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Abstract: It is noted that some uncertain variables are independent while others are not. In gen-
eral, there is a symmetrical relationship between independence and dependence among uncertain
variables. The utilization of conditional uncertain measures as well as conditional uncertainty dis-
tributions proves highly efficacious in resolving uncertainties pertaining to an event subsequent to
the acquisition of knowledge about other events. In this paper, the theorem about the conditional
uncertainty distribution of two uncertain variables is proposed. It is demonstrated that the theorem
holds regardless of whether the two variables are independent or not. In addition, it is also found that
uncertainty distribution possesses an inherent inverse function when it is a regular uncertainty distri-
bution within the framework of Uncertainty Theory; therefore, this paper delves into investigating
the conditional inverse uncertainty distribution, including specific cases of the conditional inverse
uncertainty distributions. Meanwhile, illustrative examples are applied to clarify the findings.

Keywords: Uncertainty Theory; independent; conditional inverse uncertainty distribution;

conditional uncertainty distribution

1. Introduction

Some uncertain variables are independent while others are not, and the relationship
between independence and dependence is symmetrical. Liu’s Uncertainty Theory provides
a useful approach to studying indeterminacy since it is a normal characteristic of real life.
Liu’s work on Uncertainty Theory [1] expounds on concepts encompassing uncertain mea-
sures, uncertain variables, uncertainty distributions and so on, providing an encompassing
grasp of Uncertainty Theory.

Currently, Liu’s Uncertainty Theory offers a valuable approach for studying indeter-
minacy given its alignment with the inherent nature of real-world scenarios. The utility
of uncertain programming holds immense importance in the project scheduling problem
(Liu [1], Ning et al. [2]), the vehicle routing problem, and the machine scheduling problem.
The uncertain stock model (Liu [3], Gao et al. [4]), the uncertain interest rate model (Zhang
et al. [5]), and the uncertain currency model (Liu et al. [6]) all belong to uncertain finance.
One of the tools for quantifying risks is uncertain risk analysis (Liu [7], Peng [8], Liu [9]),
which is at the bottom of Uncertainty Theory. Furthermore, uncertain reliability analysis
(Liu [7], Gao and Yao [10]) proves to be a highly efficacious implementation in system
reliability. Hybrid logic and uncertain logic were defined by Li and Liu [11]. In order to
calculate the true value of uncertain propositions, Chen and Relescu [12] provided the
Chen-Ralescu theorem. Uncertain entailment (Liu [13]) was given in 2009, which calculates
the truth value of an uncertain formula via the maximum uncertainty principle; meanwhile,
an entailment model was given in order to find the truth value of additional formulas.
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The conditional uncertain set and the conditional membership function were proposed by
Yao [14]. In addition, the uncertain differential equation (Chen and Liu [15], Yao [16]), un-
certain regression analysis (Lio and Liu [17], Liu and Yang [18], Wang et al. [19]), uncertain
time-series analysis (Yang and Liu [20]), the uncertain process (Liu [21,22], Chen et al. [23]),
and so on, have been applied to many fields, and satisfactory conclusions have been ob-
tained. There are a number of theorems about independent uncertain variables that can be
derived from Uncertainty Theory, such as the Extreme Value Theorem (Liu [24]), the Order
Statistic (Liu [25]), the Minkowski Inequality (Liu [1]) and so on. In both practical scenarios
and production settings, numerous quantities are interdependent, consequently leading to
the interdependence of uncertain variables that describe these real-world quantities. As
a result of a large number of uncertain variables not being independent, the conditional
uncertain measure (Liu [1]), as well as the conditional uncertainty distribution (Liu [25]),
can be highly effective in solving the uncertain problem of an event subsequent to the acqui-
sition of knowledge about other events. Nevertheless, Liu [25] has exclusively presented a
theorem concerning the conditional uncertainty distribution of a single uncertain variable,
outlining the uncertainty distribution of said variable across distinct intervals. As we know
from Uncertainty Theory, uncertainty distribution possesses an inverse function if it is a
regular uncertainty distribution, but conditional inverse uncertainty distribution has never
been proposed.

