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Abstract: The model predictive control (MPC) technique is widely employed in process industries
as a control scheme. The quality of the model used greatly influences the performance of the
MPC. In time-varying systems, the plant model plays a critical role in determining the controller’s
performance, as the controller’s control action relies on an adaptive model. Therefore, updating
the system parameters rapidly and symmetrically in time-varying systems becomes necessary. To
address this need, in the proposed work, a non-minimal state space model of a time-varying system is
utilized for parameter estimation, and these parameters are updated at every sampling instant using
a multi-innovation recursive least squares (MIRLS) scheme, which enables the timely updates of
system parameters. We have explored various extensions of the recursive least square (RLS) scheme,
such as the multi-innovation recursive least squares (MIRLS) method. This extension aims to achieve
a higher convergence rate for parameter estimation. Furthermore, we have focused on the parameter
estimation of a non-minimal state space time-varying system, where the system parameters change
at each time interval. Additionally, we have incorporated a time-varying objective function into
the MPC formulations, which enables adaptability to change the system dynamics. To demonstrate
the applicability of our proposed approach, we have conducted simulation experiments using a
benchmark time-varying model. These experiments showcase the effectiveness and benefits of our
proposed methodology in dealing with time-varying systems.

Keywords: model predictive control; parameter estimation; recursive least square; non-minimal SSR;
multi-innovation recursive least square

1. Introduction

Adaptive model predictive control (AMPC) is an advance control strategy of MPC
that incorporates adaptive techniques to enhance the system model’s performance by
symmetrically adapting the changing system’s parameters. MPC is a widely applied
control technique commonly used in the process industry [1,2]. MPC defines an approach
for control engineers to define their strategy according to their needs. The standard transfer
function representation cannot fully reveal the true behavior of the states inside the system,
such as controllability and observability. Therefore, the transfer function model is not
always suitable for stability analysis of time-varying systems. The state space model,
which utilizes state feedback for control purposes, overcomes these limitations. MPC can
handle constraints, including input and output constraints [3]. The proposed MPC design
can effectively handle constraints for large-scale time-varying systems. In this work, the
constraints are explicitly addressed by solving a quadratic problem in real-time to predict
future outcomes. The quality of the prediction model depends on the accuracy of the model
itself. A poorly defined model cannot generate a good estimate for the controller, and
consequently, the control system’s performance is affected [4,5]. Typically, the finite impulse
response (FIR) and impulse response models (IR) are used in time-varying systems, where
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the controller performance relies on the quality of the model. In time-varying systems,
updated parameters are required at every sampling instant [6].

For an MPC controller, model identification is necessary, which can be achieved
using commonly used techniques like system identification. System identification refers
to the task of estimating parameters based on observations of the dynamic system. It
involves designing, executing, and interpreting the results of experiments [7]. Generally,
two types of techniques are adopted for constructing a model. The first method involves
designing a mathematical model of the system by applying fundamental laws of physics,
such as Newton’s law or Ohm’s law. The second method involves performing a series of
experiments on the system to collect data for system identification [8]. After applying the
system identification technique, a suitable model is designed for the system depending
upon its behavior, like autoregressive (AR), autoregressive moving average (ARMA),
autoregressive moving average exogenous (ARMAX), etc. In the proposed work, a non-
minimal state space model (NMSS) of a time-varying system is used for the parameter
estimation, and these parameters are updated at every sampling instant by using a MIRLS
scheme. The commonly applied MPC control technique is based on the state space model,
which uses a state-feedback controller and an observer. By applying the non-minimal
state-space technique, it is possible to avoid the use of a state observer, which enhances the
performance of the MPC in terms of efficiency and fast-tracking of future control trajectories.
A commonly applied control scheme is shown in Figure 1, where r(t) is the reference signal,
u(t) is the current input, e(t) is the error, and y(k+1) is the output of next time interval.
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Due to advancements in technology, the demands for performance and efficiency of
control systems are growing rapidly. Fast convergence rate and parameter estimation are
major challenges in such systems. In a system where online parameter estimation of a
time-varying system is considered, the algorithm’s convergence rate becomes extremely
important to achieve fast tracking. Several algorithms are available for parameter esti-
mation, including RLS and stochastic gradient (SG) method, each with its advantages
and drawbacks, such as slow or fast convergence rates or computational burden. In the
proposed work, we present two different types of algorithms for parameter estimation
of time-varying systems, providing a comparative analysis of computational burden and
convergence rate.
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2. Background and Literature Review

This section describes the background and literature review of different modeling
schemes and parameter estimation techniques; hence, this section will cover many aspects
of modeling, system identification, and parameter estimation techniques, which have been
applied in various MPC domains. A system can be represented in many forms depending
upon its behavior, like linear, nonlinear time-varying, time-invariant, etc. The model
structure of a system can be represented with a lot of modeling schemes like output error
model, AR, ARMAX, ARMA, ARIMAX, etc. In the proposed work, we used an ARMAX
time series model for predicting the future forecast. Considering the plant consists of
inputs and outputs, then the mathematical structure of the model can be captured by the
differential equation in the form of an ARMAX model. Consider the model contains a
time-varying error, which is a white noise of zero mean, a discrete-time model with G
inputs and N outputs can capture the design used in the model by a difference, as shown
in Equation (1).

