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Abstract: The coupling of intrinsic spin with the nonlinear gravitomagnetic fields of Gödel-type
spacetimes is studied. We work with Gödel-type universes in order to show that the main features
of spin-gravity coupling are independent of causality problems of the Gödel universe. The con-
nection between the spin–gravitomagnetic field coupling and Mathisson’s spin-curvature force is
demonstrated in the Gödel-type universe. That is, the gravitomagnetic Stern–Gerlach force due to
the coupling of spin with the gravitomagnetic field reduces in the appropriate correspondence limit
to the classical Mathisson spin-curvature force.
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1. Introduction

Inertia is the intrinsic tendency of matter to remain in a given condition. The state of
matter in spacetime is determined by its mass and spin; indeed, mass and spin characterize
the irreducible unitary representations of the Poincaré group [1]. Therefore, mass and spin
determine the inertial properties of a particle. In classical physics, the inertial forces that
act on a particle are proportional to its inertial mass; moreover, the moment of inertia is
the rotational analogue of mass. The inertial effects of intrinsic spin are independent of the
inertial mass of the particle and depend purely on intrinsic spin. The inertia of intrinsic spin
is of quantum origin, and its properties, therefore, complement the inertial characteristics
of the mass and orbital angular momentum of the particle.

It turns out that the intrinsic spin S of a particle couples to the rotation of a noninertial
observer, thus resulting in a Hamiltonian of the form Hsr = − S · Ω, where Ω is the
angular velocity of the observer’s local spatial frame with respect to a nonrotating (i.e.,
Fermi–Walker) transported frame. For an intuitive explanation of this type of coupling,
let us consider a noninertial observer that is at rest in Minkowski spacetime but refers
its observations to axes that rotate uniformly with angular speed Ω in the positive sense
about the direction of propagation of a plane electromagnetic wave of frequency ω > Ω.
The Fourier analysis of the electromagnetic field detected by the noninertial observer
reveals that the measured frequency of the wave is given by ω ∓ Ω, where the upper
(lower) sign refers to positive (negative) helicity radiation. One can understand this result
as a kind of “rotational Doppler effect”: In a positive (negative) helicity electromagnetic
wave, the electric and magnetic fields rotate in the positive (negative) sense with the wave
frequency ω about the direction of propagation. The noninertial observer thus realizes
that the positive (negative) helicity radiation has electric and magnetic fields that rotate in
the positive (negative) sense with frequency ω−Ω (ω + Ω) about the direction of wave
propagation. Multiplication of the measured frequency by h̄ results in the measured energy
by the noninertial observer, namely, h̄ ω ∓ h̄ Ω, which illustrates the coupling of photon
helicity with rotation. A general consequence of spin-rotation coupling should be noted

Symmetry 2023, 15, 1518. https://doi.org/10.3390/sym15081518 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081518
https://doi.org/10.3390/sym15081518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0534-6337
https://orcid.org/0000-0002-0797-2537
https://doi.org/10.3390/sym15081518
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081518?type=check_update&version=1


Symmetry 2023, 15, 1518 2 of 26

here: There is a certain shift in energy when polarized radiation passes through a rotating
spin flipper. To demonstrate this effect within the context of the present discussion, imagine
that the noninertial observer is replaced by a uniformly rotating half-wave plate. That is, the
electromagnetic radiation of frequency ωin is normally incident on the plate rotating with
Ω < ωin. The frequency of the radiation within the stationary medium of the half-wave
plate remains constant and approximately equal to ωin ∓Ω, since we have neglected time
dilation for simplicity. The outgoing radiation has an opposite helicity to the incident
radiation and frequency ωout, where ωin ∓Ω ≈ ωout ±Ω due to helicity–rotation coupling.
Therefore, ωout − ωin ≈ ∓ 2 Ω and the photon energy in passing through the rotating
half-wave plate is shifted by ≈∓ 2 h̄ Ω.

A general account of spin-rotation coupling is contained in [2], and more recent
discussions of its observational basis can be found in [3–6]. A similar phenomenon occurs
in a gravitational field [7–9]. The spin-rotation effect can be theoretically extended to the
spin–gravity coupling via the gravitational Larmor theorem [10,11], which is the rotational
side of Einstein’s principle of equivalence. Imagine a free test gyroscope with its center
of mass held at rest in a gravitational field; then, the locally measured components of the
gyroscope’s spin vector undergo a precessional motion with an angular velocity that is
given by the locally measured gravitomagnetic field. The Gravity Probe B (GP-B) space
experiment has measured the gravitomagnetic field of the Earth [12,13].

According to the gravitational Larmor theorem, the gravitomagnetic field of a rotating
system is locally equivalent to a rotation resulting in a Hamiltonian for intrinsic spin–
gravity coupling of the formHsg = S · B, where B is the relevant gravitomagnetic field [14].
The spin–gravity coupling is of basic physical significance due to the fundamental nature
of the intrinsic spin of the particles and the universality of the gravitational interaction.
For prospects regarding the measurement of intrinsic spin–gravity coupling, see [15–19].
In general, B depends on the position, and the intrinsic spin–gravity coupling leads to a
measured gravitomagnetic Stern–Gerlach force of the form −∇(S · B). This gravitational
force, which acts on a test particle, is completely independent of its inertial mass and
depends solely on its intrinsic spin. It has been shown in [20], within the framework of
linearized general relativity, that the gravitomagnetic Stern–Gerlach force associated with
spin–gravity coupling reduces in the correspondence limit to Mathisson’s classical spin-
curvature force [21,22]. It would be interesting to extend this result to the nonlinear regime.
The purpose of the present work is to study further the inertial effects of intrinsic spin by
investigating the intrinsic spin–gravity coupling for spinning test particles in Gödel-type
spacetimes. For background material, ref. [20] and the references cited therein should be
consulted for further important information regarding the topic of spin-rotation–gravity
coupling and its experimental basis.

2. Gravitomagnetism in the Gödel-Type Universe

With respect to the spacetime coordinates xµ = (ct, x, y, z), the metric of the Gödel
solution [23] of Einstein’s gravitational field equations arises as a special case in the class of
the so-called Gödel-type models [24–26], which are described by the following line element:

ds2 = gµνdxµdxν = − dt2 − 2
√

σ eµx dt dy + dx2 + κ e2µx dy2 + dz2 , (1)

with arbitrary constant parameters µ, σ, and κ. In our conventions, the speed of light c = 1
and Planck’s constant h̄ = 1, unless specified otherwise; moreover, the metric signature is
+2, and the Greek indices run from 0 to 3, while the Latin indices run from 1 to 3. The system
of coordinates in metric (1) is admissible provided

σ + κ > 0 . (2)

Moreover, we assume throughout that σ > 0. In general, the Gödel-type universe contains
closed timelike curves, which could lead to problems with causality. However, one can
demonstrate [24] that closed timelike curves are absent in model (1), provided
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κ ≥ 0 . (3)

Specifically, for the Gödel universe, κ = −1 in metric (1); therefore, closed timelike
curves do exist in the Gödel universe. To ensure that our considerations regarding spin–
gravity coupling are independent of the causality difficulties of the Gödel universe, we use
metric (1) for our main calculations in this paper.

The Gödel-type universe is a regular stationary and spatially homogeneous spacetime
that contains rotating matter. Consider the class of observers that are all spatially at rest
in this spacetime. Each such observer has a velocity 4-vector uµ = δ

µ
0 that is free of

acceleration, expansion, and shear; however, it is rotating in the negative sense about the z
axis and its vorticity 4-vector

ωµ =
1
2

ηµνρσuνuρ;σ , (4)

is purely spatial ωµ = (0, ω), with the 3-vector

ω = −Ω ∂z , Ω =
µ

2

√
σ

σ + κ
. (5)

For the sake of definiteness, we henceforth assume that Ω > 0; then, Equation (5)
implies that µ > 0 as well. Here, ηαβγδ = (−g)1/2εαβγδ is the Levi–Civita tensor, and εαβγδ

is the alternating symbol with ε0123 = 1. It is interesting to note that, in nonrelativistic fluid
mechanics, the vorticity vector ωN is defined as ωN = ∇× v, where v is the flow velocity.
If the fluid rotates with a spatially uniform angular velocity Ω such that v = Ω× x, then
ωN = 2 Ω. In this paper, we follow the relativistic definition of vorticity.