To summarize the above, uncertain variables are often not independent but related.
In order to accurately describe this relationship, it is necessary to analyze the conditional
inverse uncertainty distribution and the conditional uncertainty distribution, which are
of great significance in describing the relationship between uncertain variables, inference
and prediction, data modeling, classification, risk assessment, and decision analysis. In this
paper, a list of fundamental definitions and theorems are presented in Section 2. Following
this, the theorem about conditional uncertainty distribution of two uncertain variables
has been proved in Section 3. This theorem applies no matter whether two uncertain
variables are independent or not. In addition, Section 4 presents the study of the conditional
inverse uncertainty distribution that has never been proposed, and the conditional inverse
uncertainty distribution of the special conditional uncertainty distribution in some cases
is obtained. Meanwhile, illustrative examples are applied to clarify the findings of the
conditional inverse uncertainty distribution. Finally, a conclusion to this thesis is given in
Section 5.

2. Preliminaries

This section introduces a lot of fundamental definitions and theorems that need to be
used in this article. For more details, readers should refer to Uncertainty Theory (Liu [26]).
Assume (I', £) is a measurable space, L is a o-algebra over I, each element A in L is a
measurable set, and A€ is a complementary set of A. Liu [1] provided three axioms (i.e.,
normality, duality, and subadditivity).
Normality Axiom: For the universal set T, M{I'} = 1.
Duality Axiom: For every event A in £, M{A}+M{A}=1.
Subadditivity Axiom:
) ©
M{J A} <) M{A}
i=1 i=1

for any countable sequence of events Ay, Ay, . . ..

Definition 1 (Liu [1]). An uncertain measure M is a set function that satisfies the above three
axioms.

Definition 2 (Liu [1]). The triplet (I', L, M) is called an uncertainty space if (I', L) is a measurable
space, I is a nonempty set, L is a o-algebra over I', and M is an uncertain measure.
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Definition 3 (Liu [1]). An uncertain variable is a function ¢ from an uncertainty space (I', L, M)
to the set of real numbers such that ¢ € B is an event for any Borel set B of real numbers.

Definition 4 (Liu [1]). The uncertainty distribution Y of an uncertain variable ¢ is defined by

F(x) = M{¢ < x}
for any real number x.

Theorem 1. The uncertain measure is a set function characterized by monotonically increasing. In
other words, for any event A1 and Ay with Ay C Ay, the following inequality holds.

M{A1} < M{A}.

Definition 5 (Liu [25]). A reqular uncertainty distribution ¥ (x) is a continuous and strictly
increasing uncertainty distribution, and

lim ¥(x) =0, lim ¥(x)=1.

X——00 X—r+00

with0 < ¥(x) < 1.

Definition 6 (Liu [25]). Assume ¥ (x) is a regular uncertainty distribution for an uncertain
variable &. Then, the inverse uncertainty distribution ¥~ («) is defined by

¥ a) = MTHE < x}

Definition 7 (Liu [1]). The conditional uncertainty distribution ¥ of an uncertain variable ¢
given A is defined by
F(x|A) = M{¢ < x[A}

provided that M{A} > 0.

Definition 8 (Liu [1]). Assume (T, L) is a measurable space, M is an uncertain measure, A and
A are measurable set in L. For A given A, the conditional uncertain measure is following definition

M{ANA} . M{ANA} 0.5
IO
_ ‘N . ‘N
MIAIAY = 1= 25, if S <05
0.5, otherwise,

provided that M{A} > 0.
Theorem 2. Assume ¢ and 1 be uncertain sets. Then, the following equality holds.
CUm) =& Ny, (Enm) = un.

Theorem 3 (Liu [25]). Assume ¥ (x) is a reqular uncertainty distribution for an uncertain variable
¢, and ¥ (y) < 1 for a real number y. Then, for & > y, the conditional uncertainty distribution is

I O E() -

¥(x|(y, +00)) = M{E < x> yh = { Ty A0S if <>< ¥(x) <
¥(x)—¥(y) if 1+¥(y) ¥(x).
1-¥(y), 2

where “N\" is a logical operation symbol that means minimum.
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Theorem 4 (Liu [25]). Assume ¥ (x) is a regular uncertainty distribution of an uncertain variable
¢, and ¥ (y) > 0 for a real number y. Then, for § < y, the conditional uncertainty distribution is

1, if W) <Y
Frl(meoy) = M{Z<xf <y} = T vos, if TP <¥(x) <¥(y)
1, if () < ¥).

where “\/” is a logical operation symbol that means maximum.