(st+1)+N1y(st) + N2y(st−1) + · · ·+ Nmy(st−n+1) = G1u(st) + G2u(st−1) + · · ·+ Gmu(st−n+1) + ς(st) (1)

y(st+1) represents the output at the next time step, y(st ) is the output at time t, u(st)
is the input at time t, and ς(st) represents the time-varying error term at time t. The terms
N1, N2,. . ., Nm are the coefficients associated with the past outputs y(st ), and G1, G2,. . .,
Gm are the coefficients associated with the past inputs u(st) . The parameters n and m
determine the number of past samples considered in the model.

This difference equation captures the relationship between the inputs, outputs, and the
time-varying error term in the ARMAX model, enabling the prediction of future forecasts
based on past input–output data. A linear system that has a set of inputs, state variables,
and output variables can be represented in the most common state space equation, as
shown in Equation (2).

(z) = Ax(z) + Bu(z); Y(z) = Cx(z) + Du(z) (2)

where the system matrix is denoted with A, the input matrix is denoted with B, and x′(z)
is the derivative of the state vector at instant k. The output vector is denoted by y(z), C is
the output matrix, u(z) is the control or input matrix, and D is the feedforward matrix [9].
The state space model of the system is shown in Figure 2.
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2.1. Non-Minimal State Space-Based MPC

The conventional method of MPC control based on the state space model uses a state-
feedback controller and an observer. By applying the non-minimal state space technique, it
is possible to avoid the use of a state observer, which improves the efficiency of the MPC
scheme in terms of accuracy and convergence rate [10]. The system’s identification, in
strict terms, refers to the task of estimating the parameters based on the observations and
dynamics of the system. Identifying the system in broad terms refers to the many subtleties
that arise when we design, execute, and interpret the results of this experiment [11]. In
general, two types of techniques are adopted for constructing a model; that is, by applying
the law of physics like Newton’s law or Ohm’s law, a mathematical model is designed, and
the other one, called system identification, is by collecting data after performing several
experiments on the system, with which we want to model this technique [12]. In the system
identification technique, several inputs, u(t), are applied one by one to the system, and
observe and record the output, y(t), of the corresponding inputs, u(t). The output, y(t), is a
mixed signal of the output response of the system, which has some noise or disturbance,
generally denoted by v(t). The block diagram of the general system identification technique
is given in Figure 3a. Where input u(t) is a uniformly distributed signal, the simple
parametric identification model of a system is a linear regression, which can be described
below in Equation (3).

y(t) = ŷ(t) + e(t) = ϕT(t)ϑ + e(t) (3)

where ŷ(t) is the estimated value of output at time t, y(t) is a measurable value, ϑ is a vector
of unknown parameters, ϕ(t) is the vector of a known quantity, and e(t) is the model error. t
denotes the sampling instant. Several experiments are performed to collect the data, which
are given to the system identification technique for modeling. Figure 3b shows the inputs
applied to a system for identification, and Figure 3c shows the corresponding outputs of
the system.
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2.2. Model Representation

In the proposed work, an input u(t) and output y(t) are applied to a time-varying
system, and these signals input u(t) and output y(t) are the discrete-time samples at k = 1,
2, 3, 4,. . ., N and the sampled values can be presented through a difference equation as
follows:

y(st) + a1y(st − 1) + · · ·+ anay(st − na) = b1u(st − 1) + b2u(st − 2) + · · ·+ bnbu(st − nb) + v(st) (4)

where v(t) is the disturbance or noise if q1 is the backward delay operator, i.e.,
q−1y(st) = y(st − 1), then the above Equation (2) can be represented as follows:

Aq1y(st) = Bq1u(st) + v(st) (5)

where

Aq1 = 1 + a1q−1 + · · · · · ·+ anaq−na; Bq1 = b1q−1 + · · · · · ·+ bnbq−nb
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The system can be represented as a linear regression as follows:

y(st) = φT(st)ϑ +v(st)

ϑ =
[

a1, . . . , ana, b1, . . . , bnb]
T

φ(st) =
[
−y(st−1), . . . . . . ,−y(st−na), u(st−1), . . . . . . , u(st−nb)]