The geometry of the Gödel-type model has been studied by a number of authors [27–29].
The Weyl curvature of Gödel-type spacetime is of type D in the Petrov classification.
The Gödel-type universe admits five Killing vector fields, namely, ∂t, ∂y, ∂z, ∂x − µy ∂y
and [24,30]:

K =
2
√

σ e− µx

σ + κ
∂t − 2µy ∂x +

(
µ2y2 − e−2µx

σ + κ

)
∂y . (6)

We are interested in the measurements of an observer that is free and spatially at rest in
spacetime with a 4-velocity vector uµ = dxµ/dτ and proper time τ, where τ = t + constant.
The observer carries along its geodesic world line a natural tetrad frame eµ

α̂ that is or-
thonormal, namely,

gµν eµ
α̂ eν

β̂ = ηα̂β̂ , (7)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric tensor. Indeed,

e0̂ = ∂t , e1̂ = ∂x , e2̂ = −
√

σ

σ + κ
∂t +

e− µx
√

σ + κ
∂y , e3̂ = ∂z , (8)

where the spatial axes of the observer’s frame are primarily along the background coordi-
nate axes. By introducing the dual coframe ϑα̂,

ϑ0̂ = dt +
√

σ eµxdy, ϑ1̂ = dx, ϑ2̂ =
√

σ + κ eµxdy, ϑ3̂ = dz , (9)

such that eα̂cϑβ̂ = δ
β
α , the line element (1) is recast into

ds2 = −
(
dt +

√
σ eµx dy

)2
+ dx2 + (σ + κ) e2µx dy2 + dz2 . (10)

Let λµ
α̂ be the orthonormal tetrad frame that is parallel transported along the ob-

server’s geodesic world line such that Dλµ
α̂/dτ = 0. We find that

λµ
1̂ = eµ

1̂ cos Ωτ + eµ
2̂ sin Ωτ , λµ

2̂ = −eµ
1̂ sin Ωτ + eµ

2̂ cos Ωτ , (11)
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while λµ
3̂ = eµ

3̂, and naturally λµ
0̂ = eµ

0̂ = uµ. It is simple to check these results using the
Christoffel symbols:

Γ0
10 =

√
σ

σ + κ
Ω , Γ1

20 =
√

σ + κ eµx Ω , Γ2
10 = − e− µx

√
σ + κ

Ω , (12)

which are the only nonzero components of Γµ
ν0. Therefore, the observer’s natural frame

rotates with respect to the parallel-transported frame about their common z axis with
frequency −Ω, which is consistent with vorticity (5).

Let us now consider the special case of metric (1) with parameters

µ =
√

2 Ω, σ = 2, κ = − 1 . (13)

With these parameters, metric (1) reduces to the Gödel line element

ds2 = − dt2 − 2
√

2 e
√

2Ωx dt dy + dx2 − e2
√

2Ωx dy2 + dz2 . (14)

For the Gödel universe, Einstein’s field equations

Rµν −
1
2

gµνR + Λgµν = 8πG Tµν (15)

have a perfect fluid source of

Tµν = (ρ + p)uµuν + pgµν , (16)

where ρ is the energy density, p is the pressure, and uµ = δ
µ
0 is the 4-velocity vector of the

perfect fluid. In this special case, Rµν = 2Ω2uµuν, and

2 Ω2 = 8πG(ρ + p) , Λ + Ω2 = 8πGp . (17)

In the absence of the cosmological constant Λ, we have as the source of the Gödel
universe a perfect fluid with a stiff equation of state ρ = p = Ω2/(8πG). Another
possibility is dust (p = 0) with 4πGρ = −Λ = Ω2. It follows from Equation (17) that
−Λ = 4πG(ρ− p); therefore, in any realistic situation, the cosmological constant of the
Gödel universe must be negative or zero (Λ ≤ 0).

The spinning test particle in the Gödel universe is immersed in the perfect fluid source,
and its intrinsic spin couples to the vorticity of the fluid. The nature of the spin–gravity
coupling and its connection with Mathisson’s classical spin-curvature force provided the
original motivation for the present work.

After this brief digression regarding the Gödel universe, we return to the Gödel-type
metric with explicit components:

(gµν) =


−1 0 −

√
σ W 0

0 1 0 0
−
√

σ W 0 κ W2 0
0 0 0 1

 , (gµν) =


− κ

σ+κ 0 −
√

σ
σ+κ W−1 0

0 1 0 0
−
√

σ
σ+κ W−1 0 1

σ+κ W−2 0
0 0 0 1

 , (18)

where W(x) = eµx, and
√−g =

√
σ + κ W(x).

3. Mathisson’s Spin-Curvature Force

To connect Mathisson’s classical spin-curvature force in the correspondence limit with
intrinsic spin that is purely of quantum origin, it proves useful to introduce a classical
model of intrinsic spin. To simplify matters, we permanently attach a free spin vector
S to a Newtonian point particle resulting in a “pole-dipole” particle. The particle thus
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carries the spin vector along its world line, and the corresponding equations of motion in a
gravitational field are the Mathisson–Papapetrou pole–dipole equations [21,31]:

DPµ

dς
= − 1

2
Rµ

ναβ UνSαβ , (19)

DSµν

dς
= PµUν − PνUµ , (20)

where Uµ = dxµ/dς is the 4-velocity of the pole–dipole particle, UµUµ = − 1, and ς is its
proper time. The particle’s 4-momentum is Pµ and its spin tensor is Sµν, which satisfies the
Frenkel–Pirani supplementary condition [32,33]

Sµν Uν = 0 . (21)

In this system, the inertial mass of the particle m, m := −PµUµ, and the magnitude of
its spin s, s2 := 1

2 SµνSµν, are constants of the motion. Moreover, Pirani has shown that the
spin vector Sµ, Sµ Uµ = 0,

Sµ = − 1
2

ηµνρσ UνSρσ , Sαβ = ηαβγδ UγSδ . (22)

is Fermi–Walker-transported along the particle’s world line [33]. That is, the Mathisson–
Papapetrou equations for a spinning test particle, together with the Frenkel–Pirani supple-
mentary condition, imply that the spin vector of a test pole–dipole particle is nonrotating in
this classical model, which is consistent with the inertia of the intrinsic spin. Furthermore,
the Mathisson–Papapetrou equations, together with the Frenkel–Pirani supplementary
condition, imply that, in the massless limit, the spinning massless test particle follows a
null geodesic with the spin vector parallel or is antiparallel to its direction of motion [34].
Hence, our classical model is consistent with physical expectations.

What is the influence of the inertia of the intrinsic spin on the motion of the spinning
particle? From Equation (20), we find

Pµ = m Uµ + Sµν DUν

dς
; (23)

thus, in the absence of spin, Pµ = m Uµ, and the particle simply follows a timelike
geodesic of the background gravitational field. In the presence of spin, on the other
hand, the Mathisson spin-curvature force Fµ, FµUµ = 0,

Fµ = − 1
2

Rµ
ναβ UνSαβ = ∗Rµ

νρσ Uν Sρ Uσ , ∗Rµνρσ =
1
2

ηµναβ Rαβ
ρσ , (24)

must be taken into account [22]. It follows from Equation (23) that Pµ − m Uµ is of the
second order in spin; hence, the Mathisson–Papapetrou equations of motion to first order
in spin become [35]

DSµν

dς
≈ 0 , (25)

and
m

DUµ

dς
≈ Fµ = − 1

2
Rµ

ναβ UνSαβ . (26)

4. Spin-Vorticity–Gravity Coupling

We now turn to the behavior of spinning test particles in the Gödel-type spacetime.
Within the framework of linearized general relativity, it can be shown in general that, in
source-free Ricci-flat regions of the gravitational field, the Mathisson force corresponds to
the Stern–Gerlach force associated with the spin–gravitomagnetic field coupling [20]. In the
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Gödel-type universe, on the other hand, the spinning particle is immersed in the source of
the gravitational field. Is Fµ = −∂µ(Hsg) still valid for the Gödel-type spacetime?

Let us consider a spinning test particle held at rest in space at fixed (x, y, z) coordinates
in the Gödel-type spacetime. According to the free reference observer with adapted tetrad
frames of eµ

α̂ and λµ
α̂ at the same location, the spin vector to linear order stays fixed with

respect to the parallel-propagated frame as a consequence of Equation (25); that is, Sî,
i = 1, 2, 3, are constants of the motion, where Sα̂ = Sµ λµ

α̂; hence,

S0̂ = 0 , Sî = Sµ λµ
î . (27)

The motion of the comoving observer has vorticity in accordance with Equation (4),
and we therefore expect that the spin should couple to the vorticity resulting in the spin-
vorticity Hamiltonian given by

Hsv = −S ·ω = Ω S3̂ . (28)

Furthermore, the spin vector precesses with frequency Ω ∂z with respect to the observer’s
natural frame eµ

î based on the spatial coordinate axes. The Hamiltonian associated with
this motion is the spin–gravity Hamiltonian given by

Hsg = S · B , (29)

where B = Ω = Ω ∂z is the gravitomagnetic field in this case. The result is

Hsg = Ω S3̂ . (30)

The spin–gravity coupling is indeed the same as the spin–vorticity coupling in this
case, since the spinning particle, while engulfed by the source of the gravitational field,
is fixed in space and comoving with the observer. It is clear that in this case ∂µ(Hsg) = 0,
so that the Stern–Gerlach force vanishes. To calculate the Mathisson force in this case, we
need to find the Riemann curvature tensor for the Gödel-type universe, since the Mathisson
force is directly proportional to the spacetime curvature.

