently, a
k-coloring λ of G is a partition P = {P1, P2, . . . , Pk} of G into k subsets. If gP = P for all g in G, we
say that λ is perfect. If hP = P only for all h ∈ H ≤ G such that [G : H] = 2, then λ is semiperfect. If
there is an element g ∈ G such that λ(x) = λ(gx−1g) for all x ∈ G, then λ is said to be symmetric.
In this research, we relate the notion of symmetric colorings with perfect and semiperfect colorings.
Specifically, we identify which perfect and semiperfect colorings are symmetric in relation to the
subgroups of G that contain the squares of elements in G, in H, and in G \ H. We also show examples
of colored planar patterns that represent symmetric perfect and symmetric semiperfect colorings of
some groups.
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1. Introduction

The study of color symmetry, whose motivation comes primarily from the field of art,
has generated interest in recent years due to its applications in branches of science like
chemistry and biology. For instance, the crystal structure of different crystalline materials
can be modeled using colored tilings [1]. In physics and materials engineering, nanotubes
with several types of atoms such as carbon–boron nitride are characterized by constructing
colorings of the associated single-wall carbon nanotube [2]. Apart from these applications,
color symmetry in itself provides an enjoyable way of learning fundamental concepts
in group theory and geometry by analyzing aesthetically pleasing designs and colored
patterns like those of Escher.

Shubnikov’s work on antisymmetry laid the foundations for the study of color sym-
metry (see [3–5]). Since then, concepts orbiting around colored patterns in the Euclidean
plane and in higher-dimensional spaces have been explored and a great level of enthusiasm
has been achieved, leading to numerous studies in the area. One such study was carried
out by Grunbaum and Shephard in [6], where the notion of a perfect coloring was formally
defined. In [7], the relationship between group theory and color symmetry was extensively
discussed. These eventually led to a coloring framework in [8] that resulted in a method to
come up with perfect colorings of any symmetrical object. On the matter of semiperfect col-
orings, Felix and Loquias [9] gave results on how to obtain all semiperfect colorings of any
symmetrical pattern.

In [10], Gryshko introduced the idea of symmetric colorings of groups and was
initially motivated by colorings of the vertices of regular polygons. However, the origins
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of symmetric colorings can be traced back to [11] using the concept originally known as
symmetries of groups. Subsequent studies on symmetric colorings dealt with various
groups, as can be seen in [12–16]. In contribution to this stage wherein concepts on color
symmetry are being generalized, this research aims to relate the concept of perfect and
semiperfect colorings with symmetric colorings. As of this writing, no article has been
published yet that connects these different types of colorings. In this present work, we
derive conditions so that a perfect coloring and a semiperfect coloring of a group are also
symmetric. We also present colored patterns to represent symmetric perfect colorings and
symmetric semiperfect colorings of certain groups.

2. Preliminaries

Let X be (the set of objects in) a given pattern to be colored and let G be a group acting
on X . If x ∈ X , the G-orbit of x is the set Gx = {gx : g ∈ G}, while the stabilizer of x ∈ X
is given by StabG(x) = {g ∈ G : gx = x}. Throughout this paper, we observe the coloring
setting considered in [9]: G acts transitively on X , and for all x ∈ X , StabG(x) = {e}.
With this, we obtain a one-to-one correspondence between G and X given by g ↔ gx.
As a consequence, we can associate a partition P = {P1, . . . , Pk} of G with the partition
{P1x, . . . , Pkx} of X . If C = {c1, . . . , ck} is a set of k colors, the bijection Pix 7→ ci is called a
k-coloring of X that corresponds to the partition P of G. We can therefore regard a coloring
of a pattern as a partition P of G with every element of P representing a unique color. This
allows us to make the following natural definition. A k-coloring λ of a group G is an onto
function from G to a set C = {c1, . . . , ck} of k colors where λ(g) is the color assigned to an
element g ∈ G. Simply speaking, a k-coloring of a group G is just a partition of G into k
subsets where Pi = {g ∈ G : λ(g) = ci} is the set of elements of G assigned the color ci.

LetA be the set of all partitions of G. Then the group G acts onA by left multiplication.
If P ∈ A, let H be the stabilizer of P . Then h ∈ H ⇐⇒ hP = P . The partition P is
referred to as an H-invariant partition of G. The coloring P of G is called perfect if [G : H] = 1,
that is, if G = H. Whenever [G : H] = 2, the coloring is called semiperfect. As regards the
pattern X , an element h ∈ H permutes the colors in the coloring of X that correspond to
the partition P of G. A perfect coloring of X is one for which every element of G effects
a permutation of C. If the only elements of G that permute the colors in the coloring of
X belong to an index-2 subgroup H of G, the coloring is semiperfect. We emphasize that
the definitions of perfect and semiperfect colorings of patterns are old notions. What is
new here are the concepts of perfect and semiperfect colorings of groups. These arise
from the equivalence among the three sets considered in the previous paragraph given our
coloring setting.