Definition 9 (Liu [26]). It is called linear uncertain variable ¢ if it has the following linear
uncertainty distribution
0, if x<a
Y(x) =19 =2, if a<x<b

1, if b<x

named L(a,b), where a < b for real numbers a and b.

Definition 10 (Liu [26]). It is called the normal uncertain variable ¢ if it has the following normal
uncertainty distribution

mt(e — x)
V3o

named N (e, o), where e, o are real numbers with o > 0.

¥(x) = (1+exp( NED xer

3. Conditional Uncertainty Distribution of Two Uncertain Variables

There are a number of theorems about independent uncertain variables that can be
derived from Uncertainty Theory (Liu [26]). Given the prevalence of such interdepen-
dencies among a substantial number of uncertain variables, the utilization of conditional
uncertain measures (Liu [1]) and conditional uncertainty distributions (Liu [25]) proves
highly efficacious in resolving uncertainties pertaining to an event subsequent to the acqui-
sition of knowledge about other events. Liu ([25]) has exclusively presented Theorem 3
and Theorem 4 concerning the conditional uncertainty distribution of a single uncertain
variable, outlining the uncertainty distribution of said variable across distinct intervals.

In this section, from Definition 8, Theorem 3, and Theorem 4, we come up with
the following theorems about the conditional uncertainty distribution for two uncertain
variables, and it is proven that the theorem remains valid regardless of the independence
status of the uncertain variables.

Theorem 5. Assume Y1, ¥y are reqular uncertainty distributions for uncertain variables 11, 11,
respectively, and Yo (y) < 1 for a real number y. Then, for yy > y, the conditional uncertain
measure is

T i aly) < (x) < R
Mim < xlpy >y} =4 DWW - ip R0 < gy (x)
0.5, otherwise.

Proof. From Definition 8, defined as M{A|A}, we have

MU0} e MmE000p>1} g5
M Ml ) MU B o
< > = _ m>x)N0p >y ; n1>x)N\2 >y
{m < x[y2 >y} 1 el et <05

0.5, otherwise.
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From the duality axiom, defined by Definition 1, we obtain

1-M{((n<x)N(>y)} _ M{n<x)N0p>y)}
M >y} M2 >y} ’

and from De Morgan’s Law (Theorem 2) and the subadditivity axioms, we have

M{((n <x)N (2 >y) = M{(n >x)U(n <y)} < M{n >x}+ M{n <y}

Thus

L-Mim >xp M <yt 1-M{(n>x)Up<y)}
M2 >y} N M2 >y}

and

L-M{n>x)U(p<y)} _ M{n<x)N(p>y)}  Min <x}
M{n2 >y} M{n2 >y} - M{nm >y}

On the other hand, from the duality axiom, defined by Definition 1, we have

M{n <x)'N0p>y)} _ 1-M{((n <x)°N(p>y)}
M{p2 >y} M >y} '

and from De Morgan’s Law (Theorem 2) and the subadditivity axioms, we obtain

M{((m <) N2 >y)} = M{(m <x)U (2 <y)} < M{pm < xb + M{p <y}
Thus

L-M{m=xj-Mipp<y} 1-M{in=<x)U(p<y)}
M2 >y} N M2 >y}

and

1L-M{in<x)Up<y)}  M{in<0)'N0p>y)}  M{(n<x)%

Mz >y} Minz >y} - M >yr o
Next, the following discussion can be divided into three parts.
Part 1: If Min < x)
Mmsx
— = <05
Minz >y}
and
05 < L= Ml <x) - M({n <y)}
N Minz >y}
we have

Yaly) < ¥i(x) < 5 (1 ¥a(y))

Then, applying the maximum uncertainty principle (Liu [1])

M{n<)Np>y)} 1-M{((n<x)N(p>y)} Y
M{n2 >y} M >y} 1-¥(y)

Part 2: If

1—M{n >x} — M{np <y}
05 <
- M{m >y}
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and
M{(n < x)°}
M > y) < 0.5,
we have 1
¥1(x) > 5 (1+¥a(y)).

Then, applying the maximum uncertainty principle (Liu [1])

M{n <) N>y}  1-M{{(n<x)N0p>y)} _1-¥i(x)
M2 >y} M2 >y} 1-%5(y)

Part 3: If part 1 and part 2 are not met, then

M{m < x|ny >y} =0.5.

Thus
P if ) < i) < FRY
Mim < xlpp>yp=q BECRE, - jf ER0 <y (x)
0.5, otherwise.

