Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization
Abstract
:1. Introduction
- An edge intelligence-assisted and asymmetrical IIoT AVS-M decoding framework is designed. Not only cameras in terrestrial networks, but also UAVs in the SAGIN, are used to monitor the industrial field, and then the video data are locally processed and decoded at the edge server asymmetrically in parallel, without transmitted to the remote central cloud for analyses.
- A speculative parallelization-based video decoding method is proposed. That is, the data are first divided speculatively following the starting code, then one verification method is designed to improve the dividing accuracy, and segments are finally stitched together to reconstitute the video.
- The deployment of proposed method in the hardware platform Cortex-A15 is discussed, including the linking and compiling of the code, the structure-based code-level optimization, as well as the the memory space allocation strategy to speed up the running.
- Both function and performance environments are conducted for traditional serial and proposed parallel methods. Proposed method does improve the decoding efficiency in the industrial edge, in terms of running time, speed-up ratio, and parallel efficiency, particularly in the high-bit rate and high-resolution video.
2. Preliminary
2.1. Edge Computing and IIoT
2.2. Decoding in AVS-M
2.3. Speculative Parallelization
3. Speculative Parallelization-Based Decoding in Industrial Edge
3.1. Internal Dependency Dnalysis
3.2. Speculative Data Division
3.3. Division Result Validation
3.4. Parallel Decoding
3.5. Error Handling
4. Algorithm Implementation
4.1. Hardware
4.2. Algorithm Deployment and Optimization
5. Experiments Results and Analyses
5.1. Experiment Configuration
5.2. Accuracy Validation
5.3. Acceleration Performance Validation
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Wang, R.; Wang, K. Service function chaining in industrial Internet of Things with edge intelligence: A natural actor-critic approach. IEEE Trans. Industr. Inform. 2022, 19, 491–502. [Google Scholar] [CrossRef]
- Fang, C.; Yao, H.; Wang, Z.; Wu, W.; Jin, X.; Yu, F.R. A survey of mobile information-centric networking: Research issues and challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2353–2371. [Google Scholar] [CrossRef]
- Wan, S.; Xu, X.; Wang, T.; Gu, Z. An intelligent video analysis method for abnormal event detection in intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4487–4495. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Cao, Q. TLP-LDPC: Three-level parallel FPGA architecture for fast prototyping of LDPC decoder using high-level synthesis. J. Comput. Sci. Technol. 2022, 37, 1290–1306. [Google Scholar] [CrossRef]
- Choi, K.; Chen, J.; Rusanovskyy, D.; Choi, K.P.; Jang, E.S. An overview of the MPEG-5 essential video coding standard [standards in a Nutshell]. IEEE Signal Process. Mag. 2020, 37, 160–167. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Corso, J.J.; Socher, R.; Xiong, C. End-to-end dense video captioning with masked transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8739–8748. [Google Scholar]
- Gao, L.; Lei, Y.; Zeng, P.; Song, J.; Wang, M.; Shen, H.T. Hierarchical representation network with auxiliary tasks for video captioning and video question answering. IEEE Trans. Image Process. 2021, 31, 202–215. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, L.; Zhu, C.; Jin, X.; Sun, Y. Video coding optimization for virtual reality 360-degree source. IEEE J. Sel. Top. Signal Process. 2020, 14, 118–129. [Google Scholar] [CrossRef]
- Kaye, D.B.V.; Chen, X.; Zeng, J. The co-evolution of two Chinese mobile short video apps: Parallel platformization of Douyin and TikTok. Mob. Media Commun. 2021, 47, 229–253. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, L.; Wang, S.; Jia, C.; Wang, S.; Huang, T.; Wu, F.; Gao, W. Evolution of AVS video coding standards: Twenty years of innovation and development. Sci. China Inf. Sci. 2022, 65, 1–24. [Google Scholar] [CrossRef]