In metric (1), the nonzero components of the Riemann tensor can be obtained from

R0101 = Ω2, R0202 = (κ + σ)e2µxΩ2, R0112 = −
√

σeµxΩ2, R1212 = − κ
(4κ

σ
+ 5
)

e2µxΩ2 . (31)

We are interested in the components of the curvature tensor projected onto the orthonormal
tetrad frame λµ

α̂ adapted to our fiducial observer, namely,

Rα̂β̂γ̂δ̂ = Rµνρσ λµ
α̂ λν

β̂ λρ
γ̂ λσ

δ̂ . (32)

The measured components of the Riemann tensor can be expressed via its sym-
metries as a 6 × 6 matrix in the standard manner with indices that range over the set
{01, 02, 03, 23, 31, 12}. The end result is of the general form:[

E H
HT S

]
, (33)

where E, H, and S represent the measured gravitoelectric, gravitomagnetic, and spatial
components of the Riemann curvature tensor, respectively, and E and S are symmetric ma-
trices, while H is traceless. In the case of Gödel-type spacetime (1), we find that H = 0, and

(Eî ĵ) =

Ω2 0 0
0 Ω2 0
0 0 0

 , (Sî ĵ) =

0 0 0
0 0 0
0 0 −

(
1 + 4κ

σ

)
Ω2

 . (34)
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These results are equally valid if the curvature tensor is projected onto the natural frame
eµ

α̂ of the reference observer.
We find that the Mathisson force, given by Equation (24), can be expressed as

Fµ = λµ
α̂ F α̂ , F 0̂ = 0 , F î = H ĵîS ĵ . (35)

However, H = 0; therefore, the measured components of the Mathisson force vanish as
well. That is,

Fµ = − ∂µ(Hsg) = 0 . (36)

It is important to verify this result in a quasi-inertial Fermi normal coordinate system
established about the world line of an arbitrary reference observer that is spatially at rest.

5. Fermi Coordinates in Gödel-Type Spacetimes

To explore spin–gravity coupling in Fermi coordinates, it is convenient to set up a
quasi-inertial system of coordinates based on the nonrotating spatial frame adapted to
a fiducial geodesic observer that is at rest in space with fixed (x, y, z) coordinates and a
4-velocity vector uµ = δ

µ
0 in Gödel-type spacetime (1). The reference observer establishes

in the neighborhood of its world line a Fermi normal coordinate system based on the
parallel-propagated spatial frame λµ

î, i = 1, 2, 3, given by Equation (11). That is, at each
event x̄µ(τ) on its world line, there is a local hypersurface formed by all spacelike geodesic
curves that are orthogonal to the observer’s world line at x̄µ(τ). Consider an event with
coordinates xµ on this hypersurface that can be connected to x̄µ(τ) by a unique spacelike
geodesic of proper length `. Then, the reference observer can assign Fermi coordinates
Xµ = (T, Xi) to xµ such that

T := τ , Xi := ` ξµλµ
î(τ) . (37)

Here, ξµ, ξµ uµ = 0, is a unit spacelike vector tangent to the unique spacelike geodesic
at x̄µ(τ).

For the case of Gödel’s universe, one can find the exact Fermi metric coefficients [30].
The previous results are generalized here for Gödel-type spacetime (1). For the spacelike
geodesics xµ(`), we use Killing vector fields ∂t, ∂y, and ∂z to derive the equations of motion:

t′ +
√

σ eµx y′ = E ,
√

σ eµx t′ − κ e2µx y′ = k . (38)

z′ = h , − t′2 − 2
√

σ eµx t′ y′ + x′2 + κe2µx y′2 + z′2 = 1 . (39)

Here, E, k, and h are integration constants; moreover, a prime denotes the derivative of
a spacetime coordinate with respect to proper length `, e.g., t′ = dt/d`. The condition
ξµλµ

0̂ = 0, where ξµ = dxµ/d`, implies that E = 0. Then, with z = h ` and E = 0, we find

t′ =
√

σ e− µx k
σ + κ

, (40)

y′ = − e− 2µx k
σ + κ

, (41)

x′2 +
e− 2µx k2

σ + κ
= 1− h2 . (42)

The ordinary differential Equation (42) has the general solution for x(`) given by

eµx = α0 cosh(a`+ b), (43)

where the constant parameters are fixed as

α0 a =
|k| µ√
σ + κ

, a = µ
√

1− h2 , (44)
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and the condition
α0 cosh b = 1 (45)

is imposed to satisfy x(0) = 0.
Substituting Equation (43) into Equations (40) and (41), we find the solutions for t(`)

and y(`):

t− τ =
2
µ

√
σ

σ + κ

k
|k|

[
arctan ea`+b − arctan eb

]
. (46)

y = − 1
µ α0

1√
σ + κ

k
|k| [tanh (a`+ b)− tanh b] . (47)

Then, making use of Equations (8)–(11) and (37), we derive for the Fermi coordinates

T = τ , Z = ` h . (48)

X cos(ΩT)−Y sin(ΩT) =
` |k|√
σ + κ

sinh b . (49)

X sin(ΩT) + Y cos(ΩT) = − ` k√
σ + κ

. (50)

As in [30], we introduce the cylindrical coordinates

X = ρ cos θ , Y = ρ sin θ , (51)

and recast Equations (49) and (50) into

cos(θ + ΩT) = tanh b , (52)

sin(θ + ΩT) = − |k|
k cosh b

, (53)

µρ = ` a . (54)

As a result, we rewrite the solutions (43), (47), and (46) as

eµx = cosh(µρ) + sinh(µρ) cos(θ + ΩT) , (55)
√

σ + κ µ y =
tanh(µρ) sin(θ + ΩT)

1 + tanh(µρ) cos(θ + ΩT)
, (56)

tan

[
µ

2

√
σ + κ

σ
(T − t)

]
=

(eµρ − 1) sin(θ + ΩT)
1− cos(θ + ΩT) + [1 + cos(θ + ΩT)] eµρ . (57)

Finally, the transformation from (t, x, y, z) to Fermi coordinates (T, X, Y, Z) can be
conveniently written in terms of the new variables:

R = µρ , F = θ + ΩT , (58)

as follows:

eµx = coshR+ sinhR cosF , (59)
√

σ + κ µ y =
sinhR sinF

coshR+ sinhR cosF
, (60)

tan

[
µ

2

√
σ + κ

σ
(T − t)

]
=

(
eR − 1

)
sinF

1− cosF+ (1 + cosF) eR
. (61)

By differentiation, we obtain
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dt +
√

σ eµxdy = dT +
1
µ

√
σ

σ + κ
(coshR− 1) dF , (62)

dx2 + (κ + σ) e2µx dy2 =
1

µ2

(
dR2 + sinh2R dF2

)
. (63)

It remains to substitute these results into Equation (10) to derive the line element of the
Gödel-type universe in terms of the Fermi coordinates. We find

ds2 =− (1 +L) dT2 − 2ΩK dT (XdY−YdX)

+ dX2 + dY2 + dZ2 +
F

X2 + Y2 (XdY−YdX)2 , (64)

where

L =
σ

4(σ + κ)

[
sinh2 R− σ + 2κ

σ + κ
(coshR− 1)2

]
, (65)

K = − κ

σ + κ

(coshR− 1)2

R2 , (66)

F =
sinh2 R

R2 − 1− σ

σ + κ

(coshR− 1)2

R2 (67)

are functions of the variable

R = 2Ω

√
σ + κ

σ
(X2 + Y2)1/2 . (68)

6. Spin–Gravity Coupling in Fermi Coordinates

In general, the spacetime metric in the Fermi system is given by

ds2 = ĝµν dXµdXν , (69)

where
ĝ00 = −1− R0̂î0̂ ĵ(T) XiX j + · · · , ĝ0i = −

2
3

R0̂ ĵîk̂(T) X jXk + · · · , (70)

and
ĝij = δij −

1
3

Rîk̂ ĵl̂(T) XkXl + · · · . (71)

In these expansions in powers of spatial Fermi coordinates, the coefficients are, in
general, functions of T and consist of components of the Riemann curvature tensor and
its covariant derivatives as measured by the reference observer that permanently occupies
the spatial origin of the Fermi coordinate system. That is, the metric of the Fermi normal
coordinate system established on the basis of a parallel-propagated spatial frame along the
world line of a geodesic observer is the Minkowski metric plus perturbations caused by the
curvature of spacetime. Fermi coordinates are admissible within a cylindrical spacetime
region around the world line of the fiducial observer, and the radius of this cylinder is
given by an appropriate radius of the curvature of spacetime [30].

