New Perspectives of Symmetry Conferred by q-Hermite-Hadamard Type Integral Inequalities
Abstract
:1. Introduction
2. Outcomes
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Awan, M.U.A.; Javed, M.Z.; Slimane, I.; Kashuri, A.; Cesarano, C.; Nonlaopon, K. (q1,q2)-trapezium like inequalities involving twice differentiable generalized m-convex functions and applications. Fractal Fract. 2022, 6, 435. [Google Scholar] [CrossRef]
- Xu, P.; Butt, S.I.; Ain, Q.U.; Budak, H. New Estimates for Hermite-Hadamard inequality in Quantum Calculus via (α,m) convexity. Symmetry 2022, 14, 1394. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Khan, M.A.; Abathun, A. Refinement of the Jensen integral inequality. Open Math. 2016, 14, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Alomari, M.; Latif, M.A. On Hadamard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. 2009, 3, 1645–1656. [Google Scholar]
- Khan, A.; Chu, Y.M.; Khan, T.U.; Khan, J. Some inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Kirmaci, U.S. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math. Sci. 2011, 31B, 1643–1652. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I. Fractional Hermite-Hadamard-Fejer type inequalities for GA-convex functions. Turk. J. Inequal. 2018, 2, 1–20. [Google Scholar]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 51, 65–75. [Google Scholar]
- Al-Salam, W. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Toplu, T.; Kadakal, M.; Iscan, I. On n-polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Murtaza, G.; Chu, Y.-M. Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions. J. Inequal. Appl. 2021, 2021, 84. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Agarwal, R. A propos d’une note de m. pierre humbert. Comptes Rendus l’Acad. Sci. 1953, 236, 2031–2032. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and aplications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 13, 121. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.; Noor, K.; Awan, M. Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. q2-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Awan, M.U.; Wu, S. Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions. Mathematics 2019, 7, 751. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Korus, P.; Valdes, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.M. Quantum Hermite-Hadamard inequality by means of a Green function. Adv. Difer. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Alp, N.; Kalsoom, H.; Sarikaya, M.Z. On new generalized quantum integrals and related Hermite-Hadamard inequalities. J. Inequal. Appl. 2021, 2021, 180. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ. Sci. 2017, 29, 263–273. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- You, X.; Kara, H.; Budak, H.; Kalsoom, H. Quantum Inequalities of Hermite-Hadamard Type for r-Convex Functions. J. Math. 2021, 2021, 6634614. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some New Quantum Hermite-Hadamard-Like Inequalities for Coordinated Convex Functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Gulshan, G.; Hussain, R.; Budak, H. A new generalization of q-Hermite-Hadamard type integral inequalities for p,(p-s) and modified (p-s)-convex functions. Fract. Differ. Calc. 2022, 12, 147–158. [Google Scholar] [CrossRef]
- Chasreechai, S.; Ali, M.A.; Ashraf, M.A.; Sitthiwirattham, T.; Etemad, S.; De la Sen, M.; Rezapour, S. On New Estimates of q-Hermite-Hadamard Inequalities with Applications in Quantum Calculus. Axioms 2023, 12, 49. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtazza, G.; Chu, Y.M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.A.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
- Ali, M.A.; Chu, Y.M.; Budak, H.; Akkurt, A.; Yildrim, H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 2021, 25. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities with applications in numerical analysis. AIP Conf. Proc. 2007, 936, 681. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Ltd.): Chichester, UK, 1985. [Google Scholar]
- Kalsoom, H.; Vivas-Cortez, M.; Abidin, M.Z.; Marwan, M.; Khan, Z.A. Montgomery identity and Ostrowski-type inequalities for generalized quantum calculus through convexity and their applications. Symmetry 2022, 14, 1449. [Google Scholar] [CrossRef]
- Alp, N.; Budak, H.; Sarikaya, M.Z.; Ali, M.A. On new refinements and generalizations of q-Hermite-Hadamard inequalities for convex functions. Rocky Mt. J. Math. 2023. Available online: https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/220708-Budak.pdf (accessed on 4 June 2023).
- Ciurdariu, L.; Grecu, E. Several quantum Hermite-Hadamard type integral inequalities for convex functions. Fractal Fract. 2023, 7, 463. [Google Scholar] [CrossRef]
- Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Budak, H. Post-Quantum Ostrowski type integral inequalities for twice (p,q)-differentiable functions. J. Math. Ineq. 2022, 16, 1129–1144. [Google Scholar] [CrossRef]
- Ciurdariu, L.; Grecu, E. Post-quantum integral inequalities for three-times (p,q)-differential functions. Symmetry 2023, 246, 15. [Google Scholar]
- Bleichrodt, H.; Van Doorslaer, E. A welfare economics foundation for health inequality measurement. J. Health Econ. 2006, 25, 945–957. [Google Scholar] [CrossRef] [Green Version]
- Fare, R.; Grosskopf, S. Notes on some inequalities in economics. Econ. Theory 2000, 15, 227–233. [Google Scholar] [CrossRef]
- Mathews, T.; Schwartz, J.A. Comparisons of utility inequality and income inequality. Econ. Lett. 2019, 178, 18–20. [Google Scholar] [CrossRef]
- Khan, M.A.; Anwar, S.; Khalid, S.; Sayed, Z.M.M.M. Inequalities of the type Hermite-Hadamard-Jensen-Mercer for strong convexity. Math. Probl. Eng. 2021, 2021, 5386488. [Google Scholar]
- Chu, Y.-M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post quantum analogues of Ostrowski-type inequalities using new definitions of left-right (p,q)-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 634. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M.; Latif, M.A. Trapezoidal-Type inequalities for strongly convex and quasi-convex via post-quantum calculus. Entropy 2021, 23, 1238. [Google Scholar] [CrossRef] [PubMed]
- Ion, D.A. Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova Ser. Mat. Inform. 2007, 34, 83–88. [Google Scholar]
- Hadamard, J. Etude sur les proprietes des fonctions entieres en particulier d’une fonction consideree par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Rajkovic, P.M.; Stankovic, M.S.; Marinkovic, S.D. The zeros of polynomials orthogonal with respect to q-integral on several intervals in the complex plane. In Proceedings of the Fifth International Conference of Geometry Integrability and Quantization, Varna, Bulgaria, 5–12 June 2003; pp. 178–188. [Google Scholar]
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2003; 652p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurdariu, L.; Grecu, E. New Perspectives of Symmetry Conferred by q-Hermite-Hadamard Type Integral Inequalities. Symmetry 2023, 15, 1514. https://doi.org/10.3390/sym15081514
Ciurdariu L, Grecu E. New Perspectives of Symmetry Conferred by q-Hermite-Hadamard Type Integral Inequalities. Symmetry. 2023; 15(8):1514. https://doi.org/10.3390/sym15081514
Chicago/Turabian StyleCiurdariu, Loredana, and Eugenia Grecu. 2023. "New Perspectives of Symmetry Conferred by q-Hermite-Hadamard Type Integral Inequalities" Symmetry 15, no. 8: 1514. https://doi.org/10.3390/sym15081514
APA StyleCiurdariu, L., & Grecu, E. (2023). New Perspectives of Symmetry Conferred by q-Hermite-Hadamard Type Integral Inequalities. Symmetry, 15(8), 1514. https://doi.org/10.3390/sym15081514