T

If v(t) is a white noise and no input is present, then the above system becomes the
following:

y(st) + a1y(st−1) + · · ·+ anay(st−na) = v(st) (6)

which is known as the AR process. The AR model is used in a stochastic process, which
is used in statistics for estimations that depend on the weighted sum of the past value.
There are two types of AR models. The first one is AR1 of a first-order process, meaning
the existing values of the model depend on the recent preceding values. The second type
AR2 depends on the past values and is called a second-order autoregressive process [13].
Another type is the ARMAX model, which is a traditional model used widely in the
predicting field. Consider an ARMAX model with inputs u(t) and outputs y(t) is described
as follows:

y(t) + a1y(t− 1) + · · ·+ any(t−na)︸ ︷︷ ︸
AR Part

= b1u(t− 1) + · · ·+ bnu(t− nb)︸ ︷︷ ︸
x Part

+ c1e(t− 1) + · · ·+ e(t)(t− nc)︸ ︷︷ ︸
MA Part

(7)

Let
A
(
q) = 1 + a1q−1 + · · · · · ·+ anq−n

B(q) = b1q−1 + · · · · · ·+ bnbq−nb

C(q) = c1q−1 + · · · · · ·+ cncq−nc

Therefore
A(q)y(t) = B(q)u(t) + C(q)e(t)

Now
y(t) = G(q, θ)u(t) + H(q, θ)e(t)

where
G(q, θ)u(t) = B(q)

A(q)

H(q, θ)u(t) = C(q)
A(q)

(8)

where e(t) is the white noise of sequence with variance σ2. The ARMAX model structure
can be represented in Figure 4.
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2.3. Parameter Estimation

There are a lot of techniques for parameter estimation in control systems like RLS,
MIRLS, Kalman filter stochastic gradient, etc. The recursive least square (RLS) is the most
common technique to estimate the parameters, which recursively finds the coefficients of
the parametric model. The RLS algorithm is well-known because of its high performance
and fast convergence rate when dealing with a time-varying system. The RLS algorithm
works excellently, but there are some issues like stability and computational burden [14].
Consider the system whose input and output data are recorded for a series of time means
for a specific time span, as shown in Figure 3b,c; by analyzing these data, a mathematical
model of the system can be written as under.

y(st) + a1y(st−1) + · · ·+ anay(st−na) = b1u(st−1) + · · ·+ bnbu(st−nb) + v(st) (9)

where y(st) is the output, u(st) is the input, and v(st) is the disturbance at discrete-time st.
This model can be written in more compact as given below:

A(q−1)y(st) = B(q−1)u(st) + v(st) (10)

where q−1 is the backwards shift, and A and B are the polynomials. This ARX model can
be converted into regression form as follows:

y(st) = φ−1(st−1)ϑ +v(st) (11)

where
φ(st−1) =

[
−y(st−1), . . . ,−y(st−na), u(st−1), . . . , u(st−nb)]

T

which contains the previous outputs and inputs, and the unknown parameters can be
written as follows:

ϑ =
[

a1a2, . . . , anab1, . . . , bnb]
T (12)

In indirect adaptive control [15], we use the past information, Y(t), to estimate the
parameters as shown in Equation (7).

xi(k+1) = Ai(t)xi(k) + Bi(t)u(k) (13)

To speed up the tracking of identification, a method called the forgetting factor can be
used to converge the rate of the RLS algorithm and hence speed up the algorithm. Such
a technique is commonly applied for online parameter estimation [16]. Multi-innovation
recursive least square techniques are used to increase the efficiency and convergence rate
of the algorithm. The MIRLS algorithm can be presented as follows:

ϑ̂(t) = ϑ̂(t−1) + P(t)ϕ(p, t)E(p, t) (14)

E(p, t) = Y(p, t)− ϕT(p, t)ϑ̂(t−1)

P−1(t) = P−1(t− 1)− ϕ(p, t)ϕT(p, t)

ϕ(p, t) = [ϕ(t), ϕ(t− 1), . . . , ϕ(t− p + 1)]

Y(p, t) = [y(t), y(t−1), . . . , y(t−p+1)]

where E(p, t), Y(p, t) , and ϕ(p, t) are the innovation vectors, ϕ(t) is the input vector, and
P(t) is the covariance matrix [17]. The stochastic gradient (SG) is a popular technique due to
its advantage in terms of computation burden, but the drawback of this technique is that its
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convergence rate is too slow, and the efficiency is also very low, especially when compared
with the RLS algorithm. This algorithm can be represented in terms of a mathematical form
as follows:

ϑ̂(t) = ϑ̂(t−1) +
ϕ(p, t)

r(t)
E(p, t) (15)

E(p, t) = Y(p, t)− ϕT(p, t)ϑ̂(t−1)

r(t) = r(t− 1)
∣∣∣∣∣∣ϕ(t)

∣∣∣|2
ϕ(p, t) = [ϕ(t), ϕ(t− 1), . . . , ϕ(t− p + 1)]

Y(p, t) = [y(t), y(t−1), . . . , y(t−p+1)]

where E(p, t), Y(p, t) and ϕ(p, t) are the innovation vectors, ϕ(t) is the input vector, and
r(t) is the covariance matrix [18].

