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Abstract: Using a low pulse ratio, the electromagnetic interference and switching loss of an inverter
can be effectively reduced, particularly in high-power applications. However, due to variations in
grid impedance, it is a challenging task to achieve stable operation of an LCL-type grid-connected
inverter (GCI) using the active damping method with low pulse ratio. Thus, a novel three-phase
dual-frequency GCI is presented to ensure the symmetry of the output power and the stable operation
of the system address stability issues. The proposed inverter topology in this article is composed
of two inverters in parallel, which are, respectively, a power inverter unit (PIU) and an auxiliary
harmonic elimination unit (AHEU). To reduce the switching loss and improve the inverter efficiency,
the switching frequency of the PIU is relatively low, injecting current into the grid. Moreover, the
feedforward compensation method is used in AHEU. AHEU operates at high switching frequency to
generate a current component that is symmetrical with the ripple com-ponent, improving the power
quality, without extracting the current harmonic as the current reference. The operating principle of
feedforward compensation is explained, and a proper parameter design procedure is presented in
this paper. Since L filters are used for the proposed inverter, the system can operate stably where the
ratio of switching frequency to fundamental frequency is low. A 10 kW laboratory prototype was
built. The experimental results showed that the grid current ripple could be effectively eliminated
and the THD of the grid current was 3.01%. The proposed inverter has good stability in a weak grid,
and the efficiency of the proposed inverter is 95.98% at rated current, which is 0.81% higher than the
traditional GCI, effectively increasing the efficiency of the system.

Keywords: three-phase grid-connected inverter; current ripple; power quality

1. Introduction

In recent years, photovoltaics has become one of the most promising energy sources
due to its ease of installation, environmental friendliness and low maintenance costs [1–4].
As a result, solar photovoltaic power generation systems have attracted a lot of attention.
As an interface between generation systems and the grid, the grid-connected inverter (GCI)
can inject high quality power into the grid.

To improve the quality of grid current, the inverter is connected to the grid through
various filters, such as L, LC and LCL filters [5]. The L filter has the simplest structure
and high reliability but only −20 dB/dec attenuation. As a result, using an L filter, a
high switching frequency is needed by the inverter, or the inductance must have a large
value to comply with grid standards such as IEEE929-2000 and IEEE 519 [6,7]. It is not
helpful for improving system efficiency and power density [8,9]. The LC filter is used
to increase the harmonic attenuation which has −40 dB/dec attenuation rate, but it is
not usually used in GCIs, because the resonance frequency varies with the change in the
grid inductance. Compared with the previous two, the LCL filter is advantageous with
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a harmonic attenuation rate of −60 dB/dec [10]. Therefore, the LCL filter is an attractive
solution in practical applications.

In [11], an algorithm for LCL filter design was implemented by analyzing the interre-
lationships between parameters. Nevertheless, various constraints must be considered to
calculate the range of each parameter, such as the reactive power, grid-connected current
harmonics, and inductor current ripple [12–14]. Inevitably, the design of the three-order
LCL filter is extremely complex. It is worth noting that, even if the LCL filter is designed
with various constraints, there are stability problems in the GCI due to the inherent res-
onance phenomenon of the LCL filter [15–17]. Generally, active damping solutions are
used to suppress the resonance of the LCL filter, which only change the control loops
without damping resistance. In [18], a filter-based damping method was proposed to
prevent the resonance without additional sensors. Nevertheless, the variation in LCL filter
resonance frequency had a significant influence on the stability. To increase the robustness,
an additional state variable could be fed back. However, the digital control delay is gen-
erated by algorithm execution, which affects the characteristics of the virtual resistor. In
addition, for high-power voltage source inverters (VSIs) with a low switching frequency,
the ratio of switching to fundamental frequency is generally small [19,20]. To improve
stability, the crossover frequency of the filters was supposed to be much lower than the
switching harmonics, but higher than the current control bandwidth [14,21–23]. It brings
great challenges for the design of LCL filters [24].