As defined in Equation (32), Rα̂β̂γ̂δ̂ are evaluated at the origin of spatial Fermi coor-
dinates via the projection of the Riemann tensor on the tetrad frame λµ

α̂ of the fiducial
observer; indeed, for the stationary Gödel-type spacetime, the nonzero components of
Rα̂β̂γ̂δ̂ are constants and can be obtained from

R0̂1̂0̂1̂ = R0̂2̂0̂2̂ = Ω2, R1̂2̂1̂2̂ = −
(

1 +
4κ

σ

)
Ω2 (72)

via the symmetries of the Riemann curvature tensor.
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We define the curvature-based gravitoelectric potential Φ̂ and gravitomagnetic vector
potential Â via ĝ00 = −1 + 2Φ̂ and ĝ0i = −2Âi [36,37]. Indeed,

Φ̂ = −1
2

R0̂î0̂ ĵ XiX j + · · · , Âi =
1
3

R0̂ ĵîk̂ X jXk + · · · . (73)

The corresponding fields are given by

Ê = −∇Φ̂ , B̂ = ∇× Â , (74)

as expected; more explicitly,

Êi = R0̂î0̂ ĵ X j + · · · , B̂i = −
1
2

εijk R ĵk̂
0̂l̂ Xl + · · · . (75)

To the lowest order, the gravitomagnetic field vanishes in the Gödel-type spacetime; there-
fore, we need to compute higher-order terms.

In Section 5, we derived the exact Fermi metric coefficients for the Gödel-type universe.
They are given explicitly by

ĝ00 = − 1− σ

4(σ + κ)

[
sinh2 R− σ + 2κ

σ + κ
(cosh R− 1)2

]
, (76)

ĝ0i = −
κ

σ + κ
Ω

(coshR− 1)2

R2 (Y,−X, 0) , (77)

and

(ĝij) =

1 +A −C 0
−C 1 +B 0

0 0 1

 , (78)

where

A = F Y2

X2 + Y2 , B = F X2

X2 + Y2 , C = F XY
X2 + Y2 . (79)

The exact Fermi coordinate system has been established around the fiducial observer fixed
at X = Y = Z = 0.

For κ ≥ 0, there are no closed timelike curves. In the special case of the Gödel universe
with parameters (13), there are no closed timelike curves within a cylindrical region about
the Z axis with

R =
√

2 Ω (X2 + Y2)1/2 ≤ Rmax , Rmax = 2 ln(1 +
√

2) . (80)

Indeed, a circle in the (X, Y) plane inside this domain is spacelike; however, it becomes
null for R = Rmax and timelike for R > Rmax.

The stationary and divergence-free gravitomagnetic vector field of the Gödel-type
universe is given by B̂1 = B̂2 = 0 and

B̂3 = − κ

σ + κ
Ω(coshR− 1)

sinhR

R
. (81)

It is interesting to note that B̂3 and its first derivative with respect to R vanish at R = 0;
then, B̂3 monotonically increases with increasing R and diverges as R→ ∞. More explicitly,

B̂3 = − 2κ

σ
Ω3(X2 + Y2)

[
1 + Ω2

(σ + κ

σ

)
(X2 + Y2) +

2Ω4

5

(σ + κ

σ

)2
(X2 + Y2)2 + · · ·

]
, (82)

so that the fiducial observer measures a null gravitomagnetic field at its location
(X = Y = Z = 0). Furthermore, the gravitomagnetic field away from the Z axis points
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along Z and is cylindrically symmetric; indeed, it vanishes all along Z but increases mono-
tonically away from the Z axis and eventually diverges as the radius of the cylinder about
the Z axis approaches infinity.

Within the Fermi coordinate system, it is useful to define the class of fundamental
observers that remain at rest in space, each with fixed (X, Y, Z) coordinates. For our present
purposes, we concentrate on the set of fundamental observers that occupy a cylindrical
region in the neighborhood of the Z axis. Specifically, in this region, we can express the
metric tensor in Fermi coordinates as

ĝµν = ηµν + ĥµν , (83)

where the nonzero components of the gravitational potentials are given by

ĥ00 = −Ω2(X2 + Y2) , ĥ01 = − κ

σ
Ω3(X2 + Y2)Y , ĥ02 =

κ

σ
Ω3(X2 + Y2)X , (84)

and

ĥ11 =
1
3

(
1 +

4κ

σ

)
Ω2Y2 , ĥ12 = − 1

3

(
1 +

4κ

σ

)
Ω2XY , ĥ22 =

1
3

(
1 +

4κ

σ

)
Ω2X2 . (85)

That is, for the sake of simplicity, we confine our considerations to a cylindrical region
about the Z axis such that Ω |X| = Ω |Y| . ε, where 0 < ε � 1 and all terms of order ε4

and higher are neglected in our analysis.
In the cylindrical neighborhood of the fiducial observer under consideration, funda-

mental observers have access to adapted orthonormal tetrad frames ϕµ
α̂, given in the Fermi

coordinate system (T, X, Y, Z) by

ϕµ
0̂ = (1 + 1

2 ĥ00, 0, 0, 0) , ϕµ
1̂ = (ĥ01, 1− 1

2 ĥ11, 0, 0) , (86)

ϕµ
2̂ = (ĥ02,−ĥ12, 1− 1

2 ĥ22, 0) , ϕµ
3̂ = (0, 0, 0, 1) . (87)

These tetrad axes are primarily along the Fermi coordinate directions; indeed, for
X = Y = 0, ϕµ

α̂ → λµ
α̂. According to these fundamental observers, a spinning particle held

at rest in space has a 4-velocity vector in the Fermi system given by Ûµ = ϕµ
0̂; moreover,

its spin vector has the following measured components:

Ŝ0̂ = 0 , Ŝî = Ŝµ ϕµ
î , (88)

since Ŝµ Ûµ = 0. Furthermore, the gravitomagnetic field at the location of the spin is
given by

B̂1 = 0 , B̂2 = 0 , B̂3 = − 1
2
(∂X ĥ02 − ∂Y ĥ01) = −

2κ

σ
Ω3(X2 + Y2) , (89)

in agreement with Equation (82) within our approximation scheme. The Hamiltonian for
spin-gravity coupling in the Fermi frame is thus given by

Ĥsg = Ŝ · B̂ = − 2κ

σ
Ω3(X2 + Y2)Ŝ3̂ , (90)

which reduces in our approximation to− 2κ
σ Ω3(X2 +Y2)S3̂, where S3̂ is a constant. The cor-

responding Stern–Gerlach force is then

− ∂µ Ĥsg =
4κ

σ
Ω3 S3̂(0, X, Y, 0) . (91)
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Next, we need to compute the Mathisson force in the Fermi frame, namely,

F̂µ = − 1
2

R̂µναβÛν Ŝαβ . (92)

For metric (83), the curvature tensor to the first order in the perturbation is given by

R̂µναβ =
1
2
(ĥµβ, να + ĥνα, µβ − ĥνβ, µα − ĥµα, νβ) . (93)

We are interested in the gravitomagnetic components of this curvature tensor as measured
by the fundamental observers. Projection of this tensor on the tetrad frame ϕµ

α̂ does not
affect its components in our approximation scheme. We find in this case

(Ĥî ĵ) =

0 0 κ1
0 0 κ2
0 0 0

 , (94)

where
κ1 =

1
2

∂X (∂X ĥ02 − ∂Y ĥ01) , κ2 =
1
2

∂Y (∂X ĥ02 − ∂Y ĥ01) . (95)

Hence, F̂0̂ = 0, and F̂î = Ĥî ĵŜ
ĵ = (κ1, κ2, 0)S3̂ at the level of approximation under consid-

eration here. Moreover, Equation (89) implies

κ1 =
4κ

σ
Ω3X , κ2 =

4κ

σ
Ω3Y . (96)

Therefore, F̂µ = − ∂µ Ĥsg as measured by the fundamental observers within the cylindrical
domain in the Fermi frame.

We have thus far relied on the classical pole–dipole model for the evaluation of spin–
gravity coupling. It is important to demonstrate that our considerations are consistent with
the solutions of the Dirac equation in the Gödel-type universe.