2.4. MPC Modeling

Model selection is based on the observation and behavior of the system. MPC can
define an approach for the control engineer to define their strategy according to their
needs. The standard transfer function representation cannot reveal the true behavior of the
states inside the system, like the controllability and observability, which is why the transfer
function model cannot always be used for the stability analysis of the time-varying system.
The state space model uses state feedback for control purposes. The MPC modeling scheme
can also cope with constraints, such as input and output constraints [3]. Consider a single
input and single output system as follows:

xn(k+1) = Anxn(k) + Bnu(k); y(k) = Cnxn(k) (16)

where u(k) is the input to the system and y(k) is the process output at sampling instant k.
Now, taking the difference operation on the above equation we receive the following:

xn(k+1)− xn(k) = An(xn(k)− xn(k− 1)) + Bn(u(k)− u(k− 1)) (17)

and state variable difference is denoted by the following:

∆xn(k+1) = xn(k+1)− xn(k) and ∆xn(k) = xn(k)− xn(k− 1) (18)

The control variable can also be represented in terms of a difference equation like the
following:

∆u(k) = u(k)− u(k− 1) (19)

after applying the difference on state variable and control variable we can modify the state
space equation of the system as follows:

∆xn(k+1) = An∆xn(k) + Bn∆u(k) (20)

y(k + 1)− y(k) = Cn(xn(k+1)− xn(k)) (21)

∆y(k) = Cn An∆xn(k) + CnBn∆u(k) (22)
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Now the augmented state space model, which used in the PC, is written as follows:(
∆xn(k+1)

y(k+1)

)
︸ ︷︷ ︸

x(k+1)

=

(
An(k) 0T

n
Cn(k)An(k) 1

)
︸ ︷︷ ︸

A

(
∆xn(k)

y(k)

)
︸ ︷︷ ︸

x(k)

+

(
Bn(k)

Cn(k)Bn(k)

)
︸ ︷︷ ︸

B

∆u(k)

y(k) =

C︷ ︸︸ ︷[
0n 1

](∆xn(k+1)
y(k+1)

)
︸ ︷︷ ︸

x(k+1)

The triplet (A, B, C) is called the augmented model. The MPCs performance dete-
riorates due to constraints on the input, output, and control variables. To tackle these
constraints, a quadratic optimization technique is applied in the MPC formulation to
enhance its performance. If the control signal has some limitation in the system due to
operational constraints in the plant, then this limitation prevents the control signal to be
applied to the system when its amplitude crosses this limit. Consider the limitation on the
control signal is as u(z) =∝ if u(z) >∝ ; and u(z) = − ∝ if u(z) < − ∝ where ∝ is a real
number.

When this is applied to the system, and no attention is paid to the control saturation, the
closed-loop response of the system may deteriorate in the presence of constraints. To handle
these constraints, a small modification is required in the formulation. If the calculated value of
the control signal, u(zi) >∝ then u(z) =∝ and ∆u(z) =∝ −u(zi−1) . If the calculated value of
the control signal, u(zi) < − ∝ then u(z) = − ∝ and ∆u(z) = − ∝ −u(zi−1) . This updated
∆u(zi) is used in the observer to estimate the next state of the state variable.

x̂(ki + 1) = Ax̂(ki) + B∆u(zi) + kob(y(ki)− Cx̂(ki)) (23)

This modification enhances the performance of the control system.

2.5. Non-Minimal State Space Representation

A lot of techniques are available for time-varying system modeling. In the proposed
work, we used a non-minimal state space model for a time-varying system. Commonly,
three types of approaches are used for MPC design, and every design approach uses a
different model structure. The FIR and step-response model were popular in the past, the
FIR-based model design consists of a DMC formulation, but there is a limitation in these
models because they can only work for a stable system and they need a larger order [19]. In
the proposed work, a non-minimal state space model of the time varying system is used to
achieve the symmetric response. The advantage of the proposed non-minimal state space
representation is that there is no need for an observer for the state estimation; hence it
enhances the convergence rate of state estimation.