The theorem is proved. O

Theorem 6. Assume Y1, ¥y are reqular uncertainty distributions for uncertain variables 11, 112,
respectively, and ¥»(y) > O for a real number y. Then, for 5, < y, the conditional uncertain

measure is
vy i N <
Mim <xlpp <y} = DO if 1 - T < ¥ (x) < ¥a(y)
0.5, otherwise.

Proof. From Definition 8, defined M{A|A}, we have

MUp<ON(p<y))  cp  MIp<On(p<y)
Mins o T ey <05

M < <yl = I-M{(m>x)Np<y)}t r M{m>0)N0p<y)}
{m <xlm <y} et if et <05
0.5, otherwise.

From the duality axiom, defined by Definition 1, we have

M{n<x)Np<y)} 1-M{((n <x)N(<y))}
M{n <y} M <y} ’

and from De Morgan’s Law (Theorem 2) and the subadditivity axioms, we obtain

M{((n <) <y)}=M{(m>x)Uln>y)} < M{(n>x)}+M{(n>y)}

Thus
L-M{m>xp - M{p >yt 1-M{n>x)Ulp>y)}  M{pn <x)N0p<y)}
M <y} - M <y} M{nm2 <y}
and

L-M{n>x)U0p>y);  M{n<x)N0p<y)}  Min <x}
M{nz <y} M <y} - M{p <y}
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On the other hand, from the duality axiom, defined by Definition 1, we have

M{m <)<y} 1-M{((n<x)N0p<y)}
M{m <y} M <y} '

and from De Morgan’s Law (Theorem 2) and the subadditivity axioms, we obtain

M{((m <) N2 <)t =M{(n <x)U (2 >y)} < M{p < x4+ M{pp >y}

Thus

I-M{p<xp-M{p>yt 1-M{(n<x)U(>y)}  M{(n<x)'N0p<y)}
M{nz <y} N M2 <y} Mz <y}

and

1L-M{p <x)U>y)} _ M{n<x)"N0p<y)}  M{(n<x)%}

M <y} Minz <y} - Mipsyr
Next, the following discussion can be divided into three parts.
Part 1: If Min < x)
m=x
——— <05
M2 <y}
and
05 < L= Mim < x} = M{n >y}
B Min <y} ’
then

Yi(x) < %‘I’z(y).

Then, applying the maximum uncertainty principle (Liu [1])

M{n<x)Np <y} 1-M{((n<x)N0p<y))} _Yi(x)

M2 <y} M{n2 <y} Ya(y)
Part 2: If L ML > 1)) — MU > 1))
- m=>x)y— Y
05 = 1M{172§y} -
and
M{(n < 2)°}
M2 <y} <0
then

1= 2%(y) < () < Ba(y).

Then, applying the maximum uncertainty principle (Liu [1])

1-M{((n <x)'N(p<y)}t Mn<x)Nip<y} ¥ix) +¥(y) -1
M2 <y} M <y} a(y) ’

Part 3: If Part 1 and Part 2 are not met, then

M{m < x| <y} =05,

Thus
2E, i () < Y
M{m <xlipp <y} = %‘&WH if 1-2W o (x) < ¥,(y)

0.5, otherwise.
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The theorem is proved. [

4. Conditional Inverse Uncertainty Distribution

From Theorem 5 and 6, we know the conditional uncertainty distribution is a strictly
increasing function in some ranges. Then, M{#; < x|, > y} have an inverse function due

to M {1 < x| > y} being a regular function in the range of ¥, (y) < ¥1(x) < %"‘(y)

% < ¥ (x). Similarly, M{#n; < x|i2 < y} have an inverse function in the range of

¥y (x) < 20 or 1 - B2 < ¥ (x) < ¥y (y).

In Uncertainty Theory, the role of inverse uncertainty distribution is crucial for solving
many uncertainty problems, for example, calculating the expected value and so on. In this
part, we give the definition of the conditional inverse uncertainty distribution, and two
instances about the conditional inverse uncertainty distribution of some special uncertainty
distributions are provided.

or

Definition 11. Assume ¥, ¥, are uncertainty distributions for uncertain variables 11, 172, respec-

tively. Then, the conditional inverse uncertainty distribution ‘I’;‘;‘/(a) is defined by
¥, (@) = M7 < xlnp >y}

for¥a(y) < land ¥a(y) < ¥1(x) < 1_122(” or 1+‘I;2(y) < ¥ (x) with real numbers x, y.