Perfect colorings of patterns have been characterized in [8] where sufficient and
necessary conditions for a coloring to be perfect are determined. In particular, Theorem 5
of the said article shows that a coloring of a set X forming only one G-orbit is perfect if and
only if it is given by the partition P = {gJx : g ∈ G}, where x ∈ X , and StabG(x) ≤ J ≤ G.
Since we require that StabG(x) = {e} for all x ∈ X , then any subgroup of G can be used
to come up with a perfect coloring of X . This translates to the following result regarding
perfect colorings of groups.

Theorem 1. Let G be a group. A coloring of G is perfect if and only if it is given by the partition
P = {gJ : g ∈ G} where J is any subgroup of G.

By the above theorem, every perfect group coloring is always a partition of G by left
cosets of a subgroup J. In the case where [G : J] = k, the coloring given byP = {gJ : g ∈ G}
is a perfect k-coloring of G. If J = G, we obtain a trivial coloring of G using only one color.
If J = {e}, then all the elements of G obtain distinct colors.

Semiperfect colorings of patterns are studied in [9] where it was shown that every
such coloring falls under one of two possible types of partition of a group G. The next two
theorems are restatements of results of [9] on semiperfect colorings.
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Theorem 2 (Type I Semiperfect Coloring). Let H ≤ G with [G : H] = 2, J ≤ H, and
y ∈ G \ H. The partition of G given by P1 = {h(J ∪ Jy) : h ∈ H} is a semiperfect coloring of G if
and only if yJ 6= Jy or y2 /∈ J.

Theorem 3 (Type II Semiperfect Coloring). Let H ≤ G with [G : H] = 2, J1, J2 ≤ H, and
y ∈ G \ H. The partition of G given by P2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H} is a semiperfect
coloring of G if and only if J1 6= J2.

Note that both P1 and P2 are H-invariant partitions of G, that is, hP1 = P1 and
hP2 = P2 ∀h ∈ H. P1 corresponds to a perfect coloring of G if and only if yJ = Jy (or
y ∈ NG(J), the normalizer of J in G) and y2 ∈ J. Moreover, if J = H, the partition will
yield a coloring of G with only one color and thus be perfect. For the partition P2, a perfect
coloring of G is obtained whenever J1 = J2.

Next, we define what it means for a coloring of a group to be symmetric. Given a
group G, the mappings x 7→ gx−1g where g ∈ G are called symmetries of G [11]. In [16] and
other related articles by the same author, a k-coloring of a group G is defined as any map
λ : G → {1, . . . , k} without the condition of being surjective. We adhere to our previous
definition so that a k-coloring remains as a partitioning of G into k subsets. Now, we say
that a coloring of G is symmetric if there is a g ∈ G such that λ(x) = λ(gx−1g) for all x ∈ G.
In essence, λ is symmetric if the elements x and gx−1g have the same color.

We say that P and Q are equivalent colorings of G if P = xQ for some x ∈ G. The
following result from [9] gives all equivalent H-partitions of a group G if [G : H] = 2.

Theorem 4. Let G be a group and P an H-invariant partition of G. If [G : H] = 2 then there
are only two partitions of G that are equivalent to P , namely, P and yP , for some y ∈ G \ H.
Moreover, the stabilizer of yP in G is also H.

Note that in listing symmetric colorings of groups, we do not distinguish between
partitions P and Q which are equivalent colorings.

In this paper, we are interested in determining which perfect colorings and semiperfect
colorings of a group G are symmetric with respect to some element g ∈ G. We first consider
perfect colorings of G and derive conditions for this coloring to be symmetric. Next, we
consider the two types of semiperfect colorings of G described in Theorems 2 and 3. We give
conditions for a Type II semiperfect coloring of G to be symmetric. We also show that no
Type I semiperfect colorings of G are symmetric. Lastly, we give actual symmetric perfect
colorings and symmetric semiperfect colorings of some groups that can be represented by
planar patterns.

3. Results

We start this section by describing symmetric perfect colorings. Note that from
Theorem 1, the coloring of a group G given by the partition P = {aJ : a ∈ G} where J ≤ G
gives a perfect coloring. The next theorem gives the condition for a perfect coloring to be
symmetric.

Theorem 5. Let G be a group and let J be a subgroup of G. The coloring of G given by the partition
P = {aJ : a ∈ G} yields a symmetric perfect coloring with respect to some g ∈ G if and only if J
contains {x2 | x ∈ G}.

Proof. Suppose the coloring of G induced by the left cosets of J is symmetric with respect
to some g ∈ G. Then ∀x ∈ G, xJ = gx−1gJ, implying that (g−1x)2 ∈ J. Thus {(g−1x)2 | x ∈
G} = {x2 | x ∈ G} ⊆ J.