Let a system have the following form:

y =

(
B
(
z−1)

A(z−1)
u(k)

)
(24)

where the numerator B
(
z−1) = b1z−1 + b2z−2 + b3z−3 + . . . . . . + bnz−n and the denom-

inator A
(
z−1) = 1 + a1z−1 + a2z−2 + a3z−3 + . . . . . . + amz−m are presented in terms of

backshift operator z−1, i.e., z−1y(k) = y(k− 1).
Considering the model contains a time-varying error, which is a white noise of zero

mean, a discrete-time model with G inputs and N outputs can capture the design used in
the model by a difference equation.

y(st+1) + N1y(st) + N2y(st−1) + · · ·+ Nmy(st−n+1) = G1u(st) + G2u(st−1) + · · ·+ Gmu(st−n+1) + ς(st) (25)

Let ∆ς(st) = ς(st)− ς(st−1) be the variation in the error of the time-varying model.
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∆y(st) = y(st)− y(st−1); and ∆u(st) = u(st−u(st−1)). Where ∆y(st) is the output
difference and ∆u(k) control variable. Respectively, these variation in the system can be
found with the RLS algorithm [5,6]. In the similar way, the non-minimal state vector can be
chosen, as shown in Equation (26).[

∆y(k)T∆y(k− 1)T . . . . . . . . . ∆y(k− n + 1)T∆u(k− 1)T∆u(k− 2)T∆u(k− 3)T . . . . . . . . . ∆u
(

k− n + 1)T
]

(26)

and the above state space model can be defined as in Equation (27).

∆xn(k+1) = An∆xn(k) + Bn∆u(k) + Ωn∆ς(k); ∆y(k+1) = Cn∆xn(k+1) (27)

where

An =



−N1 −N2 ... −Nn−1 −Nn G2 . . . . . . Gn−1 Gn
Iq 0 ... 0 0 0 . . . . . . 0 0
0 Iq ... 0 . 0 . . . . . . 0 0
. . ... . . . . . . . . . . .
. . ... . . . . . . . . . . .
. . ... Iq . . . . . . . . . .
0 0 ... 0 0 0 . . . . . . 0 0
0 0 ... 0 0 0 . . . . . . 0 0
0 0 ... . 0 Ip . . . . . . 0 0
. . ... . . . . . . . . . . .
. . ... . . . . . . . . . . .
. . ... . . . . . . . . . . .
0 0 ... 0 0 0 . . . . . . Ip 0



. &

BT
n =

[
GT

1 0 0. . . . . . 0 Iq 0 0
]

; CT
n =

[
IT
q 0. . . . . . 0 0 0 0

]
.

3. Methodology

In this work, an adaptive MPC strategy is used for a system that varies over the
time with input, output, and control variable constraints. These constraints are solved
by a quadratic optimization technique. The MPC operates on receding horizon’s control
principle; in horizon control technique, the controller solves an optimization calculation for
each time instant and predicts the future control moves for the controller. The principle of
receding horizon control can be visualized from the Figure 5 given below.
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In receding horizon control for (RHC) the future control action of the system, an
optimization calculation is solved for every sampling instant, and the first manipulated
input is applied to the plant model and the same process is repeated continuously for every
time instant, while length of the horizon window remains same in each interval [7]. The
length of the control window is normally less than prediction horizon’s window; the length
of both these windows plays very important role in the controller performance, as the
smaller prediction window can decrease the controller performance. As the information
currently available is used for future forecast behavior, so MPC has the online feedback
and calculation, and these measurements are used to estimate the future control inputs.

The horizon control strategy can also handle the constraints of input, output, and
control variables. After examining several models, we find that MPC is the most appropriate
technique for calculating the future trajectory of the manipulated inputs for the desired
output response of the plant. The response of a normally adopted MPC model for the LTI
system is good, but for time-varying system the system’s response depends on the model’s
quality. So, the adoption of AMPC is the optimum approach for time-varying system [20].
In adaptive control no a priori knowledge is required, so online identification is applied as
a control approach [6]. MPC is a control technique in which the current control action can
be solved at each sampling moment [21]. The MPCs main advantage is the ability to cope
with rigid constraints on states and control and is, therefore, widely used in the chemical
industry, as shown in Figure 6 [22]. In the proposed work, we used an ARMAX model,
and MIRLS algorithm is used for the parameter estimation with MATLAB (2022b), and
the model is updated at every instant for control input. In our proposed work, we use
ARMAX model and transform the plant transfer function model into non-minimal state
space, and the next state can be found from the current state variable matrix and output
matrices, these matrices are updated for every sampling instant with the online parameter
estimation technique [21].
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Due to the computational complexity, the convergence rate of the commonly adopted
technique RLS for online parameter estimation is slow, so in the proposed work, we adopted
a new technique, multi-innovative recursive least square algorithm, which measures the
parameters more quickly, so the performance of the model is also increased, which give a
better design for online parameter estimation of the time-varying system [20–22].