7. Dirac Equation in the Gödel-Type Universe

Let us start with the Dirac equation in the form [38,39]

(iγα∇α −m)Ψ = 0 , ∇µ = ∂µ + Γµ , (97)

where the fermion wave function Ψ is a 4-component spacetime scalar variable composed
of the pair of 2-spinors ϕ and χ:

Ψ =

[
ϕ
χ

]
, ϕ =

[
ϕ1
ϕ2

]
, χ =

[
χ1
χ2

]
. (98)

As before, we assume that the observer in the gravitational field has a natural adapted
orthonormal tetrad field and

γα = eα
β̂ γβ̂ , {γµ, γν} = −2gµν(x)I4 , (99)

where In is the n-dimensional identity matrix, and

γ0̂ =

[
I2 0
0 −I2

]
, γî =

[
0 σi
−σi 0

]
. (100)

Here, σi are Pauli matrices, namely,

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (101)
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The spin connection Γµ (also known as Fock–Ivanenko coefficients) is given by

Γµ = − i
4

eν
α̂ eν β̂;µ σα̂β̂ , σα̂β̂ :=

i
2
[γα̂, γβ̂] . (102)

Making use of tetrad frame (8), we find, after some algebra, the explicit form of the Dirac
Equation (97) in Gödel-type spacetime (1):[(

γ0̂ −
√

σ

σ + κ
γ2̂
)

i∂t − γ1̂ px −
e−µx
√

κ + σ
γ2̂ py − γ3̂ pz

+
iµ
2

γ1̂ +
µ

4

√
σ

σ + κ
γ0̂ Σ3̂ −m

]
Ψ = 0 . (103)

Here, as usual, the momentum operator is p = − i∇ and the spin operator Σ is given by
the matrix

Σî =

[
σi 0
0 σi

]
. (104)

Next, due to the symmetries of Gödel-type spacetime, we assume a solution of the form

Ψ = ψ(x) exp(−i ω t + i k2 y + i k3 z) , (105)

where the four components of ψ(x) satisfy ordinary differential equations, namely,

dψ

dx
=Mψ , (106)

whereM is the 4× 4 matrix

M =


A+ ik3 0 iB+
−ik3 −A− iB− 0

0 iB+ A+ ik3
iB− 0 −ik3 −A−

+ im


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 . (107)

Here, A± and B± are given by

A± = ω

√
σ

σ + κ
±Ω

√
σ + κ

σ
+ k2 e− µx , B± = ω± Ω

2
. (108)

The spin–vorticity–gravity coupling is evident in the way the frequency of the radiation
is changed by ±Ω/2, in agreement with previous results [37,40,41]. If k2 = 0, the waves
can only travel parallel or antiparallel to the rotation axis. In this case, matrix M has
constant elements, and the general solution of Equation (106) can be expressed in terms of
the eigenvalues and eigenfunctions ofM. It turns out that no propagation can occur in
this case due to the requirement that the wave amplitude be finite at all times [41]. These
general results for the Dirac equation are consistent with the propagation of the scalar and
electromagnetic waves in the Gödel-type universe; for brief accounts of these latter topics,
see the appendices at the end of this paper.

To deal with the general case, we henceforth assume k2 6= 0 and change to ξ = e− µx

instead of x as the independent variable. Let us recall here that µ > 0, since we have
explicitly assumed Ω > 0. For ∞ > x > −∞, we find that ξ goes from zero to +∞; hence, ξ
is a radial coordinate. In terms of ξ, Equation (106) takes the form

ξ
dψ

dξ
= Mψ , (109)
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where matrix M is simply related toM, namely,

M =


−Ā+ −iγ 0 −iB̄+

iγ Ā− −iB̄− 0
0 −iB̄+ −Ā+ −iγ
−iB̄− 0 iγ Ā−

− im
2Ω

√
σ

σ + κ


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 . (110)

Here, Ā± and B̄± are given by

Ā± =
ω

2Ω

(
σ

σ + κ

)
± 1

2
+ β ξ , B̄± =

1
2

√
σ

σ + κ

(
ω

Ω
± 1

2

)
, (111)

and we have introduced dimensionless parameters

β =
k2

2Ω

√
σ

σ + κ
, γ =

k3

2Ω

√
σ

σ + κ
. (112)

To clarify the structure of the resulting system (109)–(110), we note that the 4-spinor
(98) can be decomposed into the sum of the left and right spinors,

ψ = ψL + ψR , ψL =
1
2
(1− γ5)ψ , ψR =

1
2
(1 + γ5)ψ , (113)

where γ5 := i γ0̂γ1̂γ2̂γ3̂. By definition, the left and right spinors are eigenstates of the
γ5 matrix: γ5ψL = −ψL and γ5ψR = ψR. Furthermore, we decompose the left and
right spinors into the eigenstates of the Σ3̂ spin matrix (i.e., the “spin-up” and “spin-
down” states):

ψL = ψL
+ + ψL

− , ψR = ψR
+ + ψR

− , Σ3̂ψL
± = ±ψL

± , Σ3̂ψR
± = ±ψR

± . (114)

After these steps, we thus have

ψL
+ = L+


1
0
1
0

, ψL
− = L−


0
1
0
1

, ψR
+ = R+


1
0
−1
0

, ψR
− = R−


0
1
0
−1

, (115)

where explicitly

L+ =
1
2
(ϕ1 + χ1) , L− =

1
2
(ϕ2 + χ2) , (116)

R+ =
1
2
(ϕ1 − χ1) , R− =

1
2
(ϕ2 − χ2) . (117)

Taking these definitions into account, we can straightforwardly recast system (109)–(110)
into an equivalent but more transparent form:(

ξ
d

dξ
+ Ā+

)
L+ = − i(B̄+ + γ)L− + i

m
2Ω

√
σ

σ + κ
R− , (118)(

ξ
d

dξ
− Ā−

)
L− = − i(B̄− − γ)L+ + i

m
2Ω

√
σ

σ + κ
R+ , (119)(

ξ
d

dξ
+ Ā+

)
R+ = i(B̄+ − γ)R− − i

m
2Ω

√
σ

σ + κ
L− , (120)(

ξ
d

dξ
− Ā−

)
R− = i(B̄− + γ)R+ − i

m
2Ω

√
σ

σ + κ
L+ . (121)
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The nontrivial mass mixes the left and right modes. However, for the massless (m = 0)
case or in the high-energy approximation ( mc2

h̄Ω � 1), we can neglect the last terms on the
right-hand sides. As a result, the left modes L± decouple from the right modes R± and
the system reduces to (

ξ
d

dξ
+ Ā+

)
L+ = − i(B̄+ + γ)L− , (122)(

ξ
d

dξ
− Ā−

)
L− = − i(B̄− − γ)L+ , (123)(

ξ
d

dξ
+ Ā+

)
R+ = i(B̄+ − γ)R− , (124)(

ξ
d

dξ
− Ā−

)
R− = i(B̄− + γ)R+ . (125)

It is interesting to mention that in this approximation scheme Equation (109) can also
be solved by a different approach that is briefly described in Appendix A.

7.1. Explicit Solutions

Multiplying Equation (122) by − i(B̄− − γ) and Equation (123) by − i(B̄+ + γ), we
derive the second-order equations for the left modes:(

ξ
d

dξ
+ Ā+

)(
ξ

d
dξ
− Ā−

)
L− =

[
− B̄+B̄− + γ(B̄+ − B̄−) + γ2

]
L− , (126)(

ξ
d

dξ
− Ā+

)(
ξ

d
dξ

+ Ā−
)
L+ =

[
− B̄+B̄− + γ(B̄+ − B̄−) + γ2

]
L+ . (127)

In Equation (111), it is useful to introduce a dimensionless parameter α,

α :=
ω

2Ω

(
σ

σ + κ

)
, Ā± = α + β ξ ± 1

2
; (128)

then,

Ā+Ā− = (α + βξ)2 − 1
4

, Ā+ − Ā− = 1 , (129)

B̄+B̄− =
σ

σ + κ

[ ω2

(2Ω)2 −
1

16

]
, B̄+ − B̄− =

1
2

√
σ

σ + κ
. (130)

Employing the ansatz
L± = ξ−1 u∓ 1

2
, (131)

we can recast Equations (126) and (127) into the form

ξ2 d2

dξ2 us +
[1

4
− µ̃2

f − β2ξ2 − 2βξ (α + s)
]

us = 0 , (132)

where s = ± 1
2 and

µ̃2
f = α2 + γ2 − B̄+B̄− + γ(B̄+ − B̄−)

=
1

µ2

[
−ω2 κ

σ + κ
+ (k3 −Ω/2)2

]
. (133)

With a new independent variable ξ̃ = 2|β|ξ, Equation (132) can be reduced to Whittaker’s
equation [42]:

d2us

dξ̃2
+

[
− 1

4
+

κ̃ f

ξ̃
+

1
4 − µ̃2

f

ξ̃2

]
us = 0 , (134)
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where
κ̃ f = −

β

|β| (α + s) . (135)

The Dirac field is a linear perturbation on the Gödel-type spacetime; therefore, ψ(x)
should be bounded. Demanding that ψ(x) be finite everywhere, the acceptable solution of
Whittaker’s equation is given via the confluent hypergeometric functions by

us = u0
s exp(− 1

2 ξ̃) ξ̃
1
2+µ̃ f

1F1(
1
2 + µ̃ f − κ̃ f , 1 + 2µ̃ f ; ξ̃) , (136)

where
1
2
+ µ̃ f − κ̃ f = − n , n = 0, 1, 2, . . . . (137)

In this case, the confluent hypergeometric function can be expressed in terms of the associ-
ated Laguerre polynomial.

