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Abstract: The striking goal of this study is to introduce a q-identity for a parameterized integral
operator via differentiable function. First, we discover the parameterized lemma for the q-integral.
After that, we provide several q-differentiable inequalities. By taking suitable choices, some interest-
ing results are obtained. With all of these, we displayed the findings from the traditional analysis
utilizing q→ 1−.
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1. Introduction

The theory of inequality has a unique and important place for the function class known
as convex functions, which has a very helpful definition and feature-based structure. We
really encounter convexity frequently and in a variety of ways. The most common example
is while we are standing up, which is safe as long as our center of gravity’s vertical projection
is contained inside the concave area of our feet. Convexity also significantly influences
our daily lives through its myriad uses in business, health, the arts, and other fields. This
function class has enhanced its relevance by being used in studies of inequality theory and
in several application domains by recognizing novel types of inequality. It has been found
that there is a very strong relationship between inequalities and convex functions. Both
theoretical and practical domains greatly benefit from the convex function. Through its
diverse uses in commerce, industry, and medicine, convexity also has a profound influence
on our daily life. It is one of the most sophisticated disciplines of mathematical modeling
because of the variety of implementations available. The definition of convex functions is

Definition 1 ([1]). If Ω : [µ, ν] ⊆ < → < is convex, then the inequality

Ω(t φ2 + (1− t)φ1) ≤ t Ω(φ2) + (1− t) Ω(φ1),

holds for every φ1, φ2 ∈ [µ, ν] and every t ∈ [0, 1].

The Hermite–Hadamard inequality is the utmost important and extensively used
result involving convex functions [2]. The most familiar inequality related to the integral
mean of a convex function is stated as

Ω
(

φ1 + φ2

2

)
≤ 1

φ2 − φ1

∫ φ2

φ1

Ω(t)dt ≤ Ω(φ1) + Ω(φ2)

2
(1)
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where Ω : I ⊆ < → < is a convex function and φ1, φ2 ∈ I with φ1 < φ2.
Mathematicians have puzzled about how to give estimates for some midpoint and

trapezoid differences, where the concept of classical derivatives has been insufficient for
years. This curiosity has also spurred mathematicians to embark on a new search for
the practical uses for their theories that classical analysis lacks. This quest has led to the
discovery of fractional derivative and integral operators, which has sped up research on
fractional analysis.

U.S. Kirmaci proved the following midpoint inequality for differentiable convex
functions in [3].

Theorem 1. Let Ω : [µ, ν]→ < be differentiable on (µ, ν). If |Ω′(t)| is convex on [µ, ν], then∣∣∣∣Ω(µ + ν

2

)
− 1

ν− µ

∫ ν

µ
Ω(t) dt

∣∣∣∣ ≤ (ν− µ)(|Ω′(µ)|+ |Ω′(ν)|)
8

. (2)

In [4], F. Qi and B. Y. Xi presented a new inequality for differentiable convex functions
called the Bullen inequality, which can be described as

Theorem 2. Let Ω : [µ, ν]→ < be a differentiable function on (µ, ν). If |Ω′(t)| is integrable and
convex on [µ, ν], we attain the following identity:∣∣∣∣∣∣12

[
Ω
(

µ + ν

2

)
+

Ω(µ) + Ω(ν)

2

]
− 1

(ν− µ)

ν∫
µ

Ω(t)dt

∣∣∣∣∣∣ ≤ ν− µ

16
[∣∣Ω′(µ)∣∣+ ∣∣Ω′(ν)∣∣]. (3)

Due to their extensive examination in the literature, researchers have concentrated
on inequalities and convex functions [5–9]. The concept of “calculus without limits”,
sometimes known as “quantum calculus”, is an infinitesimal one without constraints. The
study of quantum theory is crucial to mathematics and related fields. Mathematicians
turned their attention to q-calculus, which had previously been used in physics, philosophy,
cryptology, computer science, and mechanics, to study the theory of inequalities, numerical
theory, fundamental hyper-geometric functions, and orthogonal polynomials (see [10–13]);
a lot of research has been done in this area recently. The credit for the creation of this field
goes to Euler, who deployed the q-parameter to Newton’s investigation of infinite series.
Jackson was the one to introduce the q-calculus, according to [10]. As the first phase of his
symmetrical study in the nineteenth century, Jackson created q-definite integrals. Tariboon
first introduced the µDq-difference operator in 2013 [14].

Firstly, in this research article, we will establish general q-parameterized identity. Then,
by employing this identity against convex functions, we attain new quantum variants of
Mid-point, Simpson, Trapezoid, and Bullen-type inequalities. With the particular selection
of q→ 1−, we can recapture the above inequalities in limiting calculus.