On the other hand, if {x2 | x ∈ G} ⊆ J then (g−1x)2 J = J for all g, x ∈ G. Thus for all
g, x ∈ G, xJ = gx−1gJ. Hence, the coloring is symmetric with respect to any g ∈ G.
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Using Theorem 5, we may obtain symmetric perfect colorings of a group G by observ-
ing the following procedure:

1. Form the group G2 = 〈x2 : x ∈ G〉.
2. Choose a subgroup J of G such that G2 ≤ J.
3. Form the partition P = {gJ : g ∈ G}.

We note that if the left coset coloring of G induced by J is symmetric with respect
to some g ∈ G, then the coloring is symmetric with respect to every element of G. By
Theorem 5, the number of proper subgroups of G that contain the set

{
x2 : x ∈ G

}
is

the number of inequivalent symmetric nontrivial perfect colorings of G. Let J, J′ ≤ G
and consider the partitions P = {gJ : g ∈ G} and P ′ = {gJ′ : g ∈ G}. If P and P ′ are
equivalent, then there exists x ∈ G such that xP = P ′. This implies that xgJ = J′ for some
g ∈ G. As both J and J′ are subgroups of G, we must have J = J′. We have therefore shown
that distinct subgroups of G containing

{
x2 : x ∈ G

}
give rise to inequivalent symmetric

perfect colorings of G.
Moreover, we note that G2 = 〈x2 : x ∈ G〉 is a normal subgroup of G and that the

quotient G/G2 is an abelian group whose non-identity elements are of order 2. Thus, G/G2

can be viewed as a vector space over F2 and each subgroup J containing G2 is a lifting
of a subspace of G/G2. This implies that the number of such J (and thus the number of
symmetric perfect colorings of G) is a sum of 2-binomial coefficients.

Theorem 5 has many other consequences. For instance, a group G of odd order has
only the trivial coloring which is symmetric perfect since 〈x2|x ∈ G〉 = G. For a cyclic
group G of order n, either G has exactly one or no nontrivial symmetric perfect coloring
depending on whether n is even or odd. Also, a finite non-abelian simple group has only
the trivial coloring as a perfect symmetric coloring.

Next, we derive conditions such that a semiperfect group coloring is also symmetric.
For now, we postpone our search for symmetric Type I semiperfect colorings and proceed
to identifying Type II semiperfect group colorings that are symmetric. By Theorem 3, recall
that the partition P2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H} is a semiperfect coloring of G if and
only if J1 6= J2 where J1, J2 are subgroups of an index-2 subgroup H of G and y ∈ G \ H.

Suppose P2 is a symmetric coloring with respect to g ∈ G and let x ∈ G.
If x ∈ H, then x ∈ hJ1 for some h ∈ H. That is, h−1x ∈ J1. Since the coloring is

symmetric with respect to g, we have gx−1g ∈ hJ1 ⇒ h−1gx−1g = (h−1x)(x−1gx−1g) =
(h−1x)(x−1g)2 ∈ J1. Since h−1x ∈ J1, we have (x−1g)2 ∈ J1 for all x ∈ H. Thus, (xg)2 ∈ J1
for all x ∈ H.

If x ∈ G \ H, then x ∈ yhJ2 for some h ∈ H. That is, h−1y−1x ∈ J2. Since the
coloring is symmetric with respect to g, we have gx−1g ∈ yhJ2 ⇒ h−1y−1gx−1g =
(h−1y−1x)(x−1gx−1g) ∈ J2. Since h−1y−1x ∈ J2, we have (x−1g)2 ∈ J2 for all x ∈ G \ H.
Thus, (xg)2 ∈ J2 for all x ∈ G \ H.

We formalize these results below.

Theorem 6. Let G be a group and let H ≤ G such that [G : H] = 2. Fix y ∈ G \ H and choose
subgroups J1, J2 of H. The partition given by P2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H} corresponds
to a symmetric semiperfect coloring of G with respect to g ∈ G if and only if the following conditions
are satisfied:

1. J1 6= J2;
2. (xg)2 ∈ J1 for all x ∈ H;
3. (xg)2 ∈ J2 for all x ∈ G \ H.

If a semiperfect coloring of Type II is symmetric with respect to some g ∈ G, then
conditions (2) and (3) of the theorem above give the following cases: (i) the coloring is
symmetric with respect to all g ∈ H; (ii) the coloring is symmetric with respect to all
g /∈ H; and (iii) the coloring is symmetric with respect to all g ∈ G. The following result is
immediate from Theorem 6.