- Ji, Z.; Jiao, F.; Pang, Y.; Shao, L. Deep attentive and semantic preserving video summarization. Neurocomputing 2020, 406, 200–207. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Lu, Y. Deep contextual video compression. In Proceedings of the NeurIPS, Montreal, QC, Canada, 11–12 December 2021; pp. 18114–18125. [Google Scholar]
- Wang, T.; Zhang, R.; Lu, Z.; Zheng, F.; Cheng, R.; Luo, P. End-to-end dense video captioning with parallel decoding. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6827–6837. [Google Scholar]
- Cuozzo, G.; Buratti, C.; Verdone, R. A 2.4-GHz LoRa-based protocol for communication and energy harvesting on industry machines. IEEE Internet Things. J. 2022, 9, 7853–7865. [Google Scholar] [CrossRef]
- Magrin, D.; Capuzzo, M.; Zanella, A.; Vangelista, L.; Zorzi, M. Performance analysis of LoRaWAN in industrial scenarios. IEEE Trans. Industr. Inform. 2021, 17, 6241–6250. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated learning for industrial Internet of Things in future industries. IEEE Wirel. Commun. 2021, 28, 192–199. [Google Scholar] [CrossRef]
- Yun, H.; Yu, Y.; Yang, W.; Lee, K.; Kim, G. Pano-AVQA: Grounded audio-visual question answering on 360° videos. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2011–2021. [Google Scholar]
- Wang, Z.; Hei, X.; Ma, W.; Wang, Y.; Wang, K.; Jia, Q. Parallel anomaly detection algorithm for cybersecurity on the high-speed train control system. Math. Biosci. Eng. 2021, 19, 287–308. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, S.K.; Aggarwal, N.; Gupta, B.B.; Alhalabi, W.; Band, S.S. An efficient hardware supported and parallelization architecture for intelligent systems to overcome speculative overheads. Int. J. Intell. Syst. 2022, 37, 11764–11790. [Google Scholar] [CrossRef]
- Feliu, J.; Ros, A.; Acacio, M.E.; Kaxiras, S. Speculative inter-thread store-to-load forwarding in SMT architectures. J. Parallel Distrib. Comput. 2023, 173, 94–106. [Google Scholar] [CrossRef]
- Lee, C.; Ro, W.W. Simultaneous and speculative thread migration for improving energy efficiency of heterogeneous core architectures. IEEE Trans. Comput. 2018, 67, 498–512. [Google Scholar] [CrossRef]
- Duggal, A.S.; Malik, P.K.; Gehlot, A.; Singh, R.; Gaba, G.S.; Masud, M.; Al-Amri, J.F. A sequential roadmap to industry 6.0: Exploring future manufacturing trends. IET Commun. 2022, 16, 521–531. [Google Scholar] [CrossRef]
- Fang, C.; Xu, H.; Yang, Y.; Hu, Z.; Tu, S.; Ota, K.; Yang, Z.; Dong, M.; Han, Z.; Yu, F.R.; et al. Deep-reinforcement-learning-based resource allocation for content distribution in fog radio access networks. IEEE Internet Things J. 2022, 9, 16874–16883. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, J.; Ma, W.; Lv, Y.; Yang, D. An expansion planning approach for intelligent grids with speculative parallelism. J. Circuits, Syst. Comput. 2023, 32, 2350046. [Google Scholar] [CrossRef]
- Jayatilaka, T.; Ueno, H.; Georgakoudis, G.; Park, E.; Doerfert, J. Towards compile-time-reducing compiler optimization selection via machine learning. In Proceedings of the International Conference on Parallel Processing (ICPP), Lemont, IL, USA, 9–12 August 2021; pp. 1–6. [Google Scholar]
- Lv, Z.; Chen, D.; Singh, A.K. Big data processing on volunteer computing. ACM Trans. Internet Technol. 2021, 21, 1–20. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y.; Huang, Q.; Wang, Y.; Dai, Y. Intelligent video surveillance platform based on FFmpeg and Yolov5. In Proceedings of the ACM Multimedia Asia Conference, Tokyo, Japan, 13–16 December 2022; pp. 1–3. [Google Scholar]
- Sheng, X.; Li, J.; Li, B.; Li, L.; Liu, D.; Lu, Y. Temporal context mining for learned video compression. IEEE Trans. Multimed. 2022; to appear. [Google Scholar] [CrossRef]