2. Some Basics of q-Calculus

In the present section, we recall concepts of q-derivatives, q-integrals, and related
results:

Definition 2 ([14]). If Ω : [µ, ν]→ <, the µq-derivative of Ω at φ1 ∈ [µ, ν] is defined as

µDqΩ(φ1) =
Ω(φ1)−Ω(qφ1 + (1− q)µ)

(1− q)(φ1 − µ)
, φ1 6= µ. (4)

If φ1 = µ, we define µDqφ(µ) = limφ1→µ µDqφ(φ1) if it exists and is finite.
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In [15], the notion of q-Riemann integral was demonstrated in terms of Jackson q-
integral on [µ, ν] :

φ1∫
µ

Ω(t) µdqt = (1− q)(φ1 − µ)
∞

∑
ℵ=0

qℵΩ
(

qℵφ1 +
(

1− qℵ
)

µ
)

, φ1 ∈ [µ, ν]. (5)

Definition 3. If µ = 0 in (5), then
φ1∫
0

Ω(t) 0dqt =
φ1∫
0

Ω(t) dqt ,

where:
φ1∫
0

Ω(t) dqt is q-definite integral on [0, φ1] and defined as [13]

φ1∫
0

Ω(t) 0dqt =

φ1∫
0

Ω(t) dqt = (1− q)φ1

∞

∑
ℵ=0

qℵΩ
(

qℵφ1

)
. (6)

If c ∈ (µ, φ1), then the q-definite integral on [c, φ1] is expressed as:

φ1∫
c

Ω(t) µdqt =

φ1∫
µ

Ω(t) µdqt −
c∫

µ

Ω(t) µdqt . (7)

In order to solve differential equations, integral inequalities are quite useful to estimate
bounds. Numerous researchers have looked into how integral inequality can be used in
both classical and quantum calculus to explore new useful possibilities. Since mathematical
inequality’s significance has long been understood, inequalities like Hermite–Hadamard,
Jensen, Ostrowski, and Hölder were frequently utilized in quantum calculus. Tariboon
and Ntouyas described the q-derivative and q-integral of ongoing work at intervals and
confirmed some of its features in 2013 [14]. Numerous well-known inequalities, includ-
ing those based on Hermite–Hadamard, trapezoid, Ostrowski, Cauchy–Bunyakovsky–
Schwarz, Gruss, and Gruss–Cebyvsev, have been examined for q-calculus in [15]. In 2020,
Bermudo et al. [16] explained new q-derivative and q-integral for continuous work on a reg-
ular basis cost νq-calculus, while the previous one is called µq-calculus. In [17], Alp et al.
proved some Midpoint-type inequalities for µq-integrals. Noor et al. established some
inequalities of trapezoid type for µq-integrals in [18]. On the other hand, Budak et al.
present several midpoint and trapezoid type inequalities for νq-integrals in [19,20]. In [21],
Budak et al. proved some Simpson–Newton type inequalities by using the concept of
quantum integrals. Many mathematicians have conducted research in the area of quan-
tum calculus; the interested reader can check [17,22–24]. Recently in [25], q-calculus has
been used to define positive operators involving Bézier bases. In [17], several variants of
q-Hermite–Hadamard inequalities were established by utilizing the idea of support line
for convex functions. They also provided the corrected version of q-Hermite–Hadamard
inequality given as follows:

Let Ω : [µ, ν]→ < be a convex function on [µ, ν]; we have

Ω
(

qµ + ν

1 + q

)
≤ 1

ν− µ

ν∫
µ

Ω(t) µdqt ≤
qΩ(µ) + Ω(ν)

1 + q
.

Also, another useful variant was given in [17] as follows:

Ω
(

µ + ν

2

)
− (1− q)(ν− µ)

2(1 + q)
Ω′
(

µ + ν

2

)
≤ 1

ν− µ

ν∫
µ

Ω(t) µdqt ≤
qΩ(µ) + Ω(ν)

1 + q
.



Symmetry 2023, 15, 1576 4 of 16

Later, Bermudo et al. in [16] presented another picture of the q-Hermite–Hadamard
inequality considering νq-integral as follows:

Theorem 3. For a convex function Ω : [µ, ν]→ <, the following inequalities hold for q ∈ (0, 1):

Ω
(

µ + qν

1 + q

)
≤ 1

ν− µ

∫ ν

µ
Ω(t) νdqt ≤

Ω(µ) + qΩ(ν)

1 + q
(8)

and

Ω
(

µ + ν

2

)
≤ 1

2(ν− µ)

[∫ ν

µ
Ω(t) µdqt+

∫ ν

µ
Ω(t) νdqt

]
≤ Ω(µ) + Ω(ν)

2
. (9)

In [26], M. A. Ali et al. proved the following new version of quantum Hermite–
Hadamard inequality involving µq and νq-integrals.

Theorem 4. If Ω : [µ, ν]→ < is a convex function, then we have

Ω
(

µ + ν

2

)
≤ 1

ν− µ

[∫ µ+ν
2

µ
Ω(t) µdqt+

∫ ν

µ+ν
2

Ω(t) νdqt

]
≤ Ω(µ) + Ω(ν)

2
.