Symmetry 2023, 15, 1460 5 of 12

Corollary 1. Consider the partitionP2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H} of G where [G : H] = 2,
J1, J2 ≤ H, and y ∈ G \ H. Then, the following hold:

1. P2 is symmetric with respect to an element g ∈ H if and only if h2 ∈ J1 for all h ∈ H and
w2 ∈ J2 for all w ∈ G \ H.

2. P2 is symmetric with respect to an element g /∈ H if and only if h2 ∈ J2 for all h ∈ H and
w2 ∈ J1 for all w ∈ G \ H.

Certainly, if J1 and J2 both contain
{

x2 : x ∈ G
}

, then the coloring is symmetric with
respect to every element g ∈ G.

Similar to what was done for symmetric perfect colorings of G, we give a method on
how to obtain symmetric semiperfect colorings of a group G. The following steps need to
be carried out to attain the required colorings:

1. Choose a subgroup H of G such that [G : H] = 2.
2. Compute H2 =

〈
h2 : h ∈ H

〉
and (G \ H)2 =

〈
w2 : w ∈ G \ H

〉
.

3. Find J1 ≤ H with H2 ≤ J1 and J2 ≤ H with (G \ H)2 ≤ J2 where J1 6= J2.
4. Form the partition P2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ G \ H} where y ∈ G \ H.

In [9], it was established that the number of inequivalent semiperfect colorings of Type
II for a given index-2 subgroup H is equal to

(
n
2

)
where n is the number of subgroups of H.

With the conditions imposed in Theorem 6 on the subgroups J1 and J2, it is reasonable to
expect that for most groups, the number of symmetric Type II semiperfect colorings of a
group is less than

(
n
2

)
. An illustration will be given in the next section.

We now show that there exists no nontrivial symmetric Type I semiperfect coloring of
any group.

Let G be a group and let H ≤ G such that [G : H] = 2. Fix y ∈ G \ H and let J be
a proper subgroup of H. Suppose that the partition given by P1 = {h(J ∪ Jy) : h ∈ H}
corresponds to a symmetric coloring of G with respect to some g ∈ G.

Let x ∈ G. Then x ∈ h(J ∪ Jy) for some h ∈ H. This implies that either x ∈ hJ
or x ∈ hJy. Now, since the coloring is symmetric with respect to g, then gx−1g ∈ hJ or
gx−1g ∈ hJy. We consider two cases.

If x ∈ H, then x ∈ hJ and either gx−1g ∈ hJ or gx−1g ∈ hJy. If x ∈ hJ, it follows that
h−1x and its inverse x−1h are in J. Meanwhile, h−1gx−1g ∈ J or h−1gx−1gy−1 ∈ J. We
thus obtain (x−1h)(h−1x)(x−1gx−1g) = (x−1g)2 ∈ J or (x−1h)(h−1x)(x−1gx−1g)y−1 =
(x−1g)2y−1 ∈ J ⇐⇒ (x−1g)2 ∈ Jy. Hence, (xg)2 ∈ J ∪ Jy for all x ∈ H.

If x ∈ G \ H, then x ∈ hJy and either gx−1g ∈ hJ or gx−1g ∈ hJy. If x ∈ hJy,
then h−1xy−1 ∈ J and its inverse yx−1h are in J. Similar computations yield (xg)2 ∈
y−1(J ∪ Jy) = y−1 J ∪ y−1 Jy for all x not in H.

By the computations above, the partition given by P1 = {h(J ∪ Jy) : h ∈ H} corre-
sponds to a symmetric coloring of G with respect to g ∈ G if and only if the following
conditions are satisfied:

(1) (xg)2 ∈ J ∪ Jy for all x ∈ H;
(2) (xg)2 ∈ y−1 J ∪ y−1 Jy for all x ∈ G \ H.

Now, [G : H] = 2 so a2 ∈ H for all a ∈ G. Since y ∈ G \ H and J < H, the cosets Jy
and y−1 J are both outside H. Hence, (1) can be rewritten as (xg)2 ∈ J for all x ∈ H while
(2) becomes (xg)2 ∈ y−1 Jy for all x ∈ G \ H. Depending on whether g is found in H or not,
conditions (1) and (2) give the following possibilities:

(a) h2 ∈ J for all h ∈ H and w2 ∈ y−1 Jy for all w ∈ G \ H;
(b) h2 ∈ y−1 Jy for all h ∈ H and w2 ∈ J for all w ∈ G \ H.

Suppose that (a) holds. Since y is outside H, then y−1h /∈ H. So we have (y−1h)2 ∈
y−1 Jy for all h ∈ H. It follows that y−1hy−1h ∈ y−1 Jy ⇐⇒ hy−1h ∈ Jy ⇐⇒ hy−1hy−1 ∈
J ⇐⇒ (hy−1)2 ∈ J. But hy−1 are all the elements outside H as h runs through all the
elements of H. This implies that the squares of all the elements of G \ H are also in J. Thus,
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J contains the squares of all the elements of G. If (b) is assumed to be true, then similar
arguments imply that J also contains the set

{
x2 : x ∈ G

}
. In particular, y2 ∈ J. Moreover,

since
{

x2 : x ∈ G
}
⊆ J, then J is normal in G, which implies that G = NG(J) and thus

y ∈ NG(J). But Theorem 2 requires that yJ 6= Jy or y2 /∈ J so that P1 corresponds to a
semiperfect coloring of G. We have therefore proved the following theorem.