For k2 < 0, β is negative and κ̃ f = α + s = ω
2Ω
(

σ
σ+κ

)
+ s, with s = ± 1

2 . Then,
combining Equations (137) and (133), we derive the dispersion relation

ω = (2n + 1 + 2s)Ω±
[
(k3 −Ω/2)2 − κ

σ
(2n + 1 + 2s)2Ω2

]1/2
. (138)

Note that solutions with both signs of energy are admissible.
Similarly, multiplying Equation (124) by i(B̄− + γ) and Equation (125) by i(B̄+ − γ),

we derive the second-order equations for the right modes:(
ξ

d
dξ

+ Ā+

)(
ξ

d
dξ
− Ā−

)
R− =

[
− B̄+B̄− − γ(B̄+ − B̄−) + γ2

]
R− , (139)(

ξ
d

dξ
− Ā+

)(
ξ

d
dξ

+ Ā−
)
R+ =

[
− B̄+B̄− − γ(B̄+ − B̄−) + γ2

]
R+ . (140)

Using the ansatz
R± = ξ−1 v∓ 1

2
, (141)

we recast Equations (139) and (140) into

ξ2 d2

dξ2 vs +
[1

4
− µ̄2

f − β2ξ2 − 2βξ (α + s)
]

vs = 0 , (142)

where s = ± 1
2 , as before, but now we have

µ̄2
f = α2 + γ2 − B̄+B̄− − γ(B̄+ − B̄−)

=
1

µ2

[
−ω2 κ

σ + κ
+ (k3 + Ω/2)2

]
. (143)

With the independent variable ξ̃ = 2|β|ξ, Equation (142) can again be reduced to Whit-
taker’s equation:

d2vs

dξ̃2
+

[
− 1

4
+

κ̃ f

ξ̃
+

1
4 − µ̄2

f

ξ̃2

]
vs = 0 , (144)

where κ̃ f is given by Equation (135). The regular solution of Equation (144) is given by

vs = v0
s exp(− 1

2 ξ̃) ξ̃
1
2+µ̄ f

1F1(
1
2 + µ̄ f − κ̃ f , 1 + 2µ̄ f ; ξ̃) , (145)

where
1
2
+ µ̄ f − κ̃ f = − n , n = 0, 1, 2, . . . . (146)
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As before, we can combine Equations (146) and (143) to derive the dispersion relation

ω = (2n + 1 + 2s)Ω±
[
(k3 + Ω/2)2 − κ

σ
(2n + 1 + 2s)2Ω2

]1/2
. (147)

The motion of Dirac waves in the Gödel-type universe is in general agreement with
the corresponding results for the scalar and electromagnetic wave propagation described
in Appendices B and C.

7.2. Dealing with Subtle Points of Dirac Theory on Curved Spacetimes

In order to have a correct quantum-mechanical interpretation, Dirac Equation (97)
should be recast into the form of the Schrödinger equation:

i
∂Ψ
∂t

= HΨ . (148)

In flat spacetime with the Minkowski metric ηµν = diag(−1, 1, 1, 1), the trivial frame
eµ

α̂ = δ
µ
α , and the spin connection Γµ = 0, this is straightforward. Multiplying Equation (97)

by γ0̂, we derive Schrödinger Equation (148) with the Hermitian Hamiltonian

H = βD m + αD · p . (149)

Here we denote, as usual, the matrices

βD := γ0̂ , αî
D := γ0̂γî =

[
0 σi
σi 0

]
, i = 1, 2, 3 . (150)

In addition, one also needs a quantum-probabilistic picture, which is related to the nor-
malization of the wave function. As is well known, a direct consequence of the Dirac
Equation (97) is the conservation of the vector current, which, in flat spacetime, can be
expressed as

∂µ Jµ = 0 , Jµ = ΨγµΨ . (151)

Integration over 3-space yields a global conservation law∫
d3x J0 =

∫
d3xΨ†Ψ = constant = 1 . (152)

The physical interpretation of the Dirac fermion dynamics is based on Equations (148) and (152),
especially when the fermionic particle interacts with external fields.

Dirac theory on curved manifolds, however, involves a number of subtleties. In partic-
ular, the differential conservation law (151) is replaced by its curved version:

∇µ Jµ =
1√−g

∂µ

(√
−gJµ

)
= 0 , Jµ = eµ

α̂ Ψγα̂Ψ , (153)

which yields the global conservation law∫
d3x

√
−g J0 =

∫
d3x
√
−g e0

α̂Ψ†γ0̂γα̂Ψ = constant = 1 . (154)

For the natural Gödel-type tetrad frame (8), we have e0
α̂γ0̂γα̂ = 1−

√
σ

σ+κ α2̂
D; there-

fore, the physical interpretation of the solutions is unclear. In addition, Dirac Equation (103)
obviously cannot be directly recast into the form of the Schrödinger wave Equation (148).

Both issues are related to the choice of the tetrad frame, which is defined up to an
arbitrary local Lorentz transformation. The choice (8) corresponds to the so-called Landau-
Lifshitz gauge with e0

î = 0 and ei
0̂ = 0. The situation is essentially improved when one
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chooses the Schwinger gauge for the frame, where ei
0̂ = 0 and e0

î = 0. Then, Equation (154)
reduces to an “almost flat” form:∫

d3x
√
−g e0

0̂ Ψ†Ψ = 1 , (155)

and the Dirac equation is straightforwardly recast into the Schrödinger form [38,39].
This suggests replacing the original tetrad frame (8) with a new one

ẽ0̂ =

√
κ

σ + κ

(
∂t +

√
σ

κ
e−µx∂y

)
, ẽ1̂ = ∂x , ẽ2̂ =

e−µx
√

κ
∂y , ẽ3̂ = ∂z, (156)

where we assume κ > 0. Obviously, this choice corresponds to the Schwinger gauge ẽi
0̂ = 0

and ẽ 0
î = 0 for i = 1, 2, 3.

For Gödel-type spacetimes, the two frames (8) and (156) are related by the Lorentz
transformation

ẽ α̂ = Λβ̂
α̂ eβ̂, (157)

where explicitly

Λα̂
β̂ =


√

σ+κ
κ 0

√
σ
κ 0

0 1 0 0√
σ
κ 0

√
σ+κ

κ 0
0 0 0 1

 . (158)

Interestingly, the transformation with constant matrix elements is global, whereas, in
general, only local Lorentz transformations are possible.

The change of a frame on the spacetime affects the fermionic wave function

Ψ −→ Ψ̃ = L−1 Ψ (159)

via the spinor matrix L that satisfies

L−1γα̂L = Λα̂
β̂ γβ̂. (160)

Using a convenient parametrization with cosh ζ =
√

σ+κ
κ and sinh ζ =

√
σ
κ , we easily derive

L = cosh(ζ/2) I4 + sinh(ζ/2) α2̂
D =

[
cosh(ζ/2) I2 sinh(ζ/2) σ2
sinh(ζ/2) σ2 cosh(ζ/2) I2

]
. (161)

The spinor transformation (159) mixes the spin-up and spin-down states (L±) for the
left modes (and similarly for the right modes), and an appropriate normalization of the
solutions should be fixed for the squares Ψ̃†Ψ̃ of the transformed wave functions.