In [17], the authors established the following midpoint inequalities for q-differentiable
convex functions.

Theorem 5. Let Ω : [µ, ν]→ < be a q-differentiable on (µ, ν). If |µDqΩ(x)| is convex on [µ, ν],
then the following inequality holds for q ∈ (0, 1):∣∣∣∣Ω(qµ + ν

1 + q

)
− 1

ν− µ

∫ ν

µ
Ω(t) µdqt

∣∣∣∣ (10)

≤ q(ν− µ)

(1 + q)3(1 + q + q2)

[
3
∣∣
µDqΩ(ν)

∣∣+ (2q2 + 2q− 1
)∣∣

µDqΩ(µ)
∣∣].

After that, M. A. Noor et al. [18] proved some new trapezoidal inequalities for q-
differentiable convex functions.

Theorem 6. Let Ω : [µ, ν] → < be q-differentiable on (µ, ν). If |µDqΩ(x)| is convex on [µ, ν],
then following inequality holds for q ∈ (0, 1):∣∣∣∣qΩ(µ) + Ω(ν)

1 + q
− 1

ν− µ

∫ ν

µ
Ω(t) µdqt

∣∣∣∣ (11)

≤ q2(ν− µ)

(1 + q)4(1 + q + q2)

[(
1 + 4q + q2

)∣∣
µDqΩ(ν)

∣∣+ (1 + 3q2 + 2q3
)∣∣

µDqΩ(µ)
∣∣].

Very recently, H. Budak established midpoint and trapezoidal-type inequalities for
q-differentiable convex functions.

Theorem 7 ([19]). Let Ω : [µ, ν] → < be q-differentiable on (µ, ν). If |νDqΩ(x)| is convex on
[µ, ν], then the following inequality holds for q ∈ (0, 1):∣∣∣∣Ω(µ + qν

1 + q

)
− 1

ν− µ

∫ ν

µ
Ω(t) νdqt

∣∣∣∣ (12)

≤ q(ν− µ)

(1 + q)3(1 + q + q2)

[
3
∣∣νDqΩ(µ)

∣∣+ (2q2 + 2q− 1
)∣∣νDqΩ(ν)

∣∣]
and
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∣∣∣∣Ω(µ) + qΩ(ν)

1 + q
− 1

ν− µ

∫ ν

µ
Ω(t) νdqt

∣∣∣∣ (13)

≤ q2(ν− µ)

(1 + q)4(1 + q + q2)

[(
1 + 4q + q2

)∣∣νDqΩ(µ)
∣∣+ (1 + 3q2 + 2q3

)∣∣νDqΩ(ν)
∣∣].

The following notations will be frequently used:

[ℵ]q =
ℵ−1

∑
i=0

qi= 1 + q + q2 + . . . + qℵ−1

and

(1− t)ℵq = (t, q)ℵ =
ℵ−1

∏
i=0

(
1− qit

)
, (14)

Lemma 1 ([17]). The following equality holds:

φ1∫
µ

(t− µ)α
µdqt =

(φ1 − µ)α+1

[α + 1]q
, (15)

for α ∈ <\{−1}.

Lemma 2 ([27]). The following equality holds:

1∫
1

[2]q

(1− qt)ℵq dqt =

(
1− 1

[2]q

)ℵ+1

q

[ℵ+ 1]q
.

In [28,29], the authors provide q-integration by parts as follows:

Lemma 3. For continuous functions h, Ω : [µ, ν]→ R, the following equality holds:∫ c

0
h(t)µDqΩ(tν + (1− t)µ)0dqt

=
h(t)Ω(tν + (1− t)µ)

ν− µ

∣∣∣∣c
0
− 1

ν− µ

∫ c

0
Ω(qtν + (1− qt)µ)0Dqh(t)0dqt. (16)

Lemma 4. For continuous functions h, Ω : [µ, ν]→ R, the following equality holds:∫ c

0
h(t)νDqΩ(tµ + (1− t)ν) 0dqt

=
1

ν− µ

∫ c

0
Ω(qtµ + (1− qt)ν)0Dqh(t)0dqt−

h(t)Ω(tµ + (1− t)ν)

ν− µ

∣∣∣∣c
0
. (17)

Finding novel parameterized quantum inequalities with convex derivatives is the main
objective of this study. The findings were then calculated using Hölder’s inequality and
Power Mean inequality. Several exceptional cases have been proven to justify disparities in
the literature.

3. Parameterized Quantum Inequalities

We firstly prove the following lemma which is required for our main results.
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Lemma 5. Let Ω : [µ, ν] → < be a q-differentiable function on (µ, ν). If µDqΩ and νDqΩ are
continuous and integrable on [µ, ν], we attain the following identity:

(ν− µ)

4

[ 1∫
0

(λ− qt) νDqΩ
(
t

2
µ +

2− t

2
ν

)
dqt+

1∫
0

(qt− λ) µDqΩ
(
t

2
ν +

2− t

2
µ

)
dqt

]

= (1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


for q ∈ (0, 1) and λ ∈ R.