Theorem 7. Let H be an index-2 subgroup of G, J ≤ H, and y ∈ G \ H. No partition of G of the
form P1 = {h(J ∪ Jy) : h ∈ H} yields a symmetric semiperfect coloring, that is, there exists no
symmetric Type I semiperfect group coloring for any group G.

4. Examples

To illustrate the results in the previous section, we consider the dihedral group D6,
the group D∞ ×Z2, and the triangle group ∗642. In all the examples, patterns using right
triangles are used to represent every group G where each right triangle corresponds to an
element of the group. In fact, the elements of the group are all the plane isometries that
leave the pattern unchanged. In other words, G is the symmetry group of the pattern. For
D∞×Z2 and ∗642, the program GAP [17] is used to obtain all the required subgroups. Note
that all symmetric semiperfect colorings presented here are only those that are consistent
with partitions given by P2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H}, as no Type I semiperfect
colorings exist which are symmetric.

4.1. Colorings of D6

We represent the elements of the diheral group D6 = 〈a, b : a6 = b2 = e, aba = b〉 as
30◦-60◦-90◦ triangles whose union is the hexagonal pattern shown in Figure 1a. Here, a
represents a 60◦ counterclockwise rotation about the center of the hexagon, while b is a
mirror reflection about the horizontal line passing through the center of the hexagon. From
Theorem 5, to find all the symmetric perfect colorings of D6, we only need to determine
all the subgroups of D6 that contain the subgroup 〈x2|x ∈ D6〉 generated by squares. This
subgroup of D6 is S =

〈
a2〉. There exist four proper subgroups of D6 which contain S,

namely J1 =
〈

a2, b
〉
, J2 =

〈
a2, ab

〉
, J3 = 〈a〉, and J4 =

〈
a2〉. The corresponding colorings by

left cosets of Ji, i ∈ {1, 2, 3, 4} are shown in Figure 1b–e. Therefore, D6 has four inequivalent
symmetric perfect colorings.

(a) (b) (c)

(d) (e)

Figure 1. (a) A hexagonal pattern consisting of right triangles with some of the triangles labeled with
the generators of the group D6. (b–e) Symmetric perfect colorings of the dihedral group D6.

For the symmetric semiperfect colorings of D6, we look for all partitions P2 of the
group based on Theorem 6. There are three index-2 subgroups of D6, namely H1 = 〈a〉,
H2 =

〈
a2, b

〉
, and H3 =

〈
a2, ab

〉
. For each of these index-2 subgroups of G, we choose the

subgroups J1 and J2 such that conditions (1)–(3) are fulfilled. Table 1 shows the possible
combinations of J1 and J2 relative to every subgroup Hi (i = 1, 2, 3) of D6 of index 2. The re-
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sulting seven inequivalent symmetric semiperfect colorings are shown in Figure 2. Observe
that {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H} and {hJ2 : h ∈ H} ∪ y{hJ1 : h ∈ H} are equivalent col-
orings according to Theorem 4.

Table 1. Subgroups J1 and J2 that can be used to construct the coloring P2 for each index-2 subgroup
H of D6.

H1 = 〈a〉 H2 =
〈

a2, b
〉

H3 =
〈

a2, ab
〉

J1 J2 J1 J2 J1 J2

〈a〉
〈

a2〉
〈a〉

〈
a3〉

〈a〉 {e}
〈

a2, b
〉 〈

a2〉 〈
a2, ab

〉 〈
a2〉〈

a2〉 〈
a3〉〈

a2〉 {e}

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. (a–e) Symmetric semiperfect colorings of D6 induced by the subgroup H1 = 〈a〉. (f) Sym-
metric semiperfect coloring of D6 induced by the subgroup H2 =

〈
a2, b

〉
. (g) Symmetric semiperfect

coloring of D6 induced by the subgroup H3 =
〈

a2, ab
〉
.

For instance, the coloring in Figure 2a is described by the set P = {h〈a〉 : h ∈ H1} ∪
b
{

h
〈

a2〉 : h ∈ H1
}

=
{{

e, a, a2, a3, a4, a5},
{

b, a2b, a4b
}

,
{

ab, a3b, a5b
}}

where H1 = 〈a〉,
J1 = H1, and J2 =

〈
a2〉. If the roles of J1 and J2 are interchanged, we obtain the col-

oring Q =
{

h
〈

a2〉 : h ∈ H1
}
∪ b{〈a〉} =

{{
e, a2, a4},

{
a, a3, a5},

{
b, ab, a2b, a3b, a4b, a5b

}}
which is equivalent to P since xQ = P for any x ∈ G \ H1. Note that P is symmetric with
respect to every g ∈ D6 since both J1 and J2 contain the set of squares of elements of D6. In
contrast, the coloring P ′ =

{{
e, a2, a4},

{
a, a3, a5}, {b}, {ab},

{
a2b

}
,
{

a3b
}

,
{

a4b
}

,
{

a5b
}}

in Figure 2e is only symmetric with respect to each g ∈ H1. However, an equiva-
lent coloring given by bP ′ =

{{
b, a2b, a4b

}
,
{

ab, a3b, a5b
}

, {e}, {a},
{

a2},
{

a3},
{

a4},
{

a5}}
is symmetric only with respect to all the elements outside H1. These can be verified
from Table 2.