8. Dirac Equation in Fermi Frame

Let us next consider the Dirac equation in the quasi-inertial Fermi frame of Section 6.
We are interested in the propagation of Dirac particles as described by fundamental ob-
servers that are all spatially at rest in the Fermi frame and occupy the limited cylindrical
region about the Z axis such that Ω|X| = Ω|Y| . ε. As before, we ignore all terms of order
ε4 and higher. The preferred observers have adapted orthonormal tetrad frames ϕµ

α̂ given
in Equations (86)–(87). Let us note that ϕµ α̂ can be written in the (T, X, Y, Z) coordinate
system as

ϕµ 0̂ = (−1 + 1
2 ĥ00, ĥ01, ĥ02, 0) , ϕµ 1̂ = (0, 1 + 1

2 ĥ11, ĥ12, 0) , (162)

ϕµ 2̂ = (0, 0, 1 + 1
2 ĥ22, 0) , ϕµ 3̂ = (0, 0, 0, 1) . (163)
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We employ perturbations beyond Minkowski spacetime in our Fermi frame; hence,
in the absence of ĥµν, we have ϕµ

α̂ → δ
µ
α . To simplify matters even further, we assume

henceforth that the deviation from Minkowski spacetime is only due to the gravitomag-
netic potentials ĥ01 = − κ

σ Ω3Y(X2 + Y2) and ĥ02 = κ
σ Ω3X(X2 + Y2) that give rise to the

gravitomagnetic field B̂ = (0, 0, B̂3), where B̂3 = − 2 κ
σ Ω3(X2 + Y2).

With these assumptions, the spin connection in (102) can be computed using the tetrad
system ϕµ α̂ that is adapted to our reference observers and we find

γµΓ̂µ =
i
2

B̂3

[
σ3 0
0 −σ3

]
. (164)

That is, the spin connection is proportional to the gravitomagnetic field of the Gödel-type
universe in the Fermi frame under consideration here.

For the sake of simplicity, we assume a solution of the Dirac equation that propagates
along the Z axis and is of the form

Ψ̂ = ψ̂(X, Y) exp(−i ω T + i k3 Z) . (165)

Moreover, it is convenient to define

X̂ =

(
ψ̂1

ψ̂3

)
, Ŷ =

(
ψ̂2

ψ̂4

)
. (166)

In this case, Dirac’s equation reduces to

[
∂X + i∂Y +

κ

σ
ωΩ3(X2 + Y2)(X + iY)

]
X̂ = − iκ

σ
Ω3(X2 + Y2)σ1Ŷ+ i

[
k3 ω + m

ω−m k3

]
Ŷ , (167)

and

[
∂X − i∂Y −

κ

σ
ωΩ3(X2 + Y2)(X− iY)

]
Ŷ =

iκ
σ

Ω3(X2 + Y2)σ1X̂+ i

[
−k3 ω + m

ω−m −k3

]
X̂ . (168)

Here, ∂X := ∂/∂X, etc.; furthermore, we note that

(∂X ± i∂Y)(X2 + Y2)2 = 4(X2 + Y2)(X± iY) , (169)

(∂X ± i∂Y)[(X2 + Y2)(X∓ iY)] = 4(X2 + Y2) . (170)

In the absence of the gravitational perturbation, the positive-frequency plane wave
solutions of the free Dirac equation propagating in the Z direction are given by

ŵ± e−i ω T+i k3 Z , (171)

where the spin of the Dirac particle is either parallel (ŵ+) or antiparallel (ŵ−) to the Z
direction; that is,

ŵ+ = N⇑


1
0
$
0

 , ŵ− = N⇓


0
1
0
−$

 . (172)

Here, N⇑ and N⇓ are positive normalization constants, ω = (m2 + k2
3)

1/2, and

$ :=
k3

ω + m
=

ω−m
k3

. (173)
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With these background states, we solve Equations (167) and (168) to the linear order
in the gravitomagnetic perturbation and obtain, after some algebra,

Ψ̂+ = N⇑


exp[− 3κ

8σ ωΩ3(X2 + Y2)2]
iκ
4σ Ω3$(X2 + Y2)(X + iY)

$ exp[− 3κ
8σ ωΩ3(X2 + Y2)2]

iκ
4σ Ω3(X2 + Y2)(X + iY)

e−i ω T+i k3 Z (174)

Ψ̂− = N⇓


iκ
4σ Ω3$(X2 + Y2)(X− iY)
exp[ 3κ

8σ ωΩ3(X2 + Y2)2]

− iκ
4σ Ω3(X2 + Y2)(X− iY)

−$ exp[ 3κ
8σ ωΩ3(X2 + Y2)2]

e−i ω T+i k3 Z . (175)

These solutions of Dirac’s equation exhibit the coupling of spin with the gravitomag-
netic field of a Gödel-type universe and may be compared and contrasted with the results
of Appendix C for the propagation of circularly polarized electromagnetic waves along the
Z axis in the Fermi frame.

We should note that fermions in Gödel-type universes have been the subject of a
number of previous studies; see, for instance, refs. [43–48] and the references cited therein.

9. Discussion

Spin–gravity coupling represents a physically important subject matter in view of
the basic nature of the intrinsic spin of particles and the universality of the gravitational
interaction. We have investigated in detail the coupling of intrinsic spin with the gravit-
omagnetic fields of a three-parameter class of Gödel-type spacetimes. These stationary
and homogeneous rotating universes are characterized by the set of constant parameters
(κ, σ, µ); for κ < 0; there are closed timelike curves (CTCs) in spacetime, while, for κ ≥ 0,
the CTCs are absent. For (κ, σ, µ)→ (−1, 2,

√
2 Ω), we recover Gödel’s rotating universe

model, where Ω > 0 is the frequency of rotation. Regarding the background Gödel-type
spacetimes, we have studied Dirac’s equation and worked out its solutions; furthermore,
we have extended our results to exact Fermi normal coordinate systems in these universes.
We have shown that the Stern–Gerlach force due to the coupling of intrinsic spin with the
gravitomagnetic field of a Gödel-type spacetime is in agreement with the correspondence
limit with the classical Mathisson spin-curvature force. This is a nonlinear generalization
of previous work that focused on linearized general relativity [20]. Our main results turn
out to be independent of the possible causality difficulties of the Gödel-type spacetimes.
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Appendix A. Alternative Solution of Equation (109)

The purpose of this appendix is to present a different approach to the solution of
Equation (109).

We can write Equation (109) in the form

ξ
d(Uψ)

dξ
= UMU−1(Uψ) , (A1)



Symmetry 2023, 15, 1518 21 of 26

where U is a constant unitary matrix given by

U =
1√
2

[
I2 −I2
I2 I2

]
. (A2)

Under this similarity transformation, we have

U γ0̂ U † =

[
0 I2
I2 0

]
= γ5 , U γî U † = γî . (A3)

That is, the standard representation of the Dirac matrices is thus transformed to the chiral
(Weyl) representation. Employing this representation, we find

UMU−1 =


−Ā+ iB̄+ − iγ 0 0

iB̄− + iγ Ā− 0 0
0 0 −Ā+ −iB̄+ − iγ
0 0 −iB̄− + iγ Ā−



− im
2Ω

√
σ

σ + κ


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (A4)

where Ā± and B̄± are given by Equation (111). By expressing Uψ in the form

Uψ =
√

2
[
R
L

]
, R =

[
R+

R−

]
, L =

[
L+
L−

]
, (A5)

whereR and L are now right-handed and left-handed two-component Weyl spinors, we
recover the system of Equations (118)–(121). The rest of the analysis would follow the
treatment presented in Section 7.

Appendix B. Scalar Waves in the Gödel-Type Universe

Consider first a scalar field φ of inertial mass m propagating on the background
Gödel-type spacetime (1). The wave equation is

gµνφ;µν −
m2c2

h̄2 φ = 0 , (A6)

where h̄/(mc) is the Compton wavelength of the particle. The back reaction is of the second
order in the perturbation and can be neglected. The scalar wave equation can be written as

1√−g
∂

∂xµ

(√
−g gµν ∂φ

∂xν

)
− m2c2

h̄2 φ = 0 , (A7)

where, for metric (1),
√−g = eµx√σ + κ. Moreover, ∂t, ∂y, and ∂z are Killing vector fields;

therefore, we assume that

φ(x) = e−iωt+ik2y+ik3z φ̄(ξ) , ξ := e− µx , (A8)

where ξ increases from 0 to ∞ as the x coordinate decreases from +∞ to −∞. In terms of
the new radial variable ξ, the equation for φ̄ reduces to

d2φ̄

dξ2 −
[

α2
s +

βs

ξ
+

ζs(ζs + 1)
ξ2

]
φ̄ = 0 , (A9)
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where

αs =
k2

µ
√

σ + κ
, βs =

2ω k2

c µ2

√
σ

σ + κ
, ζs(ζs + 1) =

1
µ2

(
− ω2

c2
κ

σ + κ
+ k2

3 +
m2c2

h̄2

)
. (A10)

Let us assume ζs > 0 and note that for k2 = 0, Equation (A9) for φ̄ has solutions of
the form ξ−ζs and ξζs+1 that diverge at ξ = 0 and ξ = ∞, respectively. However, the scalar
perturbation must be finite everywhere; therefore, waves cannot freely propagate parallel
or antiparallel to the axis of rotation of the Gödel-type spacetime. Next, for k2 6= 0, we
introduce a new variable, ξ̄ := |k2|