Proof.

(ν− µ)

4

[ 1∫
0

(λ− qt) νDqΩ
(
t

2
µ +

2− t

2
ν

)
dqt+

1∫
0

(qt− λ) µDqΩ
(
t

2
ν +

2− t

2
µ

)
dqt

]

=
(ν− µ)

4
[E1 + E2] (18)

Calculate the value of E1 by using Lemma 4; we have

E1 =

1∫
0

(λ− qt) νDqΩ
(
t

2
µ +

2− t

2
ν

)
dqt =

1∫
0

(λ− qt) νDqΩ
(

µ + ν

2
t+ (1− t)ν

)
dqt

=
(λ− qt)Ω

(
µ+ν

2 t+ (1− t)ν
)

ν− µ+ν
2

∣∣∣∣0
1
+

1

ν− µ+ν
2

1∫
0

(−q)Ω
(

µ + ν

2
qt+ (1− qt)ν

)
dqt

=
2

ν− µ
(q− λ)Ω

(
µ + ν

2

)
+

2λ

ν− µ
Ω(ν) +

−2q
ν− µ

1∫
0

Ω
(

µ + ν

2
qt+ (1− qt)ν

)
dqt

=
2

ν− µ
(q− λ)Ω

(
µ + ν

2

)
+

2λ

ν− µ
Ω(ν)− 2q

ν− µ
(1− q)

∞

∑
n=0

qnΩ
(

µ + ν

2
qn+1 + (1− qn+1)ν

)

=
2

ν− µ
(q− λ)Ω

(
µ + ν

2

)
+

2λ

ν− µ
Ω(ν)− 2

ν− µ
(1− q)

[
∞

∑
m=0

qmΩ
(

µ + ν

2
qm + (1− qm)ν

)
−Ω

(
µ + ν

2

)]

=
2(1− λ)

ν− µ
Ω
(

µ + ν

2

)
+

2λ

ν− µ
Ω(ν)− 2

ν− µ
(1− q)

∞

∑
m=0

qmΩ
(

µ + ν

2
qm + (1− qm)ν

)

=
2(1− λ)

ν− µ
Ω
(

µ + ν

2

)
+

2λ

ν− µ
Ω(ν)− 4

(ν− µ)2

ν∫
µ+ν

2

Ω(t) νdqt.

Similarly, by Lemma 3, we obtain
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E2 =

1∫
0

(qt− λ) µDqΩ
(
t

2
ν +

2− t

2
µ

)
dqt =

1∫
0

(qt− λ) µDqΩ
(

µ + ν

2
t+ (1− t)µ

)
dqt

=
(qt− λ)Ω

(
µ+ν

2 t+ (1− t)µ
)

µ+ν
2 − µ

∣∣∣∣1
0
− 1

µ+ν
2 − µ

1∫
0

qΩ
(

µ + ν

2
qt+ (1− qt)µ

)
dqt

=
2

ν− µ
(q− λ)Ω

(
µ + ν

2

)
+

2λ

ν− µ
Ω(ν)− 2

ν− µ
(1− q)

∞

∑
n=0

qn+1Ω
(

µ + ν

2
qn+1 + (1− qn+1)µ

)

=
2

ν− µ
(q− λ)Ω

(
µ + ν

2

)
+

2λ

ν− µ
Ω(µ)− 2

ν− µ
(1− q)

[
∞

∑
m=0

qmΩ
(

µ + ν

2
qm + (1− qm)µ

)
−Ω

(
µ + ν

2

)]

=
2(1− λ)

ν− µ
Ω
(

µ + ν

2

)
+

2λ

ν− µ
Ω(µ)− 2

ν− µ
(1− q)

∞

∑
m=0

qmΩ
(

µ + ν

2
qm + (1− qm)ν

)

=
2(1− λ)

ν− µ
Ω
(

µ + ν

2

)
+

2λ

ν− µ
Ω(ν)− 4

(ν− µ)2

µ+ν
2∫

µ

Ω(t) µdqt.

Putting the values of E1 and E2 in (18), we obtain the desire result.

Corollary 1. By setting q→ 1− in Lemma 5, we have

(ν− µ)

4

[ 1∫
0

(λ− t)Ω′
(
t

2
µ +

2− t

2
ν

)
dt+

1∫
0

(t− λ)Ω′
(
t

2
ν +

2− t

2
µ

)
dt
]

= (1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)

ν∫
µ

Ω(t)dt.

Remark 1. (i) If we choose λ = 1 in Lemma 5, we obtain Lemma 4.1 of [26].
(ii) If we choose λ = 1

2 in Lemma 5, we obtain Lemma 4 of [30].

