Discovery of New Exact Wave Solutions to the M-Fractional Complex Three Coupled Maccari’s System by Sardar Sub-Equation Scheme
Abstract
:1. Introduction
2. Description of Sardar Sub-Equation Method
3. The Governing Model and Its Mathematical Treatment
4. Solutions through Sardar Sub-Equation Method
5. Graphical Representation of Solutions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371, 461–580. [Google Scholar] [CrossRef]
- Zhu, W.; Ling, Z.; Xia, Y.; Gao, M. Bifurcations and the Exact Solutions of the Time-Space Fractional Complex Ginzburg-Landau Equation with Parabolic Law Nonlinearity. Fractal Fract. 2023, 7, 201. [Google Scholar] [CrossRef]
- Ge, Z.-M.; Ou, C.-Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos Solitons Fractals 2008, 35, 705–717. [Google Scholar] [CrossRef]
- Ellahi, R.; Mohyud-Din, S.T.; Khan, U. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method. Results Phys. 2018, 8, 114–120. [Google Scholar]
- Senol, M. New analytical solutions of fractional symmetric regularized-long-wave equation. Rev. Mex. Fís. 2020, 66, 297–307. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Su, C.-Q.; Liu, X.-Q.; Li, J.-G. Nonautonomous solitons for an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Waves Random Complex Media 2018, 3, 411–425. [Google Scholar] [CrossRef]
- Shahzad, T.; Ahmad, M.O.; Baber, M.Z.; Ahmed, N.; Ali, S.M.; Akgül, A.; Shar, M.A.; Eldin, S.M. Extraction of soliton for the confirmable time-fractional nonlinear Sobolev-type equations in semiconductor by ϕ6-modal expansion method. Results Phys. 2023, 46, 106299. [Google Scholar] [CrossRef]
- Rafiq, M.N.; Majeed, A.; Inc, M.; Kamran, M. New traveling wave solutions for space-time fractional modified equal width equation with beta derivative. Phys. Lett. A 2022, 446, 128281. [Google Scholar] [CrossRef]
- Naeem, M.; Rezazadeh, H.; Khammash, A.A.; Shah, R.; Zaland, S. Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative. J. Math. 2022, 2022, 3688916. [Google Scholar] [CrossRef]
- Khater, M.M.A.; Ghanbari, B.; Nisar, K.S.; Kumar, D. Novel exact solutions of the fractional Bogoyavlensky–Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative. Alex. Eng. J. 2020, 59, 2957–2967. [Google Scholar] [CrossRef]
- Mohammed, W.W.; El-Morshedy, M.; Moumen, A.; Ali, E.E.; Benaissa, M.; Abouelregal, A.E. Effects of M-Truncated Derivative and Multiplicative Noise on the Exact Solutions of the Breaking Soliton Equation. Symmetry 2023, 15, 288. [Google Scholar] [CrossRef]
- Alabedalhadi, M.; Al-Omari, S.; Al-Smadi, M.; Alhazmi, S. Traveling Wave Solutions for Time-Fractional mKdV-ZK Equation of Weakly Nonlinear Ion-Acoustic Waves in Magnetized Electron–Positron Plasma. Symmetry 2023, 15, 361. [Google Scholar] [CrossRef]
- Das, N.; Saha Ray, S. Dispersive optical soliton solutions of the (2+1)-dimensional cascaded system governing by coupled nonlinear Schrödinger equation with Kerr law nonlinearity in plasma. Opt. Quantum Electron. 2023, 55, 328. [Google Scholar] [CrossRef]
- Das, N.; Saha Ray, S. Dispersive optical soliton wave solutions for the time-fractional perturbed nonlinear Schrödinger equation with truncated M-fractional conformable derivative in the nonlinear optical fibers. Opt. Quantum Electron. 2022, 54, 544. [Google Scholar] [CrossRef]
- Das, N.; Saha Ray, S. Novel optical soliton solutions for time-fractional resonant nonlinear Schrödinger equation in optical fiber. Opt. Quantum Electron. 2022, 54, 112. [Google Scholar] [CrossRef]
- Saha Ray, S.; Das, N. New optical soliton solutions of fractional perturbed nonlinear Schrödinger equation in nanofibers. Mod. Phys. Lett. B 2022, 36, 2150544. [Google Scholar] [CrossRef]
- Cinar, M.; Secer, A.; Ozisik, M.; Bayram, M. Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method. Opt. Quantum Electron. 2022, 54, 402. [Google Scholar] [CrossRef]