In the literature review, we consider different models of time series model prediction
in which every model carries different techniques for linear and nonlinear systems, a
few models are for linear systems, and some are for nonlinear systems, but they have
some restrictions and limits for input, output, and control variable constraints [3]. In the
proposed modeling scheme, we used a non-minimal state space model, which can capture
the dynamics of the time-varying system the future parameters are identified through
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RLS algorithm, and quadratic optimization strategy is used for the constraints on input,
output, and control variable [5]. For time, varying system the model plays an important
role in the controller pre-performance [23]. A badly design model cannot generate a good
estimate for the future trajectory. In the proposed work, we used an ARMAX model, which
is most suitable than the ARX model and for parameter estimation, the RLS algorithm is
used [5]. A lot of techniques are used for online and offline parameter estimation of LTI
and time-varying. For online parameter estimation of the time-varying system, the RLS
algorithm is the most suitable technique, but the convergence for parameter estimation is a
little slow for time-varying system so we will use a new technique called multi-innovative
recursive algorithm, which is faster than the commonly adopted RLS algorithm. With the
fast parameter estimation tracking the performance of the model is also enhanced.

For single-input single-output (SISO) time-varying system, the model can be presented
as in Equation (28).

xi(k + 1) = Ai(t)xi(k) + Bi(t)u(K); y(k) = Ci(t)xi(k) (28)

where u(k) is the manipulated input to the system at time k, y(k) is the output at time k,
and xi is the state vector by applying the difference equation, the above equation can be
represented by the following:

xi(kn + 1)− xi(k) = An(t)(xi(kn)− xi(kn − 1)) + Bn(t)(u(kn)− u(kn − 1)) (29)

The next states xi(kn + 1|kn), xi(kn + 2|kn), xi(kn + 3|kn), . . . . . . , xi
(
kn + Np

∣∣kn
)

and
the output z(kn) = {u(kn), u(kn − 1), u(kn−2), . . . . . . , z(kn), z(kn − 1) , z(kn−3) , . . . . . .} can
also be calculated with recursive least square algorithm. In compact form, the difference
equation of the can be represented as

Am(hm, t)y(km) = Bm(hm, t)u(k− n) + Cm(hm, t)e(kt)

where

Am(hm,t) = 1 + a1hm
−1 + · · · · · ·+ amahm

−ma,
Bm(hm, t) = b1hm

−1 + · · · · · ·+ bmbhm
−mb, Cm(hm,t) = c1hm

−1 + · · ·+ cmhm
−mk

Now

y(km) = G((hm, t), θ◦)u(k) + H(hm(t), θ◦),
G(hm, θ◦) = Bm(hm(t))

Am(hm(t)) , H(hm(t), θ◦) = Cm(hm(t))
Am(hm(t)) ,

and θ◦ =
[
a1a2a3 · · · · · · amb1b2b3 · · · · · · bmc1c2c3 · · · · · · · · · cmk]

T

where θ◦ can be computed with commonly used RLS technique. y(km) is the output at
time km and u(km) is the input at time km let the output y(km) can be find in the form of
regression vector by the following:

y(km) = γT(tλ̄ − 1).

where γ can be predicted with the commonly used (RLS) technique.

3.1. Online Parameter Estimation

In offline or batch processing identification, data up to some duration like t = N are
first collected and then model parameters are calculated but in our proposed online or
recursive identification model the parameters are required to be identified for every time t.
A common control problem in the process industry where the plant dynamics changing
quite significantly from one operating point to another operation points that is why the
online parameter estimation is required to control the plant to obtain the desire response,
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the online parameter estimation problem gets much harder when there are high number of
estimated parameters.

There are a lot of techniques for online parameter estimation such as RLS, MIRLS,
stochastic gradient method, all these techniques have some advantages and drawbacks,
it is more important that memory and the time required for computation do not increase
with t. in the proposed work, we used the MIRLS algorithm due to its fast convergence rate
and high efficiency. The block diagram of the online parameter estimation design is shown
in Figure 7, where r is the reference signal, u is the input, and y is the output of the plant.
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3.2. MIRLS

Multi-innovation recursive least square technique is used to increase the efficiency
and convergence rate of the algorithm. The MIRLS algorithm can be presented as follows:

ϑ̂(t) = ϑ̂(t−1) + P(t)ϕ(p, t)E(p, t) (30)

E(p, t) = Y(p, t)− ϕT(p, t)ϑ̂(t−1)

P−1(t) = P−1(t− 1)− ϕ(p, t)ϕT(p, t)

ϕ(p, t) = [ϕ(t), ϕ(t− 1), . . . , ϕ(t− p + 1)]

Y(p, t) = [y(t), y(t−1), . . . , y(t−p+1)]

where E(p, t) , Y(p, t) , and ϕ(p, t) are the innovation vectors, ϕ(t) is the input vector, and
P(t) is the covariance matrix.