Theorem 8. Let the assumptions of Lemma 5 hold. Then for q ∈ (0, 1) and λ ∈ [0, 1], we have the
following inequality:

∣∣∣∣∣∣∣(1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣ (19)

≤ (ν− µ)

4

[
Ω1(q, λ)

(∣∣ νDqΩ(µ)
∣∣+ ∣∣ µDqΩ(ν)

∣∣)+ Ω2(q, λ)
(∣∣ νDqΩ(ν)

∣∣+ ∣∣ µDqΩ(µ)
∣∣)],

where

Ω1(q, λ) =
1
2

∫ 1

0
|λ− qt|t dqt

=


2λ3 + q[2]q − λ[3]q

2[2]q[3]q
, 0 ≤ λ ≤ q;

λ[3]q − q[2]q
2[2]q[3]q

, λ > q,
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and

Ω2(q, λ) =
∫ 1

0
|qt− λ|

(
2− t

2

)
dqt

=


2λ2 + q− λ[2]q

[2]q
−

2λ3 + q[2]q − λ[3]q
2[2]q[3]q

, 0 ≤ λ ≤ q;

2q + 1
2[2]q

λ− 2q3 + q2 + q
2[2]q[3]q

, λ > q.

Proof. Taking modulus on Lemma 5, we obtain∣∣∣∣∣∣∣(1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ (ν− µ)

4

[ 1∫
0

|λ− qt|
∣∣∣∣ νDqΩ

(
t

2
µ +

2− t

2
ν

)
dqt

∣∣∣∣+ 1∫
0

|qt− λ|
∣∣∣∣ µDqΩ

(
t

2
ν +

2− t

2
µ

)
dqt

∣∣∣∣]

≤ (ν− µ)

4

[ 1∫
0

|λ− qt|
(
t

2

∣∣ νDqΩ(µ)
∣∣+ 2− t

2

∣∣ νDqΩ(ν)
∣∣)dqt

+

1∫
0

|qt− λ|
(
t

2

∣∣
µDqΩ(ν)

∣∣+ 2− t

2

∣∣
µDqΩ(µ)

∣∣)dqt

]
,

by using simple calculations, we obtain the required result.

Remark 2. If we choose λ = 0 in Theorem 8, then we have the following midpoint-type inequality:

∣∣∣∣∣∣∣Ω
(

µ + ν

2

)
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣ (20)

≤ q(ν− µ)

8[3]q[2]q

[
[2]q

(∣∣ νDqΩ(µ)
∣∣+ ∣∣ µDqΩ(ν)

∣∣)+ ([3]q + q2
)(∣∣ νDqΩ(ν)

∣∣+ ∣∣ µDqΩ(µ)
∣∣)]

which is proved by Ali et al. in [26].

Remark 3. If we choose λ = 1 in Theorem 8, then we have the following trapezoid-type inequality:

∣∣∣∣∣∣∣
Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣ (21)

≤ (ν− µ)

8[2]q[3]q

[(∣∣ νDqΩ(µ)
∣∣+ ∣∣ µDqΩ(ν)

∣∣)+ ([3]q + q + q2
)(∣∣ νDqΩ(ν)

∣∣+ ∣∣ µDqΩ(µ)
∣∣)]

which is proved by Ali et al. in [26].

Remark 4. If we choose λ = 1
2 in Theorem 8, then we have the following Bullen-type inequality:
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∣∣∣∣∣∣∣
1
2

[
Ω
(

µ + ν

2

)
+

Ω(µ) + Ω(ν)

2

]
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣ (22)

≤ (ν− µ)

4

[
Ω1

(
q,

1
2

)(∣∣ νDqΩ(µ)
∣∣+ ∣∣ µDqΩ(ν)

∣∣)+ Ω2

(
q,

1
2

)(∣∣ νDqΩ(ν)
∣∣+ ∣∣ µDqΩ(µ)

∣∣)],

where

Ω1

(
q,

1
2

)
=

1
2

∫ 1

0

∣∣∣∣12 − qt
∣∣∣∣t dqt

=


2q2 + 2q− 1

8[2]q[3]q
, q ≥ 1

2 ;

1− q− q2

4[2]q[3]q
, 0 < q < 1

2 ,

and

Ω2

(
q,

1
2

)
=
∫ 1

0

∣∣∣∣qt− 1
2

∣∣∣∣(2− t
2

)
dqt

=


4q3 + 2q2 + 2q + 1

8[2]q[3]q
, q ≥ 1

2 ;

1 + q + q2 − 2q3

4[2]q[3]q
, 0 < q < 1

2

which is proved by Wannalookkhee et al. in [30].

Remark 5. If we choose λ = 1
2 and q→ 1− in Theorem 8, then we have the inequality in (3).