√
σ

Ω(σ+κ)
ξ, in terms of which Equation (A9) takes the form of

Whittaker’s equation [42]:

d2φ̄

dξ̄2 +

[
− 1

4
+

κ̄s

ξ̄
+

1
4 − µ̄2

s

ξ̄2

]
φ̄ = 0 , (A11)

where
κ̄s = −

ω

2Ω
k2

|k2|
σ

σ + κ
, µ̄s = ±(ζs +

1
2 ) . (A12)

In terms of the confluent hypergeometric functions, bounded solutions of this equation
can be expressed up to proportionality constants by the following:

exp(− 1
2 ξ̄) ξ̄ζs+1

1F1(−n, 2ζs + 2; ξ̄) , n = 0, 1, 2, . . . . (A13)

Here, ζs > 0, µ̄s = ζs + 1/2, and

ζs + 1 +
ω

2Ω
k2

|k2|
σ

σ + κ
= − n , ω = ± 2Ω (n + ζs + 1)

σ + κ

σ
, (A14)

for k2 < 0 (upper plus sign) or k2 > 0 (lower minus sign), respectively. Negative frequency
in the case of k2 > 0 indicates that waves traveling forward in time move backward along
the y direction. Finally, we note that only certain frequencies are allowed for the scalar
waves; for instance, for k2 < 0 , we have ωn = 2Ω (n + ζs + 1)(σ + κ)/σ. That is,

ω±n = (2n + 1)Ω±
[(
−4n(n + 1)

κ

σ
+ 1
)

Ω2 + k2
3 +

m2c2

h̄2

]1/2

, (A15)

where ω+
n > 0 for all n by definition, while ω−n > 0 for n = 1, 2, 3, . . . only if

ω+
n ω−n = 4n(n + 1)

σ + κ

σ
Ω2 − k2

3 −
m2c2

h̄2 > 0 . (A16)

For further work on the scalar perturbations of the Gödel-type universe and its exten-
sions, see [49–51].

Appendix C. Electromagnetic Waves in the Gödel-Type Universe

The propagation of electromagnetic radiation in the Gödel universe was originally
investigated in the search for the coupling of photon helicity with the rotation of matter [52].
In Gödel-type spacetimes, Maxwell’s equations can be reduced to an equation of the form
of Equation (A9), where, instead of the quantities in Equation (A10), we find [53]

αs → αem =
K±2

µ
√

σ + κ
, βs → βem =

2ω K±2
c µ2

√
σ

σ + κ
, (A17)

and ζs → ζem, where

ζem(ζem + 1) =
1

µ2

(
− ω2

c2
κ

σ + κ
+ (K±3 )2 ∓ 2Ω K±3

)
, (A18)
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since photon is massless (m = 0). The helicity coupling evident in Equation (A18) is
consistent with the spin–vorticity–gravity coupling described in Section 4. That is, based
on the results of Section 4, we would expect the corresponding Hamiltonian for a photon
to be proportional to ± h̄K±3 Ω/ω so that, in terms of frequency, we would have ±K±3 Ω/ω.
The effect should disappear in the case of a null geodesic consistent with the eikonal limit
ω → ∞. For further extensions and generalizations to Gödel-type universes, see [53–59].

EM Waves in the Fermi Frame

We consider the propagation of electromagnetic radiation on the background quasi-
inertial Fermi normal coordinate system. In terms of the Faraday tensor Fµν, the source-free
Maxwell equations can be expressed as

F[µν,ρ] = 0 , (
√
−g Fµν),ν = 0 . (A19)

Using the same approach as in [52], we replace the gravitational field by a hypothetical
optical medium that occupies Euclidean space with Cartesian Fermi coordinates (X, Y, Z).
The electromagnetic field Equation (A19) reduces to the traditional form of Maxwell’s
equations in a medium with the following decompositions:

Fµν → (Ẽ, B̃) ,
√
−g Fµν → (−D̃, H̃) . (A20)

That is, F0i = −Ẽi and Fij = εijk B̃k; similarly,
√−g F0i = D̃i and

√−g Fij = εijk H̃k. Here,
εijk is the totally antisymmetric symbol with ε123 = 1. The corresponding optical medium
turns out to be gyrotropic with constitutive relations [60–64]:

D̃i = ε̂ij Ẽj − (Ĝ× H̃)i , B̃i = µ̂ij H̃j + (Ĝ× Ẽ)i , (A21)

where the characteristics of the medium are conformally invariant and are given by

ε̂ij = µ̂ij = −
√
−ĝ

ĝij

ĝ00
, Ĝi = −

ĝ0i
ĝ00

. (A22)

Expressing electromagnetic fields in the standard complex form and introducing the
Riemann–Silberstein vectors,

F̃± = Ẽ± i H̃ , S̃± = D̃± i B̃ , (A23)

the wave propagation equation can be expressed as the Dirac equation for photons in the
gravitational field. That is,

∇× F̃± = ± i
∂S̃±

∂t
, ∇ · S̃± = 0 , (A24)

where
S̃±p = ε̂pq F̃±q ± i (Ĝ× F̃±)p . (A25)

The Dirac-type equation implies ∂t(∇ · S̃±) = 0; therefore, if ∇ · S̃± = 0 initially, then it is
valid for all time.

To interpret the physical meaning of these results, it proves useful to consider plane
electromagnetic waves of frequency ω propagating along the z axis in a global inertial
frame with coordinates xµ = (t, x) in Minkowski spacetime. Maxwell’s equations are
linear; therefore, we can use complex electric and magnetic fields and use the convention
that only the real parts correspond to measurable quantities. The waves can have two
independent orthogonal linear polarization states along the x̂ and ŷ directions, where x̂ is a
unit vector along the x axis, etc. The circular polarization states are constructed from the
linear polarization states via superposition; in this case, the electric (e) and magnetic (b)
fields can be expressed as
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e± =
1
2

a± (x̂± i ŷ) e−iω (t−z) , b± = ∓ i
2

a± (x̂± i ŷ) e−iω (t−z) , (A26)

where a+ and a− are constant complex amplitudes. Here, the upper (lower) sign represents
waves in which the orthogonal electric and magnetic fields rotate in the positive (negative)
sense about the direction of the wave motion. In the case of a photon with positive (negative)
circular polarization, the photon has positive (negative) helicity, namely, its spin is +h̄
(−h̄) along its direction of propagation. The Riemann–Silberstein vectors have interesting
behaviors for helicity states of the photon; in fact, for positive-helicity radiation,

e+ + i b+ = a+ (x̂ + i ŷ) e−iω (t−z) , e+ − i b+ = 0 , (A27)

while for radiation with negative helicity,

e− + i b− = 0 , e− − i b− = a− (x̂− i ŷ) e−iω (t−z) . (A28)

Hence, e + i b (e− i b) represents in essence an electromagnetic wave with positive (neg-
ative) helicity. It is important to note that Equations (A24) and (A25) that represent the
propagation of the electromagnetic test fields in a gravitational field completely decouple
for different helicity states.

Imagine the propagation of electromagnetic waves with definite helicity along the
Z axis in the Fermi normal coordinate system in the Gödel-type spacetime. The uni-
verse rotates in the negative sense about the Z axis. We confine our considerations to
the cylindrical region near the rotation axis where the perturbation analysis contained in
Equations (83)–(85) is valid. To simplify matters, we take into account only the gravitomag-
netic potentials ĥ01 and ĥ02, and we ignore the other potentials; therefore, in Equation (A22),
we have

ε̂ij = µ̂ij ≈ 1 , Ĝ ≈ − κ

σ
Ω3(X2 + Y2)(Y,−X, 0) . (A29)

It is straightforward to show that, in this case, the field Equations (A24) and (A25)
have the solution

F̃±1 = â± exp[−iω(T − Z)∓ κ

4σ
ωΩ3 (X2 + Y2)2] , (A30)

F̃±2 = ±iâ± exp[−iω(T − Z)∓ κ

4σ
ωΩ3 (X2 + Y2)2] , (A31)

and F̃±3 = 0. Here, â+ and â− are constant amplitudes for the positive and negative helicity
waves in the Fermi frame, respectively. If the wave propagates along the axis of rotation
(i.e., the −Z direction), then, in Equations (A30) and (A31), we have Z → −Z and ± → ∓
in the exponents of these equations, as well as in the coefficient of the latter equation.
For Ω = 0, the Fermi frame reduces to a global inertial frame in Minkowski spacetime and
we recover waves of the form given in Equations (A26)–(A28).

The helicity–gravitomagnetic field coupling is evident in these results and corresponds
to Equations (89) and (90) of Section 6; indeed, the form of this coupling is reminiscent of
the helicity–twist coupling studied in [65].
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