Notice that H1 has four distinct subgroups and so we expect a total of
(

4
2

)
= 6

inequivalent Type II semiperfect colorings of D6 that arise from H1. Of these six possible
colorings, five are symmetric (Figure 2a–e). The one left out is the partition with J1 =

〈
a3〉

and J2 = {e}, as none of these subgroups contain H2
1 =

〈
a2〉. It is also worth mentioning

that each of H2 =
〈

a2, b
〉

and H3 =
〈

a2, ab
〉

has six subgroups. However, there is only one
symmetric semiperfect coloring that results from each of these subgroups (Figure 2f,g).
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Table 2. The elements x and gx−1g for all x, g ∈ D6.

x e a a2 a3 a4 a5 b ab a2b a3b a4b a5b g

gx−1g

e a5 a4 a3 a2 a b ab a2b a3b a4b a4b e
a2 a e a5 a4 a3 b ab a2b a3b a4b a5b a
a4 a3 a2 a e a5 b ab a2b a3b a4b a5b a2

e a5 a4 a3 a2 a b ab a2b a3b a4b a5b a3

a2 a e a5 a4 a3 b ab a2b a3b a4b a5b a4

a4 a3 a2 a e a5 b ab a2b a3b a4b a5b a5

e a a2 a3 a4 a5 b a5b a4b a3b a2b ab b
e a a2 a3 a4 a5 a2b ab b a5b a4b a3b ab
e a a2 a3 a4 a5 a4b a3b a2b ab b a5b a2b
e a a2 a3 a4 a5 b a5b a4b a3b a2b ab a3b
e a a2 a3 a4 a5 a2b ab b a5b a4b a3b a4b
e a a2 a3 a4 a5 a4b a3b a2b ab b a5b a5b

4.2. Colorings of D∞ ×Z2

We now look at symmetric perfect and symmetric semiperfect colorings of the group
G = D∞ × Z2 =

〈
h, v, t : h2 = v2 = e, tv = vt−1, ht = th, hv = vh

〉
, also denoted pmm2,

which is the symmetry group of a frieze pattern of type F7. In Figure 3, we see a portion
of an infinite strip that is left invariant by G with some of the triangles labeled using the
generators of D∞ × Z2. Here, h is a mirror reflection with a horizontal axis indicated by
the green line, v is a mirror reflection with a vertical axis represented by the red line, and t
is the translation given by the blue vector. Note that the aforementioned isometries leave
the pattern unchanged. The subgroup generated by squares of the elements of D∞ ×Z2 is
S =

〈
t2〉. Using GAP, we obtain 15 nontrivial subgroups of D∞ ×Z2 that contain S. These

subgroups are given in Table 3 with the corresponding colorings shown in Figure 4 in the
order by which the subgroups appear in the table.

Figure 3. Generators of D∞ ×Z2 as labels of some tiles of a frieze pattern of type pmm2.

Table 3. Subgroups of G = D∞ ×Z2 that contain
〈
t2〉.

Subgroup Index Subgroup Index Subgroup Index〈
h, vt, vt−1〉 2 〈v, ht〉 2

〈
v, t2〉 4

〈h, t〉 2 〈hv, t〉 2
〈

hv, t2〉 4〈
h, v, t2〉 2

〈
h, t2〉 4 〈t〉 4

〈v, t〉 2
〈
vt, vt−1〉 4 〈th〉 4

〈hv, ht〉 2
〈
tvh, t2〉 4

〈
t2〉 8
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Figure 4. (a–o) Symmetric perfect colorings of D∞ ×Z2.