To solve the above-mentioned problems, a novel single-phase inverter was proposed
in [25–27], which included two converters operating at different switching frequencies.
One converter operated at low pulse ratio to inject current into the grid, while the other
converter eliminated the grid current ripple with a high pulse ratio, using the feedforward
compensation method. Thus, compared to the LCL inverter, the proposed inverter was
highly robust concerning changes in grid impedance and grid voltage harmonics without
the need for high current sampling accuracy. Furthermore, the power loss generated by the
converter operating at a low switching frequency was significantly reduced. Accordingly,
the efficiency of the inverter near the rated power was improved. However, the above
research was aimed at single-phase GCI. Since three-phase systems have lower current per
phase and lower hardware requirements than single-phase systems at the same power level,
in high-power applications, three-phase GCIs are more appropriate. It is expected that the
idea of the dual-frequency inverter is more suitable for the application of a three-phase
inverter due to its lower switching losses.

In this paper, the topology of the three-phase GCI is proposed, the harmonic elimina-
tion principle is analyzed, and the control scheme based on feedforward compensation is
proposed. In addition, the inverter parameter design method is proposed, including the
inductance of the power inverter unit (PIU), the dc-link voltage of the auxiliary harmonic
elimination unit (AHEU) and the inductance of the AHEU. The main contributions of this
paper are given as follows:

1. The feedforward compensation method is used to control the AHEU to generate the
output current which is symmetric with the current ripple of the PIU. Compared
with an active power filter, it avoids extracting harmonics as current reference, which
reduces the requirements for sampling accuracy and current control bandwidth.

2. A parameter design method for switching frequency and filter inductance is proposed
considering system efficiency, and the influence of switching frequency and induc-
tance changes on power loss is discussed. The experimental results verify that the
proposed inverter has a significant improvement in efficiency.

3. A three-phase dual-frequency GCI topology is presented which consists of PIU and
AHEU. The PIU operates at a low pulse ratio to reduce the switching loss, and electric
energy is transmitted to the power grid by PIU. The AHEU operates at high switching
frequency to improve power quality. Furthermore, the stability of the system under
a weak grid is analyzed; the proposed inverter can address the stability issue of the
LCL filter in low pulse-ratio VSIs with high power in weak grid.
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The remainder of the paper is organized as follows. The topology and harmonic
elimination principle is introduced in Section 2. In Section 3, a detailed introduction is
given to the design method of the proposed inverter parameters. In Section 4, the analysis
of stability under weak grid conditions is presented. In Section 5, the control scheme of the
PIU and AHEU is presented, based on feedforward compensation. Section 6 presents the
experiment and simulation results and verifies the effectiveness of the theory and prototype.
In the final section, the conclusion is given.

2. Proposed Inverter’s Topology and Principle of Operation
2.1. Proposed Topology

As shown in Figure 1, the main circuit topology of the proposed inverter is presented,
which consists of a PIU and an AHEU. Here, Vdc1 and Vdc2 are the dc-links of the PIU and
AHEU, vgn is the grid voltage of phase n, n = a, b, c. The filters of PIU and AHEU are LPn
and LAn, respectively. To reduce the switching loss and improve the inverter efficiency,
the switching frequency of the PIU is relatively low, injecting current into the grid. The
AHEU generates the output current which is symmetric with the current ripple of the PIU.
In addition, it operates at high switching frequency; hence, its current ripple is very low.
As shown in Figure 1, the grid current is the sum of the AHEU current iAn and the PIU
current iPn in each phase. So, the grid current does not include the current ripple generated
by the PIU current, which guarantees the quality of the grid current.
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Since the operating current of the AHEU is relatively low, the cost of switching
elements and inductors is much lower than that of the PIU. Moreover, the proposed inverter
does not primarily rely on filters to suppress ripple, indicating the total inductance can be
reduced. Although the output voltage of the power inverter unit is used in the control loop
of the AHEU, it can be estimated by drive signals without an additional voltage sampling
circuit. The topology of the proposed inverter is similar to an active power filter [28];
thus, there has not been a significant increase in hardware costs, compared with existing
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solutions. In addition, for the proposed inverter, extracting harmonics as current reference
is avoided, which reduces the requirements for sampling accuracy. Therefore, although
more devices are used in the proposed inverter, the cost will not significantly increase.

If the common dc-link is shared by the PIU and the AHEU, the circulating current
is generated due to the differences in the two units of the switching frequency and other
parameters [29]. The circulating current can increase power loss, distort the harmonics
of the output current and reduce the useful life of inverters [30,31]. According to [30],
circulating current problems are more severe in space-vector modulation-controlled invert-
ers. However, the circulating current is blocked with an isolated dc-link for the proposed
inverter, so there is no circulating current with the traditional space-vector modulation. In
order to maintain the dc-link voltage of the AHEU Vdc2, the voltage loop is used in the
control strategy.