Remark 6. If we choose λ = 1
3 in Theorem 8, then we have the following Simpson-type inequality:

∣∣∣∣∣∣∣
1
6

[
Ω(µ) + 4Ω

(
µ + ν

2

)
+ Ω(ν)

]
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣ (23)

≤ (ν− µ)

4

[
Ω1

(
q,

1
3

)(∣∣ νDqΩ(µ)
∣∣+ ∣∣ µDqΩ(ν)

∣∣)+ Ω2

(
q,

1
3

)(∣∣ νDqΩ(ν)
∣∣+ ∣∣ µDqΩ(µ)

∣∣)],

where

Ω1

(
q,

1
3

)
=

1
2

∫ 1

0

∣∣∣∣13 − qt
∣∣∣∣t dqt =


18q2 + 18q− 7

54[2]q[3]q
, q ≥ 1

3 ;

1− 2q− 2qq

6[2]q[3]q
, 0 < q < 1

3 ,

and

Ω2

(
q,

1
3

)
=
∫ 1

0

∣∣∣∣qt− 1
3

∣∣∣∣(2− t
2

)
dqt

=


36q3 + 12q2 + 12q + 1

54[2]q[3]q
, q ≥ 1

3 ;

1− 4q3

6[2]q[3]q
, 0 < q < 1

3 .
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Theorem 9. Let the assumptions of Lemma 5 hold. Then for q ∈ (0, 1), 1
r1

+ 1
r2

= 1 and λ ∈ [0, 1],
we have the following inequality:

∣∣∣∣∣∣∣(1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4
(¯(q, λ))

1
r1

(
1

2[2]q

) 1
r2
[(∣∣ νDqΩ(µ)

∣∣q + (2q + 1)
∣∣ νDqΩ(ν)

∣∣r2) 1
r2 (24)

+
(∣∣

µDqΩ(ν)
∣∣q + (2q + 1)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2

]
,

where

¯(q, λ) =
∫ 1

0
|λ− qt|r1dqt

Proof. Using Hölder inequality on Lemma 5, we obtain∣∣∣∣∣∣∣(1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(∫ 1

0
|λ− qt|r1dqt

) 1
r1
(∣∣∣∣ νDqΩ

(
t

2
µ +

2− t

2
ν

)
dqt

∣∣∣∣r2)
1
r2

+
ν− µ

4

 1∫
0

|qt− λ|r1dqt


1
r1 (∣∣∣∣ µDqΩ

(
t

2
ν +

2− t

2
µ

)
dqt

∣∣∣∣r2)
1
r2

≤ ν− µ

4

(∫ 1

0
|λ− qt|r1dqt

) 1
r2
(∫ 1

0

(
t

2

∣∣ νDqΩ(µ)
∣∣r2 + 2− t

2

∣∣ νDqΩ(ν)
∣∣r2)dqt

) 1
r2

+
ν− µ

4

 1∫
0

|λ− qt|r1dqt


1
r1 (∫ 1

0

(
t

2

∣∣
µDqΩ(ν)

∣∣r2 + 2− t

2

∣∣
µDqΩ(µ)

∣∣r2)dqt

) 1
r2

≤ ν− µ

4
(¯(q, λ))

1
r1

(
1

2[2]q

) 1
r2
[(∣∣ νDqΩ(µ)

∣∣q + (2q + 1)
∣∣ νDqΩ(ν)

∣∣r2) 1
r2

+
(∣∣

µDqΩ(ν)
∣∣r2 + (2q + 1)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2

]
,

which completes the proof.

Remark 7. If we choose λ = 0 in Theorem 9, then we have the following midpoint-type inequality:∣∣∣∣∣∣∣Ω
(

µ + ν

2

)
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ q(ν− µ)

4
(
[r1 + 1]q

) 1
r1

(
1

2[2]q

) 1
r2
[(∣∣ νDqΩ(µ)

∣∣r2 + (2q + 1)
∣∣ νDqΩ(ν)

∣∣r2) 1
r2

+
(∣∣

µDqΩ(ν)
∣∣r2 + (2q + 1)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2

]
,

which is proved by Ali et al. in [26].
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Remark 8. If we choose λ = 1 in Theorem 9, then we have the following trapezoid-type inequality:∣∣∣∣∣∣∣
Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4
(¯(q, 1))

1
r1

(
1

2[2]q

) 1
r2
[(∣∣ νDqΩ(µ)

∣∣r2 + (2q + 1)
∣∣ νDqΩ(ν)

∣∣r2) 1
r2

+
(∣∣

µDqΩ(ν)
∣∣r2 + (2q + 1)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2

]
,

where

¯(q, 1) =
∫ 1

0
|1− qt|r1dqt

which is proved by Ali et al. in [26].

Remark 9. If we choose λ = 1
2 in Theorem 9, then we have the following Bullen-type inequality:∣∣∣∣∣∣∣

1
2

[
Ω
(

µ + ν

2

)
+

Ω(µ) + Ω(ν)

2

]
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(
¯
(

q,
1
2

)) 1
r1
(

1
2[2]q

) 1
r2
[(∣∣ νDqΩ(µ)

∣∣r2 + (2q + 1)
∣∣ νDqΩ(ν)

∣∣r2) 1
r2

+
(∣∣

µDqΩ(ν)
∣∣r2 + (2q + 1)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2

]
,

where

¯
(

q,
1
2

)
=
∫ 1

0

∣∣∣∣12 − qt
∣∣∣∣r1dqt

which is proved by Wannalookkhee et al. in [30].