- Anastasova, M.; Azarderakhsh, R.; Kermani, M.M. Fast strategies for the implementation of SIKE round 3 on ARM Cortex-M4. IEEE Trans. Circuits Syst. I. Regul. Pap. 2021, 68, 4129–4141. [Google Scholar] [CrossRef]
- Mandal, S.K.; Bhat, G.; Patil, C.A.; Doppa, J.R.; Pande, P.P.; Ogras, U.Y. Dynamic resource management of heterogeneous mobile platforms via imitation learning. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2842–2854. [Google Scholar] [CrossRef]
- Wu, C.; Wang, M.; Chu, X.; Wang, K.; He, L. Low-precision floating-point arithmetic for high-performance FPGA-based CNN acceleration. ACM Trans. Reconfig. Technol. Syst. 2021, 15, 1–21. [Google Scholar] [CrossRef]
- Dörflinger, A.; Albers, M.; Kleinbeck, B.; Guan, Y.; Michalik, H.; Klink, R.; Blochwitz, C.; Nechi, A.; Berekovic, M. A comparative survey of open-source application-class RISC-V processor implementations. In Proceedings of the ACM International Conference on Computing Frontiers, Sicily, Italy, 11–13 May 2021; pp. 12–20. [Google Scholar]
- Ford, B.W.; Qasem, A.; Tesic, J.; Zong, Z. Migrating software from x86 to ARM architecture: An instruction prediction approach. In Proceedings of the International Conference on Networking, Architecture, and Storage, Riverside, CA, USA, 24–26 October 2021; pp. 1–6. [Google Scholar]
- Dong, J.; Fan, G.; Zheng, F.; Lin, J.; Xiao, F. TX-RSA: A high performance RSA implementation scheme on NVIDIA Tegra X2. In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications (WASA), Nanjing, China, 25–27 June 2021; pp. 210–222. [Google Scholar]
- Dziembowski, A.; Mieloch, D.; Stankowski, J.; Grzelka, A. IV-PSNR—The objective quality metric for immersive video applications. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7575–7591. [Google Scholar] [CrossRef]
- Fang, C.; Guo, S.; Wang, Z.; Huang, H.; Liu, Y. Data-driven intelligent future network: Architecture, use cases, and challenges. IEEE Commun. Mag. 2019, 57, 34–40. [Google Scholar] [CrossRef]
NAL Cell Type Value | Description |
---|---|
0 | Not specified |
1 | Striping of non-IDR images: slice_layer_rbsp( ) |
2 | Striping IDR images: slice_layer_rbsp( ) |
3 | Image header: picture_header_rbsp( ) |
4 | Sequence parameter set: seq_parameter_set_rbsp( ) |
5 | Image parameter set: pic_parameter_set_rbsp( ) |
6 | Auxiliary enhancement information: sei_rbsp( ) |
7–23 | Reserved bits |
24–31 | Not specified |
Test Data | Format | Resolution | PSNR (Serial) | PSNR (Parallel) |
---|---|---|---|---|
Stream 1 | AVI | 720 × 480 | 44.02 | 44.02 |
Stream 2 | MP4 | 1280 × 720 | 42.03 | 42.03 |
Stream 3 | WebM | 1920 × 1080 | 43.59 | 43.59 |
Stream 4 | MKV | 2560 × 1440 | 45.01 | 45.01 |
Bit Rate (Mbps) | Stream 1 (720 × 480) | Stream 2 (1280 × 720) | Stream 3 (1920 × 1080) | Stream 4 (2560 × 1440) |
---|---|---|---|---|
1 | 20.54 | 9.42 | 4.67 | 2.82 |
2 | 18.71 | 8.65 | 4.08 | 2.16 |
4 | 18.01 | 7.59 | 3.81 | 1.83 |
6 | 16.92 | 7.30 | 3.54 | 1.17 |
8 | 15.83 | 6.81 | 3.39 | 0.94 |
Bit Rate (Mbps) | Stream 1 (720 × 480) | Stream 2 (1280 × 720) | Stream 3 (1920 × 1080) | Stream 4 (2560 × 1440) |
---|---|---|---|---|
1 | 155.32 | 74.47 | 40.33 | 21.83 |
2 | 147.58 | 72.19 | 37.27 | 20.09 |
4 | 140.12 | 70.93 | 35.31 | 18.38 |
6 | 135.37 | 68.24 | 33.76 | 16.69 |
8 | 128.81 | 62.05 | 32.51 | 15.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhang, Z.; Xia, H.; Li, Y.; Liu, Z. Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization. Symmetry 2023, 15, 1516. https://doi.org/10.3390/sym15081516
Yang S, Zhang Z, Xia H, Li Y, Liu Z. Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization. Symmetry. 2023; 15(8):1516. https://doi.org/10.3390/sym15081516
Chicago/Turabian StyleYang, Shuangye, Zhiwei Zhang, Hui Xia, Yahui Li, and Zheng Liu. 2023. "Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization" Symmetry 15, no. 8: 1516. https://doi.org/10.3390/sym15081516
APA StyleYang, S., Zhang, Z., Xia, H., Li, Y., & Liu, Z. (2023). Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization. Symmetry, 15(8), 1516. https://doi.org/10.3390/sym15081516