3.3. Parameter Estimation with Constraint

When there is a limitation on the control signal, input, or output signal then the
system does not give the desired response, in the presence of constraint the closed-loop
response of the system deteriorates to handle such constraint we apply the constraint control
techniques [24]. Before discussing the constraint, handling technique consider a system
without constraints and check the response of the system k. Consider a mathematical
model of the system as follows:[

x′1(ki)
x′2(ki)

]
=

[
a 1
−a 0

][
x1(ti)
x2(ti)

]
+

[
b
b

]
u(t) (31)
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From the given state x(ki) we can predict the future state variable up to Np, Np is the
length the prediction horizon, let the future state variables denoted by x(ki + 1|ki), x(ki + 2|ki),
. . . , x(ki+NP|ki), and the future control moves by ∆u(ki), ∆u(ki + 1), ∆u(ki + 2), ∆u(ki + 3),
· · · , ∆u

(
ki + Np

∣∣ki) . After the augmented state space model as discussed, the relation be-
tween the state vector and control vector can be defined in such form [25].

X = Fx(ki) + Θ∆Uo;

where

F =



A
An2

An3

.

.

.

.

.

.
AnNp


and Θ =



B 0 0 0 0 .... 0
AB 0 0 0 0 .... 0
A2B B 0 0 0 .... 0
A3B AB B 0 0 .... 0

. A2B AB B 0 .... 0

. A3B A2B AB B .... 0

. . . . . . .

. . . . . . .

. . . . . . .
ANp−1B ANp−2B . . . .... ANp−Nc−1B


&

Y =
.
CX =

.
CFX

(
ki) +

.
Cϑ∆

.
U

where
.
C is a diagonal matrix of the output equation of the state space [22]. Let the set point

trajectory of the future output is observed with a vector

Sp =
[
sp

(
kn + 1)T , sp

(
kn + 2)T , . . . . . . . . . . . . . . . , sp(kn + NP)]

T

where Sp is the set point of the cost function, which can be chosen as Js = (Sp−Y)TQ′(Sp−Y)
+∆UT R′∆U′.

The dimension of Q′ is equal to the dimension of C′ [25]. From the above formulation,
we can predict the future moves of the control variable future state vector and future output
vector, but in the presence of constraints on the control variable, input variable, and output
variable the performance of the MPC deteriorate. To handle this constraint, we may need
an optimization formulation to enhance the performance of the MPC. In the proposed
work, we apply the Hildreth quadratic optimization technique, which clearly handles these
constraints.

Hildreth programming is a row-action technique for quadratic programming [26]. It is
a very useful algorithm for solving large scale quadratic programs and it can also handle
equality and inequality constraint problem [27].

Let us suppose we have a cost function with some constraint, and we want to minimize
this function.

∼
J =

1
2
[(x′1 − a)2 + (x′2 − b)2],

such that
g ≤ x′1 ≤ h and k ≤ x′2 ≤ m.

where a, b, g, h, m, and k, are some real numbers. By using Hildreth quadratic programming
we can write cast function as

∼
J =

1
2

x′TEx′ + FTx′ (32)

[
x′0

x′2
0

]
= −E−1F (33)

In the proposed work we used Hildreth quadratic technique to handle such constraints.
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4. Results and Discussion

We successfully estimated the ARMAX model parameters, and the simulation results
are shown in Figure 8. We used the same version of MATLAB to simulate the result of the
algorithm for parameters a11 = −1.5; a12 = 0.7; b11 = 0.8; b12 = 0.5; c11 = 0.6.

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

We successfully estimated the ARMAX model parameters, and the simulation results 
are shown in Figure 8. We used the same version of MATLAB to simulate the result of the 
algorithm for parameters 𝑎ଵଵ = −1.5; 𝑎ଵଶ = 0.7; 𝑏ଵଵ = 0.8; 𝑏ଵଶ = 0.5; 𝑐ଵଵ = 0.6. 

 
Figure 8. Parameters estimation vector. 