Remark 10. If we choose λ = 1
2 and q→ 1− in Theorem 9, then we obtain Corollary 3 of [30].

Remark 11. If we choose λ = 1
3 in Theorem 9, then we have the following Simpson-type inequality:∣∣∣∣∣∣∣

1
6

[
Ω(µ) + 4Ω

(
µ + ν

2

)
+ Ω(ν)

]
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(
¯
(

q,
1
3

)) 1
r1
(

1
2[2]q

) 1
r2
[(∣∣ νDqΩ(µ)

∣∣r2 + (2q + 1)
∣∣ νDqΩ(ν)

∣∣r2) 1
r2

+
(∣∣

µDqΩ(ν)
∣∣r2 + (2q + 1)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2

]
,

where

¯
(

q,
1
3

)
=
∫ 1

0

∣∣∣∣13 − qt
∣∣∣∣r1dqt
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Theorem 10. Let the assumptions of Lemma 5 hold. Then for q ∈ (0, 1) and λ ∈ [0, 1], we have
the following inequality:∣∣∣∣∣∣∣(1− λ)Ω

(
µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣ (25)

≤ ν− µ

4
(Ω3(q, λ))1− 1

r2

[(
Ω1(q, λ)

∣∣ νDqΩ(µ)
∣∣r2 + Ω2(q, λ)

∣∣
µDqΩ(ν)

∣∣r2) 1
r2

+

(
Ω1(q, λ)

∣∣ νDqΩ(ν)
∣∣r2 + Ω2(q, λ)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2
]

,

where

Ω3(q, λ) =
∫ 1

0
|λ− qt| dqt

=


2λ2 + q
[2]q

− λ, 0 ≤ λ ≤ q;

λ− q
[2]q

, λ > q,

Proof. Using Power Mean inequality on Lemma 5, we obtain∣∣∣∣∣∣∣(1− λ)Ω
(

µ + ν

2

)
+ λ

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(∫ 1

0
|λ− qt|dqt

)1− 1
r2
(∫ 1

0
|λ− qt|

∣∣∣∣ νDqΩ
(
t

2
µ +

2− t

2
ν

)∣∣∣∣r2dqt

) 1
r2

+
ν− µ

4

 1∫
0

|qt− λ|dqt

1− 1
r2 (∫ 1

0
|qt− λ|

∣∣∣∣ µDqΩ
(
t

2
ν +

2− t

2
µ

)∣∣∣∣r2dqt

) 1
r2

≤ ν− µ

4

(∫ 1

0
|λ− qt|dqt

)1− 1
r2
(∫ 1

0
|λ− qt|

(
t

2

∣∣ νDqΩ(µ)
∣∣r2 + 2− t

2

∣∣ νDqΩ(ν)
∣∣r2)dqt

) 1
r2

+
ν− µ

4

 1∫
0

|λ− qt|dqt

1− 1
r2 (∫ 1

0
|λ− qt|

(
t

2

∣∣
µDqΩ(ν)

∣∣r2 + 2− t

2

∣∣
µDqΩ(µ)

∣∣r2)dqt

) 1
r2

≤ ν− µ

4
(Ω3(q, λ))1− 1

r2

[(
Ω1(q, λ)

∣∣ νDqΩ(µ)
∣∣r2 + Ω2(q, λ)

∣∣
µDqΩ(ν)

∣∣r2) 1
r2

+

(
Ω1(q, λ)

∣∣ νDqΩ(ν)
∣∣r2 + Ω2(q, λ)

∣∣
µDqΩ(µ)

∣∣r2) 1
r2
]

,

which completes the proof.

Remark 12. If we choose λ = 0 in Theorem 10, then we have the following midpoint-type
inequality:
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∣∣∣∣∣∣∣Ω
(

µ + ν

2

)
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(
q
[2]q

)1− 1
r2
[(

q
2[3]q

∣∣ νDqΩ(µ)
∣∣r2 + 2q3 + q2 + q

2[2]q[3]q

∣∣
µDqΩ(ν)

∣∣r2) 1
r2

+

(
q

2[3]q

∣∣ νDqΩ(ν)
∣∣r2 + 2q3 + q2 + q

2[2]q[3]q

∣∣
µDqΩ(µ)

∣∣r2) 1
r2
]

which is proved by Ali et al. in [26].

Remark 13. If we choose λ = 1 in Theorem 10, then we have the following trapezoid-type
inequality:∣∣∣∣∣∣∣

Ω(µ) + Ω(ν)

2
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(
1

[2]q

)1− 1
r2
[(

1
2[2]q[3]q

∣∣ νDqΩ(µ)
∣∣r2 + q

[3]q

∣∣
µDqΩ(ν)

∣∣r2) 1
r2

+

(
1

2[2]q[3]q

∣∣ νDqΩ(ν)
∣∣r2 + q

[3]q

∣∣
µDqΩ(µ)

∣∣r2) 1
r2
]

which is proved by Ali et al. in [26].