By Theorem 6, we can obtain symmetric semiperfect colorings of G = D∞ ×Z2 given
any index-2 subgroup H of G by choosing the appropriate subgroups J1 and J2 of H. We
see in Table 3 seven index-2 subgroups of G, which are in fact all the index-2 subgroups
of G. Let us take H =

〈
h, vt, vt−1〉. Note that the set of squares of all the elements in H is

S =
〈
t2〉, which is also the set of squares of all the elements in G \ H. Therefore, we need〈

t2〉 ≤ Ji (i = 1, 2). From GAP, there are five subgroups of H that satisfy this inclusion:
H,

〈
h, t2〉,

〈
vt, vt−1〉,

〈
t2, tvh

〉
, and

〈
t2〉. Since

(
5
2

)
= 10, there are exactly 10 inequivalent

symmetric semiperfect colorings of D∞ × Z2 relative to the subgroup H. All the said
colorings, presented in Figure 5, are symmetric with respect to any element g ∈ G. Note
that these are not all the symmetric semiperfect colorings of D∞×Z2 but only the symmetric
colorings that are invariant under the subgroup H =

〈
h, vt, vt−1〉. The rest of the index-2

subgroups of G will yield more symmetric semiperfect colorings of G.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 5. (a–j) Symmetric semiperfect colorings of D∞ × Z2 induced by the subgroup H =〈
h, vt, vt−1〉.

4.3. Colorings of ∗642

We finish this section by giving examples of colorings of the triangle group ∗642. This
particular group is defined by ∗642 =

〈
p, q, r : p2 = q2 = r2 = (qp)2 = (rq)6 = (pr)4 = e

〉
.

Geometrically, p, q, and r can be taken as the mirror reflections along the lines containing
the sides of a triangle e whose interior angles are of measure π

6 , π
4 , and π

2 (see Figure 6),
with the axes of the reflections p, q, and r opposite to the angles π

6 , π
4 , and π

2 , respectively.

Figure 6. Generators of ∗642 as labels of some tiles of a hyperbolic tiling by triangles with interior
angles π

6 , π
4 , and π

2 .

In Figure 7a, we see a symmetric perfect coloring of G = ∗642 that corresponds to
the partition P = {gJ : g ∈ G} where J =

〈
(rq)2, p(rq)2 p, rp

〉
, an index-4 subgroup of

∗642 which contains the subgroup S =
〈
(rp)2, (rq)2, p(rq)2 p

〉
of squares of elements of G.

Figure 7b is another symmetric perfect coloring of ∗642 induced by the index-2 subgroup
H = 〈q, r, prp〉. Using this subgroup H, we obtain the symmetric semiperfect coloring of
∗642 in Figure 7c, which is described by the partition P2 = {hJ1 : h ∈ H} ∪ y{hJ2 : h ∈ H}



Symmetry 2023, 15, 1460 11 of 12

where J1 =
〈
q, (rp)2, rqr

〉
, J2 = 〈rq, prqp〉, and y ∈ G \ H. As with the group D∞ ×Z2, ∗642

has other symmetric semiperfect colorings arising from each index-2 subgroup of ∗642.
All these subgroups, together with all the others that contain S =

〈
(rp)2, (rq)2, p(rq)2 p

〉
,

which can be used to form symmetric perfect colorings of ∗642, are found in Table 4.

(a) (b) (c)

Figure 7. (a,b) Symmetric perfect colorings of ∗642. (c) Symmetric semiperfect coloring of the group
∗642 induced by the subgroup H = 〈q, r, prp〉.

Table 4. Subgroups of G = ∗642 that contain S =
〈
(rp)2, (rq)2, p(rq)2 p

〉
.

Subgroup Index Subgroup Index Subgroup Index

〈p, q, rpr, rqr〉 2 〈qp, r, prp〉 2 〈r, prp, qrq, pqrqp〉 4

〈p, r, qrq〉 2 〈qp, rp〉 2 〈rp, qrqp〉 4

〈p, rq〉 2
〈

p, rpr, (rq)2〉 4 〈rq, prqp〉 4

〈q, r, prp〉 2
〈
q, (rp)2, rqr

〉
4 〈pqr, prq〉 4

〈q, rp〉 2
〈
qp, (rp)2, rqrp

〉
4

〈
(rp)2, (rq)2, p(rq)2 p

〉
8

5. Conclusions and Outlook

This paper focuses on the relationship between various concepts in group color-
ings. Specifically, we provide a characterization of symmetric perfect and semiperfect
group colorings. Among the two possible partition types for semiperfect group colorings,
we demonstrate the nonexistence of symmetric colorings for the first type. By inves-
tigating these different notions of group colorings, we aim to deepen our understand-
ing of their properties and shed light on the interplay between symmetry and perfect/
semiperfect colorings.

We present constructions of symmetric perfect colorings and symmetric semiperfect
colorings using the dihedral group D6, the frieze group pmm2, and the triangle group ∗642.
To facilitate practical implementation, we provide an algorithm that outlines the step-by-
step process for obtaining all the symmetric perfect colorings and symmetric semiperfect
colorings of any group G.

In this study, our primary focus was to investigate colorings of patterns, where each
tile within a given pattern corresponds uniquely to an element in the symmetry group
G associated with that pattern. It is worth noting that there are additional avenues in
the realm of pattern colorings, such as considering cases where the tiles in a pattern are
not necessarily in one-to-one correspondence with the elements of its symmetry group.
By expanding the scope of investigation to encompass such scenarios, researchers may
uncover and analyze various methods of coloring a given pattern that will yield other
symmetric perfect and symmetric semiperfect colorings.