L filters are used in the proposed inverter, as shown in Figure 1. Compared with an
LCL filter, there is no inherent filter resonance for an L filter. As a result, the system stability
is greatly enhanced. Additionally, the system parameter design and the current control
strategy can be simplified significantly.

2.2. Proposed Inverter’s Principle of Harmonic Elimination

In Figure 2, for the proposed inverter, neglecting the series resistances, the voltages uP
and uA can be expressed as

uP = uPL + vG (1)

uA = uAL + vG (2)

where uP =
[
uPa uPb uPc

]T and uA =
[
uAa uAb uAc

]T are the output voltages of PIU

and AHEU, uPL =
[
uPLa uPLb uPLc

]T and uAL =
[
uALa uALb uALc

]T are the voltages

across the LP and LA, vg =
[
vga vgb vgc

]T are the grid voltages. The grid currents can be
expressed as

ig = iP + iA (3)

where ig =
[
iga igb igc

]T , iP =
[
iPa iPb iPc

]T and iA =
[
iAa iAb iAc

]T are the
output currents of inverter in PIU and AHEU, respectively.
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Figure 2. Equivalent circuit of the three phase dual-frequency GCI.

Since the PIU operates at a low pulse ratio, the output currents iP contain obvious
current ripples. Then, iP can be resolved into fundamental component iPf and current
ripple component iPs, so iP can be expressed as

iP = iP f + iPs (4)
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Similarly, uPL can be resolved into fundamental component uPf and switching har-
monic component uPs, i.e.,

uPL = uP f + uPs (5)

In the steady state, iPf can be expressed as

iP f =
1

LP

∫
uP f dt (6)

Correspondingly, iPs can be derived using (1), (4), (5) and (6), as follows

iPs =
1

LP

∫
uPsdt =

1
LP

∫
uP − vg − LP

diP f

dt
dt (7)

Then, from (3) and (7), the expression of grid current ig can be obtained as

ig = iP f + iA +
1

LP

∫
uP − vg − LP

diP f

dt
dt (8)

Since the switching frequency of the AHEU is far above than that of the PIU, the
influence of high-frequency voltage harmonics on the output currents of the proposed
inverter can be ignored.

To suppress current ripple, the ripple compensation voltage uE is designed as

uE = − LA
LP

(
uP − vg − LP

diP f

dt

)
+ vg (9)

From Figure 2, the iA can be expressed as

iA =
1

LA

∫
uE − vgdt (10)

Substitute (10) and (9) into (8), the grid current ig is

ig = iP f (11)

From (11), the current ripple component in iPs is completely eliminated by iA. Obvi-
ously, the resonance phenomenon of the LCL-type GCI can be eliminated by the proposed
inverter. In consequence, the system stability can be improved, and the control algorithm is
simplified significantly.

3. Proposed Inverter’s Parameter Design
3.1. Design of the PIU Filter Inductance LP

Due to low switching frequency of the PIU, its current ripple is significant compared
with rated current. When the current ripple increases, it leads to an increase in the switching
stress of the power semiconductor devices and the inductor loss, which can reduce the
efficiency of the inverter [32]. Accordingly, it is essential to limit the current ripple. In
general, the current ripple is limited to no more than 20% of the grid current amplitude Igm.
However, the amplitude of the current ripple is subjected to the filter inductance of the PIU.
Therefore, the lower limit of the filter inductance LP can be determined as follows

LP =
Vdc1

20%× 4
√

3Ig_peak fP
(12)

where the fP is the switching frequency of the PIU.
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3.2. Design of the AHEU Filter Inductance LA

The series resistances of the filter inductor LA can be neglected. For the AHEU, the
transfer function from iA to uA is given as

iA(s)
uA(s)

=
1

LAs
(13)

In this paper, the magnitude of 1/(LAS) <−50 dB at the switching frequency of the
AHEU must be satisfied. Consequently, LA can be obtained as

LA =
102.5

2π fA
(14)

3.3. Design of the DC-Link Voltage of the AHEU

In order that the current ripple can be eliminated by the output current of the AHEU
completely, the dc-side voltage Vdc2 of the AHEU should be larger than a certain voltage.
In this paper, Vdc2 is maintained at its reference Vdc2