Remark 14. If we choose λ = 1
2 in Theorem 10, then we have the following Bullen-type inequality:∣∣∣∣∣∣∣

1
2

[
Ω
(

µ + ν

2

)
+

Ω(µ) + Ω(ν)

2

]
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(
q

2[2]q

)1− 1
r2
[(

Ω1

(
q,

1
2

)∣∣ νDqΩ(µ)
∣∣r2 + Ω2

(
q,

1
2

)∣∣
µDqΩ(ν)

∣∣r2) 1
r2

+

(
Ω1

(
q,

1
2

)∣∣ νDqΩ(ν)
∣∣r2 + Ω2

(
q,

1
2

)∣∣
µDqΩ(µ)

∣∣r2) 1
r2
]

where

Ω1

(
q,

1
2

)
=

1
2

∫ 1

0

∣∣∣∣12 − qt
∣∣∣∣t dqt

=


2q2 + 2q− 1

8[2]q[3]q
, q ≥ 1

2 ;

1− q− q2

4[2]q[3]q
, 0 < q < 1

2 ,

and
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Ω2

(
q,

1
2

)
=
∫ 1

0

∣∣∣∣qt− 1
2

∣∣∣∣(2− t
2

)
dqt

=


4q3 + 2q2 + 2q + 1

8[2]q[3]q
, q ≥ 1

2 ;

1 + q + q2 − 2q3

4[2]q[3]q
, 0 < q < 1

2

which is proved by Wannalookkhee et al. in [30].

Remark 15. If we choose λ = 1
2 and q→ 1− in Theorem 10, then we obtain Corollary 4 of [30].

Remark 16. If we choose λ = 1
3 in Theorem 10, then we have the following Simpson-type

inequality:∣∣∣∣∣∣∣
1
6

[
Ω(µ) + 4Ω

(
µ + ν

2

)
+ Ω(ν)

]
− 1

(ν− µ)


µ+ν

2∫
µ

Ω(t) µdqt+

ν∫
µ+ν

2

Ω(t) νdqt


∣∣∣∣∣∣∣

≤ ν− µ

4

(
6q− 1
9[2]q

)1− 1
r2
[(

Ω1

(
q,

1
3

)∣∣ νDqΩ(µ)
∣∣r2 + Ω2

(
q,

1
3

)∣∣
µDqΩ(ν)

∣∣r2) 1
r2

+

(
Ω1

(
q,

1
3

)∣∣ νDqΩ(ν)
∣∣r2 + Ω2

(
q,

1
3

)∣∣
µDqΩ(µ)

∣∣r2) 1
r2
]

where

Ω1

(
q,

1
3

)
=

1
2

∫ 1

0

∣∣∣∣13 − qt
∣∣∣∣t dqt =


18q2 + 18q− 7

54[2]q[3]q
, q ≥ 1

3 ;

1− 2q− 2qq

6[2]q[3]q
, 0 < q < 1

3 ,

and

Ω2

(
q,

1
3

)
=
∫ 1

0

∣∣∣∣qt− 1
3

∣∣∣∣(2− t
2

)
dqt

=


36q3 + 12q2 + 12q + 1

54[2]q[3]q
, q ≥ 1

3 ;

1− 4q3

6[2]q[3]q
, 0 < q < 1

3 .

4. Concluding Remarks

We will sum up our findings by saying that some novel estimates of Midpoint, Simp-
son, Trapezoid, and Bullen-type inequalities are obtained for convex functions. We also
illustrate that the findings of this research represent a significant generalization of previ-
ously published related results. In future research, by using strong and uniform convexity,
researchers can also find new bounds. By utilizing strong convexities, we may improve
bounds obtained for our Quadrature quantum estimations. Moreover, we can extend the
idea by taking into account the (p, q)-calculus, which will provide further insight to such
studies to explore. It is necessary to state that by choosing q→ 1− in our primary results,
our results turned into classical calculus. We feel it is a fascinating and novel topic for
scholars who can achieve analogous inequalities by using different types of convexities.

Author Contributions: Conceptualization, S.I.B. and M.A.A.; funding acquisition, X.Z.; investigation,
M.U. and H.B.; methodology, X.Z. and M.U.; validation, H.B.; visualization, S.I.B. and H.B.; writing—
original draft, S.I.B. and M.U.; writing—review and editing, X.Z., H.B. and M.A.A. All authors have
read and agreed to the published version of the manuscript.



Symmetry 2023, 15, 1576 15 of 16

Funding: This research project is supported by the Natural Science Foundation of Anhui Province
Higher School (KJ2020A0780, KJ2021A1154, 2022AH051859, 2022AH051864).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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