These parameters, [𝑎ଵଵ , 𝑎ଵଶ ], [𝑏ଵଵ , 𝑏ଵଶ ], and 𝑐ଵଵ , represent the coefficients of the 
model, which indicate the effect of past output on the current output, the effect of output 
on the past input, and the influence of the current output on the input, respectively, our 
simulation results shows that our model estimated these parameters correctly. These pa-
rameters are used to build the mathematical model of the system which show the system’s 
symmetric behavior for unknown parameters estimation. 

4.1. Parameter Estimation with MIRLS and Sensitivity Analysis 
We tested the model with the parameters a11 , 𝑏ଵଵ, and  𝑐ଵଵ, for p = 1, and p = 2. The 

results are shown in Figure 9, where p is the length of the innovation.  

  

Figure 8. Parameters estimation vector.

These parameters, [a11, a12], [b11, b12], and c11, represent the coefficients of the model,
which indicate the effect of past output on the current output, the effect of output on the
past input, and the influence of the current output on the input, respectively, our simulation
results shows that our model estimated these parameters correctly. These parameters are
used to build the mathematical model of the system which show the system’s symmetric
behavior for unknown parameters estimation.

4.1. Parameter Estimation with MIRLS and Sensitivity Analysis

We tested the model with the parameters a11, b11, andc11, for p = 1, and p = 2. The
results are shown in Figure 9, where p is the length of the innovation.
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Figure 9a shows the model response for p = 1 and Figure 9b shows the response for
p = 2. It illustrates that the MIRLS algorithm is more efficient and fast in terms of parameter
estimation. By changing the length of the p, the desired estimation results can be achieved.

The system parameters, a11, a12, b11, b12, and c11, have been adjusted to different
values. The new values are chosen to provide a closer alignment between the estimated
parameter values and the original parameter values for sensitivity analyses, as shown in
Figure 9a,b. Finding optimal parameter values for a specific need may require further
experimentation and adjustment. Consider refining the parameter variations or exploring
different parameter values to achieve the desired level of sensitivity and alignment in the
sensitivity analysis results.

4.2. Simulation Result of Adaptive MPC

Systems output with the given parameters and the control signal is shown in Figure 10.

Ap =[2 − 1 0.5; 1 0 0; 0 0 0]; Bp =[0.5; 0; 1] Cp =[1 0 0];
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From the simulation result, we can analyze that the controller is tracking the output of
the system symmetrically and setting the control moves accordingly.

4.3. Adaptive MPC with Constraints Simulation Results

In the proposed work, we used the parameters of a plant model of an industrial weight
feeder, which consists of a motorized gate control, to regulate the flow of weight feed. The
objective of the proposed work is to design a controller to maintain the flow of the weight
feeder, the proposed controller is tested on a system model to track the control move and
set the input accordingly, as shown in Figure 11. Figure 12a shows the behavior of the
output and control signal for a single constraint on the input, while Figure 12b shows the
response of the system in the presence of dual constraints, both on the input and the output.
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Figure 12. Adaptive MPC with single and dual constraints.

Figures 13 and 14 represent the output and control signal of a time-varying model pre-
dictive controller with dual constraints. The system being controlled is a double integrator
with the transfer function discretized with a time difference of one. In the graph, the top
subplot displays the output signal, while the bottom subplot shows the control signal. The
x-axis represents time, y-axis represents the corresponding values of the output and control
and orange line in the graph shows the presence of constraints.
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The control signal is shown in the bottom subplot, indicating the applied control action
to symmetrically regulate the system. The control input follows the changes required to
generate the desired output signal while considering the constraints imposed on the control
horizon. The control signal satisfies the constraints and maintain the stability as well as
performance of the system symmetrically.

The plot showcases the effectiveness of the time-varying adaptive model predictive
controller, which tracks the desired output, and sets the control move accordingly, even
when the system parameters change over time. It demonstrates the ability of the controller
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to adapt to dynamic conditions and enforce constraints while achieving the desired control
objectives to minimize the input.

5. Conclusions and Future Work

The simulation and experimental results validate the effectiveness of an online pa-
rameter estimation and adaptive control method based on non-minimal state space. This
method eliminates the need for a state observer, potentially reducing the sensitivity of
the controller to model mismatch issues compared to the observer-based minimal state
equivalent. In the proposed work, we present different techniques for parameter estima-
tion of a SISO time-varying system, which integrate the controller design and enhance
the efficiency and convergence rate of the parameter estimation. The proposed design
minimizes the parameter estimation error variance and maximizes the efficiency of the
system by changing the length of the innovation vector, the simulation results also show
the improved parameter estimation of the time varying system in terms of convergence
rate and efficiency, and the NMSS-AMPC can symmetrically handle the constraints very
effectively. We can extend our design for a multiple-input multiple-output (MIMO) system
to predict the future control moves of a time-varying system.
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