* by the voltage control loop.
vg and ig can be expressed as

vg =


vga

vgb

vgc

 =


Vgm cos ωgt

Vgm cos(ωgt +
2π

3
)

Vgm cos(ωgt +
4π

3
)

 (15)

ig =


iga

igb

igc

 =


Igm cos ωgt

Igm cos(ωgt +
2π

3
)

Igm cos(ωgt +
4π

3
)

 (16)

where Vgm and Igm are the grid voltage and current amplitude, respectively, ωg is the
angular frequency of the grid. According to (9) and (11), the ripple compensation voltage
uE can be expressed as

uE =


Vm cos

(
ωgt + ϕ

)
− LA

LP
uPa

Vm cos
(

ωgt +
2π

3
+ ϕ

)
− LA

LP
uPb

Vm cos
(

ωgt +
4π

3
+ ϕ

)
− LA

LP
uPc

 (17)

where
Vm =

√[
(1 + LA/LP)Vgm

]2
+
(

LAωg Igm
)2 (18)

ϕ = tan−1 LAωg Igm

(1 + LA/LP)Vgm
(19)

Considering the different switch states of the PIU, the peak value of uE can be ex-
pressed as

uEm ≤ Vm +
2LA
3LP

Vdc1 (20)

According to the space vector pulse width modulation (SVPWM) technique, the dc-link
voltage of the AHEU Vdc2 should satisfy

V∗dc2 ≥
√

3uEm (21)
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3.4. Design of the Switching Frequency

The switching frequency of the two units is selected by combining the power loss
and dead time of the inverter. The switching loss of the power electronic devices is
increased with increasing the switching frequency, but the inductance of the filter decreases
correspondingly with increasing the switching frequency, which may reduce the power
loss on the inductance. Therefore, it is necessary to comprehensively consider the impact of
switching frequency on switch loss and filter loss.

In Figure 3, the power loss at different switching frequencies of the PIU when the
switching frequency of AHEU fA is 60 kHz is shown. It can be seen that the power loss of
the system is the lowest at about 6 kHz. However, the switching frequency of the GCI is
usually set below 3 kHz in high-power applications. In order to simulate a high-power GCI
and analyze the stability under low switching frequency, combined with the loss analysis
results, a switching frequency of the PIU fP of 2.5 kHz was chosen in this paper.
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Figure 3. System loss curve at different switching frequencies of PIU when fA = 60 kHz and grid
current is 21 A.

Figure 4 shows the loss curve of the system at different switching frequencies of
AHEU when the fP was 2.5 kHz. From Figure 4, it can be seen that the change in fA had no
significant impact on the system loss, because the output currents of the AHEU were small.
With increasing the fA, the loss of the system was gradually decreased. When the switching
frequency was higher than 60 kHz, the total loss of system hardly changed. Considering
the dead time effect of the power switching device, the fA is 60 kHz.
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4. Stability Analysis of Proposed Inverter

The current control block diagram of the PIU is shown in Figure 5. From Figure 5,
iPref is the current reference. GIP(s) is the current controller. The ∆iP is the error between
iPref and iP. GDP(s) is the system delay. KPWM is the gain of the inverter, which is equal to
Vdc1/

√
3, GFP(s) is the grid voltage feedforward coefficient, which is equal to 1/ KPWM. Zg

is the grid impedance. uPCC is the voltage at the point of common coupling (PCC). The
grid equivalent resistance can provide certain damping, which can improve the stability of
the system. In order to discuss the most unstable conditions, only the influence of the grid
inductance Lg is considered here; that is, Zg = Lgs.
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Figure 5. Current control block diagram of PIU.

The open-loop transfer function in Figure 5 from ∆iP to iP can be expressed as

G∆iP_iP(s) =
KPWMPGDP(s)GIP(s)

LPs + Zg −KPWMPZgGDP(s)GFP(s)
(22)

The Bode plots of G∆iP_iP under different grid conditions is shown in Figure 6. When
Lg = 0 mH, the PIU operates with an ideal grid, the phase margin (PM) of G∆iP_iP is 51.3◦.
As Lg increases, the PM of G∆iP_iP decreases slightly. When Lg = 1 mH, the PM of G∆iP_iP is
47.1◦, and when Lg = 2 mH, the PM of G∆iP_iP is 43.6◦, indicating the PIU has good stability
under weak grid conditions.
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The current control block diagram of AHEU is the same as the PIU; the open-loop
transfer function of the AHEU from ∆iA to iA can be expressed as