- Debin, K.; Rezazadeh, H.; Ullah, N.; Vahidi, J.; Tariq, K.U.; Akinyemi, L. New soliton wave solutions of a (2+1)-dimensional Sawada-Kotera equation. J. Ocean. Eng. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Faisal, K.; Abbagari, S.; Pashrashid, A.; Houwe, A.; Yao, S.-W.; Ahmad, H. Pure-cubic optical solitons to the Schrödinger equation with three forms of nonlinearities by Sardar subequation method. Results Phys. 2023, 48, 106412. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Awan, A.U.; Habib, A.; Gamaoun, F.; El Din, E.S.M.T.; Galal, A.M. Solitary wave solutions for a strain wave equation in a microstructured solid. Results Phys. 2022, 39, 105755. [Google Scholar] [CrossRef]
- Vahidi, J.; Zekavatmand, S.M.; Rezazadeh, H.; Inc, M.; Akinlar, M.A.; Chu, Y.-M. New solitary wave solutions to the coupled Maccari’s system. Results Phys. 2021, 21, 103801. [Google Scholar] [CrossRef]
- Alkhidhr, H.A.; Abdelrahman, M.A.E. Wave structures to the three coupled nonlinear Maccari’s systems in plasma physics. Results Phys. 2022, 33, 105092. [Google Scholar] [CrossRef]
- Li, Z.; Xie, X.; Jin, C. Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results Phys. 2022, 41, 105932. [Google Scholar] [CrossRef]
- Bulut, H.; Yel, G.; Baskonus, H.M. Novel structure to the coupled nonlinear Maccari”s system by using modified trial equation method. Adv. Math. Model. Appl. 2017, 2, 14–19. [Google Scholar]
- Akbar, Y.; Afsar, H.; Abbas, S.; Javed, M.W.; Ullah, N. Dromions for the coupled Maccari’s system in fluid mechanics. Chaos Solitons Fractals 2021, 150, 111114. [Google Scholar] [CrossRef]
- Ciancio, A.; Baskonus, H.M.; Sulaiman, T.A.; Bulut, H. New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure. Indian J. Phys. 2018, 92, 1281–1290. [Google Scholar] [CrossRef]
- Jabbari, A.; Kheiri, H.; Bekir, A. Exact solutions of the coupled Higgs equation and the Maccari system using He’s semi-inverse method and (G′/G)-expansion method. Comput. Math. Appl. 2011, 62, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Hafez, M.G.; Alam, M.N.; Akbar, M.A. Traveling wave solutions for some important coupled nonlinear physical models via the coupled Higgs equation and the Maccari system. J. King Saud-Univ.-Sci. 2015, 27, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Ullah, N.; Asjad, M.I.; Awrejcewicz, J.; Muhammad, T.; Baleanu, D. On soliton solutions of fractional-order nonlinear model appears in physical sciences. AIMS Math. 2022, 7, 7421–7440. [Google Scholar] [CrossRef]
- Emad, H.M.; Zahran, M.S.M.; Shehata, S.M.; Mirhosseini-Alizamini, M.N.A.; Lanre, A. Exact propagation of the isolated waves model described by the three coupled nonlinear Maccari’s system with complex structure. Int. J. Mod. Phys. B 2021, 35, 2150193. [Google Scholar]
- Tukur, A.S.; Gulnur, Y.; Hasan, B. M-fractional solitons and periodic wave solutions to the Hirota-Maccari system. Mod. Phys. Lett. B 2019, 33, 1950052. [Google Scholar]
- Vanterler, J.; Sousa, D.A.C.; Capelas, E.; Oliveira, D.E. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharidi, A.K.; Bekir, A. Discovery of New Exact Wave Solutions to the M-Fractional Complex Three Coupled Maccari’s System by Sardar Sub-Equation Scheme. Symmetry 2023, 15, 1567. https://doi.org/10.3390/sym15081567
Alsharidi AK, Bekir A. Discovery of New Exact Wave Solutions to the M-Fractional Complex Three Coupled Maccari’s System by Sardar Sub-Equation Scheme. Symmetry. 2023; 15(8):1567. https://doi.org/10.3390/sym15081567
Chicago/Turabian StyleAlsharidi, Abdulaziz Khalid, and Ahmet Bekir. 2023. "Discovery of New Exact Wave Solutions to the M-Fractional Complex Three Coupled Maccari’s System by Sardar Sub-Equation Scheme" Symmetry 15, no. 8: 1567. https://doi.org/10.3390/sym15081567
APA StyleAlsharidi, A. K., & Bekir, A. (2023). Discovery of New Exact Wave Solutions to the M-Fractional Complex Three Coupled Maccari’s System by Sardar Sub-Equation Scheme. Symmetry, 15(8), 1567. https://doi.org/10.3390/sym15081567