Furthermore, exploring symmetric colorings of group partitions P that are invariant
under subgroup H, where the index [G : H] is greater than or equal to three (n ≥ 3), could
also be an intriguing avenue of investigation.



Symmetry 2023, 15, 1460 12 of 12

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization,
R.B.S., L.D.V. and M.L.B.W.; Formal analysis, R.B.S., L.D.V. and M.L.B.W.; Funding acquisition,
R.B.S., L.D.V. and M.L.B.W.; Investigation, R.B.S., L.D.V. and M.L.B.W.; Project administration, R.B.S.;
Writing—original draft, R.B.S. and L.D.V.; Writing—review and editing, R.B.S. and L.D.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences Research Institute, University of the
Philippines Diliman [Project Code MAT-18-1-04].

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This article is dedicated to the memory of our mentor, René P. Felix. The authors
are grateful to the anonymous reviewers for their valuable remarks, which have helped improve the
quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lifshitz, R. Theory of color symmetry for periodic and quasiperiodic crystals. Rev. Mod. Phys. 1997, 69, 1181–1218. [CrossRef]
2. Loyola, M.; De Las Peñas, M.L.A.; Basilio, A. Colorings of single-wall carbon nanotubes. Z. Krist.—Cryst. Mater. 2012, 227,

672–680. [CrossRef]
3. Schwarzenberger, R.L.E. Colour symmetry. Bull. Lond. Math. Soc. 1984, 16, 209–240. [CrossRef]
4. Senechal, M. Coloring symmetrical objects symmetrically. Math. Mag. 1983, 56, 3–16. [CrossRef]
5. Senechal, M. Color Symmetry. Comput. Math. Appl. 1988, 16, 545–553. [CrossRef]
6. Grunbaum, B.; Shephard, C. Perfect colorings of transitive tilings and patterns in the plane. Discret. Math. 1977, 20, 235–247.

[CrossRef]
7. Roth, R.L. Color symmetry and group theory. Discret. Math. 1982, 38, 273–296. [CrossRef]
8. Junio, A.; Walo, M.L. Perfect colorings of patterns with multiple orbits. Acta Crystallogr. Sect. A Found. Crystallogr. 2019, 75,

814–826. [CrossRef] [PubMed]
9. Felix, R.; Loquias, M.J. Enumerating and identifying semiperfect colorings of symmetrical patterns. Z. Krist. 2008, 223, 483–491.

[CrossRef]
10. Gryshko, Y. Symmetric Subsets and Colorings of Groups. Ph.D. Dissertation, Kyiv Taras Shevchenko University, Kyiv,

Ukraine, 2002.
11. Loos, O. Symmetric Spaces; Benjamin: New York, NY, USA, 1969; pp. 63–118.
12. Gryshko, Y. Symmetric colorings of regular polygons. Ars Combin. 2006, 78, 277–281.
13. Phakathi, J.; Radnell, D.; Zelenyuk, Y. The number of symmetric colorings of the dihedral group Dp. Appl. Math. Inf. Sci. 2016, 10,

2373–2376. [CrossRef]
14. Zelenyuk, Y. Monochrome symmetric subsets in colorings of finite abelian groups. Symmetry 2011, 3, 126–133. [CrossRef]
15. Zelenyuk, Y. The number of symmetric colorings of the quaternion group. Symmetry 2010, 2, 69–75. [CrossRef]
16. Zelenyuk, Y. Symmetric colorings of finite groups. In Groups St Andrews 2009 in Bath; LMS Lecture Note Series; Cambridge

University Press: Cambridge, UK, 2011; Volume 338, pp. 580–590.
17. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.4.12. 2008. Available online: http://www.gap-system.org

(accessed on 24 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1103/RevModPhys.69.1181
http://dx.doi.org/10.1524/zkri.2012.1531
http://dx.doi.org/10.1112/blms/16.3.209
http://dx.doi.org/10.1080/0025570X.1983.11977007
http://dx.doi.org/10.1016/0898-1221(88)90244-1
http://dx.doi.org/10.1016/0012-365X(77)90063-2
http://dx.doi.org/10.1016/0012-365X(82)90294-1
http://dx.doi.org/10.1107/S2053273319011562
http://www.ncbi.nlm.nih.gov/pubmed/31692456
http://dx.doi.org/10.1524/zkri.2008.0053
http://dx.doi.org/10.18576/amis/100641
http://dx.doi.org/10.3390/sym3020126
http://dx.doi.org/10.3390/sym2010069
http://www.gap-system.org

	Introduction
	Preliminaries
	Results
	Examples
	Colorings of D6
	Colorings of DZ2
	Colorings of 642

	Conclusions and Outlook
	References