G∆iA_iA(s) =
KPWMAGDA(s)GIA(s)

LAs + Zg −KPWMAZgGDA(s)GFA(s)
(23)

The Bode plots of G∆iA_iA under different grid conditions is shown in Figure 7. When
Lg = 0 mH, the PM of G∆iA_iA is 78.6◦. When Lg = 1 mH, the PM is 67.5◦, and when
Lg = 2 mH, the PM is 59.2◦. According to Figures 6 and 7, the proposed inverter improved
the stability.
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5. Proposed Inverter’s Control Scheme

A reference-frame transformation-based control scheme is used for dual-frequency
three-phase GCI as shown in Figure 8. The control structure consists of two independent
control loops which are the power control loop and the auxiliary control loop, respectively.
The synchronous reference frame phase-locked loop is used to extract the phase angle
θg of the grid. The SVPWM is used to drive power electronic devices. Although the
SVPWM algorithm has large amplitude harmonics near the switching frequency and its
doubling frequency [33], the SVPWM method has a higher DC voltage utilization and lower
THD [34]. And there is significant flexibility in switching state selection [35]. In this paper,
the SVPWM used can suppress the low-order harmonics significantly and decrease the
requirement for a dc-link voltage. The lower capacitance of AHEU is available, reducing
the system cost.

The power control loop is used to control the output currents iP to transfer active
power to the grid. The output currents iP are transformed into the dq-reference frame.
In Figure 8, i*gd and i*gq are the grid current references in the dq-reference frame. In the
power control loop, the current references i*gd and i*gq are compared with iPd and iPq,
respectively. The power current controller block consists of two proportional resonant (PR)
regulators [36,37]. uPd and uPq are the sum of the grid compensation voltages, outputs of
the current controller and the coupling components, as shown in Figure 8.
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where I*gm is the reference amplitude of the grid current. 
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The auxiliary control loop generates iA to eliminate the current ripple generated by
the PIU. Similarly, the auxiliary current controller block consists of two PR regulators. In
addition, the dc-link voltage Vdc2 is controlled by the auxiliary control loop to track its
reference V*

dc2. From Figure 8, the output of the voltage regulator AVR is i*Ad which is
compared with iAd. The q-axis reference current i*Aq is equal to zero.

It was noted that iPf can be approximated as i*
g in steady state. In (9), the differential

item diPf/dt can be substituted as:

diPf

dt
≈


−ωg I∗gm sin ωgt

−ωg I∗gm sin(ωgt +
2π

3
)

−ωg I∗gm sin(ωgt +
4π

3
)

 (24)

where I*
gm is the reference amplitude of the grid current.

According to (9), the ripple compensation voltages uE can be determined by

uE = − LA
LP

(
ûP − vg − LP

di∗g
dt

)
+ vg (25)

where the ûP is the estimation of uP. Since the control scheme of the proposed inverter is
realized by one micro controller, the ûP can be obtained by the drive signals of the PIU. The
modulation signals of auxiliary control loop can be expressed as

uAd = uACCd + ωLiAq + uEd + vgd

uAq = uACCq −ωLiAd + uEq + vgq
(26)

where uACCd and uACCq are the output of auxiliary current controllers, uEd and uEq represent
the ripple compensation voltages in dq-reference frame, ωLiAd, ωLiAq and vgd and vgq are
coupling components and grid compensation voltages, respectively.
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For the above ripple elimination method, it is not necessary to sample the output
voltage of the PIU. As a result, the hardware complexity of the control system can be
reduced. i*

g are current references rather than the measured values, thus, the differential
item di*

g/dt is a dc component which can eliminate the amplification effect of differential
items on the measurement of noise. It can improve the inverter performance. Consequently,
compared with other methods extracting the harmonics as the reference, the proposed
method is not necessary for the requirements of current sampling accuracy, pulse ratio of
the PIU or current control bandwidth.

6. Experiment Results

A laboratory prototype of a 10 kW three-phase dual-frequency GCI was developed
to verify the performance of the proposed inverter. The laboratory prototype is shown
in Figure 9. The IGBTs (IKW40N120T2) and the SiC-MOSFET (IMW120R220M1H) were
used in the PIU and the AHEU respectively. The controller of the proposed inverter is
based on a digital controller (STM32F407ZET6) and CPLD (EPM1270T144C5N). The control
algorithm shown in Figure 8 was implemented by digital controller, and CPLD was used to
generate PWM signals to drive the power electronic devices. According to the modulated
signal generated from the ARM, the CPLD generated 12 gate pulses, which were fed to the
respective eight switches of the proposed topology. The system parameters are listed in
Table 1. The phase grid voltage (RMS) was 220 V, and the grid frequency was 50 Hz.
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Table 1. Parameters of three-phase dual-frequency GCI.

Parameters Power Inverter Unit (PIU) Auxiliary Harmonic
Elimination Unit (AHEU)

Switching frequency 2.5 kHz 60 kHz
Dc-link voltage 700 V 700 V

Filter inductance 4.8 mH 0.8 mH
Output power 10 kW -

6.1. Suppression Effect of Current Ripple

The simulation results of the PIU output currents iP, grid currents ig and phase-a
AHEU output current iAa are shown in Figure 10a,b,c, respectively. Figure 11 shows the
FFT analysis of the output current of the PIU and the grid current. From Figure 10a, it
can be observed that the output current ripple by the PIU was large, especially at the zero
crossing. The THDs of iPa was 12.18%, and did not satisfy the grid standards, as shown
in Figure 11. The peak-to-peak values of the AHEU output current in Figure 10b were
relatively large near 0.205 s and 0.215 s, corresponding to the zero crossing of the phase-a
PIU output current iPa. It indicates that the power quality was improved by the AEHU
output current, according to the amplitude of the ripple component. It can be seen that
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the current ripple was suppressed effectively compared with iP, as shown in Figure 10c,
particularly at the zero crossing. The improvement effect of the grid current could also be
proven, as shown in Figure 11. The THD of iga was 3.91%, satisfying grid standards.
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Figure 11. FFT analysis of the output current of PIU and grid current. (a) FFT of iPa; (b) FFT of iga.

The PIU output currents iP, AHEU output currents iA and grid currents ig, are shown
in Figure 12a,b,c,d, respectively. In Figure 12a, the RMS value of iP was about 15 A. The
current ripples in the output currents of the PIU were significant. The three phase output
currents of AHEU iA are shown in Figure 12b. The average value of iA was approximately
0, indicating that the power consumed by the AHEU is very small. Figure 12c shows the
three phase grid currents ig. In Figure 12d, it can be observed that iAa was opposite to iPa.
As a consequence, compared with iP, the current ripples of ig were reduced significantly.
Meanwhile, the peak value of iAa was about 2 A, indicating that it was far less than the
rated current. This shows that the conduction loss and cost of the AHEU are much lower
than the PIU.
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Figure 12. Output currents of the proposed inverter. (a) Three-phase PIU output currents; (b) three-phase
AHEU output currents; (c) three-phase grid currents; (d) zoomed-in view of iPa, iAa, and iga.

The FFT analysis of iPa and iga are shown in Figure 13. The THDs of iPa and iga were
7.33 and 3.01%, respectively. Compared to iPa, the THD of iga was significantly reduced,
less than 5%, complying with grid standards.



Symmetry 2023, 15, 1517 14 of 18

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 18 
 

 

From Figure 13, the harmonics around the switching frequency fP were reduced from 
about 3.7 to 0%. Furthermore, the harmonics around the integral multiple of the switching 
frequency fA could also be eliminated by the AHEU. The fundamental component of iPa 
was same as that of iga. This means that the active power is transmitted to the grid by the 
PIU. 

  
(a) (b) 

Figure 13. FFT analysis of the output current of PIU and grid-connected current. (a) FFT of iPa; (b) 
FFT of iga. 

6.2. Performance of the Proposed Inverter under Dynamic Changing Load Conditions 
When the grid current reference was changed, the responses of iga, iAa and iPa are 

shown in Figure 14. From Figure 14, it can be seen that when the grid current reference 
changed, iPa responded quickly, without a large current overshoot and oscillation, and 
tracked the current reference value again within three cycles. Compared with iPa, iga had a 
decrease in ripple content and changed synchronously with iPa as the grid current refer-
ence changed, indicating that the dynamic process had no significant impact on the har-
monic suppression effect. 

 
Figure 14. The response of iga, iAa and iPa when grid current reference is changed. 

6.3. Performance of the Proposed Inverter under a Weak Grid 

Figure 13. FFT analysis of the output current of PIU and grid-connected current. (a) FFT of iPa;
(b) FFT of iga.

From Figure 13, the harmonics around the switching frequency fP were reduced from
about 3.7 to 0%. Furthermore, the harmonics around the integral multiple of the switching
frequency fA could also be eliminated by the AHEU. The fundamental component of iPa
was same as that of iga. This means that the active power is transmitted to the grid by
the PIU.

6.2. Performance of the Proposed Inverter under Dynamic Changing Load Conditions

When the grid current reference was changed, the responses of iga, iAa and iPa are
shown in Figure 14. From Figure 14, it can be seen that when the grid current reference
changed, iPa responded quickly, without a large current overshoot and oscillation, and
tracked the current reference value again within three cycles. Compared with iPa, iga had a
decrease in ripple content and changed synchronously with iPa as the grid current reference
changed, indicating that the dynamic process had no significant impact on the harmonic
suppression effect.
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6.3. Performance of the Proposed Inverter under a Weak Grid

To simulate the grid impedance, the inductors were added into the grid, as shown
in Figure 15. The inductance of Lg was 2 mH. Figure 16 shows the a-phase uPCC and
output currents of the proposed inverter under a weak grid. In Figure 16a, the harmonic
component in uPCC was obviously affected by Lg. In Figure 16b, the harmonic component
of iPa was also eliminated effectively by iAa. The THD of the grid current iga was 4.83%,
lower than 5%, which satisfies the grid standard. The proposed inverter still had good
performance and stability under weak grid conditions.
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6.4. Circulating Current Analysis

The circulating current is generated among the parallel inverters owing to the inconsis-
tency of system impedance and the switching action. However, regardless of the switching
state of the power electronic devices, the circulating currents need to pass through a com-
mon dc-link to form a circulating current path, and the two units of the proposed inverter
do not share a common dc-link. The experimental results are shown in Figure 17. It can
be seen that for the waveforms of the filter inductance currents iPa1, iPa2, iAa1 and iAa2, as
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shown in Figure 17a,b, that iPa1 is equal to iPa2, and iAa1 is equal to iAa2. This means that
the inverter proposed in this paper does not have circulation problems.
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6.5. Efficiency Analysis

The efficiency curves of the three-phase dual-frequency GCI and the traditional GCI are
shown in Figure 18, reflecting the efficiency advantages of the three-phase dual-frequency
GCI. The switching frequency of the traditional GCI operates at approximately 9 kHz to
comply with grid code requirements. To decrease the switching loss, the PIU operates at
2.5 kHz switching frequency. Due to the relatively low switching frequency of the proposed
inverter in this paper, when the same switching frequency is used by traditional inverters,
such as the PIU, the filter needs to use more inductance to satisfy the grid standards.
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Figure 18 shows the efficiency curves of the traditional inverter and the proposed in-
verter at different currents. When the amplitude of the grid current was 21 A (rated current),
the efficiency of the three-phase dual-frequency GCI was 95.99%, which is approximately
0.82% higher than the traditional GCI.

According to [38], the power losses of two inverters can be evaluated at rated current,
as shown in Table 2. It can be seen that although the traditional inverter reduces switching
losses, the power loss generated on the passive filter is too large, resulting in a much greater
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power consumption on the filter than on the AHEU. Therefore, under different currents,
the efficiency of traditional inverters is lower than that of the proposed inverters.

Table 2. Losses of the proposed GCI and traditional GCI at rated current.

Parameters
Proposed GCI

Traditional GCI
PIU AHEU

Switching loss 59 W 3 W 59 W
Conduction loss 55 W - 55 W

Copper loss of the inductor 279 W 1 W 383 W
Total power loss 397 W 497 W

7. Conclusions

In this paper, a novel three-phase dual-frequency GCI was proposed. The active
power is supplied to the grid by the PIU at a low switching frequency. Based on a simple
feedforward compensation method, the AHEU operates at a high switching frequency to
eliminate the grid current ripple. The circulating current between the two units can be
blocked by isolated dc-links. As the switching frequency of PIU is low, the efficiency of
the inverter can be improved. Moreover, the proposed GCI addresses the stability issues
arising from the inherent resonance of the LCL filter by using an L filter. The efficiency of
the proposed inverter was more than 0.82% higher than the traditional GCI at rated current.
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