Similarly,
¥y (0) = M7 < x|z <y}

for ¥a(y) > 0and ¥q(x) < \PZT(y) orl— TZTW) < ¥1(x) < ¥2(y) with real numbers x, y.

Next, we give the conditional inverse uncertainty distribution of some special uncer-
tainty distributions.

4.1. Conditional Inverse Uncertainty Distribution Of Linear Uncertainty Distribution

In this subsection, the conditional inverse uncertainty distribution of linear uncertainty
distributions is given, where 71 ~ L(a,b) and 77, ~ L(a,b) are defined by Definition 9.
Thus, 771 and #, have the same uncertainty distributions ¥.

Due to
Sl if () < () < S5
M S xlnp >y} = § FOGHW i B <y (x)
0.5, otherwise.
Yoo if ¥ <
M{m < xlp <y} = %‘WH if 1-40 c¥(x) <¥(y)
0.5, otherwise.

So, the argument for the conditional inverse uncertainty distribution can be divided
into four cases.
Case 1: If Y(y) < ¥(x) < 1_‘5(”, we have

¥(x)
< =\
M{Ul = X|172 > ]/} 1 —‘Ij(y)
Then,
ba _X—a
Tl Ty
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Thus

T_l
x|y

Case 2: If 1+Y( ) < ¥ (x), we easily obtain

(@) =x=(b—y)a+a.

Y(x) —¥(y)
< = —7r
Then,
x—a Y—a
N =l = )
1-42 by
Thus

‘Y;‘;(zx) =x=b-ya+y.

Case3: If ¥(x) < @, we also easily obtain

¥(x)
< < = .
M{Wl > x|772 = y} ‘I"(]/)
Then
X —a
K =
y —a
Thus

‘1’;‘;(0() =x=a+(y—aua.

Case4: If 1 — ( ) < ¥(x) < ¥(y), we also easily obtain

Y(x)+¥(y) — 1.

M{m <xlpa <y} =

Y(y)
Then
x—a+y—a—b+a
= " a .
Thus
T;I;(“) =x=a+b—y+(y—aa

Remark 1. Assume ¥ is the linear uncertainty distribution for uncertain variables 11, 112, that
1 ~ L(ab), ny ~ L(ab), and ¥(y) < 1 for a real number y. Then, the conditional inverse
uncertainty distribution of M{m < x|2 > y} defined by Definition 11 is

yl(gy = | (b-yata if F(y) <¥(x ) < =YW
WO oopaty if TR0 <),

Example 1. Assume 17 ~ L£(1,6), 12 ~ L£(1,6), and ¥ is the linear uncertainty distribution of

n1.12, and ¥ (y) < 1 for a real number y. Then, the conditional inverse uncertainty distribution of
M{m < x|np > y} defined by Definition 11 is

_ 6—ya+1, i <x< XV
Tx\l (D() — ( y) lf %+y 2
y 6-ya+y, if —H*<x

foro0<a <1
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Remark 2. Assume Y is the linear uncertainty distribution for uncertain variables 11, 172, that
1 ~ L(ab), ny ~ L(ab), and ¥(y) > 0 for a real number y. Then, the conditional inverse
uncertainty distribution of M{m < x|12 < y} defined by Definition 11 is

Y la) = a+(y—a, if ‘I’(x)<¥
x|y a+b—y+(y_a)a, if 1_Tgy)<‘i’(x)<‘lf(y),

Example 2. Assume 171 ~ £(2,10), 1y ~ L£(2,10) and ¥ is the linear uncertainty distribution of
n1.172, and ¥ (y) > 0 for a real number y. Then, the conditional inverse uncertainty distribution of
M{m < x| < y} defined by Definition 11 is

L 24 (y+2)a,  if x<z4
Fp(®) = {12 y+(y—2a if N-%f<x<y.
for0<a <1

4.2. Conditional Inverse Uncertainty Distribution of Normal Uncertainty Distribution

In this subsection, the conditional inverse uncertainty distribution of normal uncer-
tainty distributions is given, that 17 ~ N (e, o), 2 ~ N (e, o) defined by Definition 10,
Thus #; and 7, have same uncertainty distributions Y.

Due to
ol if YY) < () < 3
M < xlnp >y} = § FOGHW i B <y (x)
0.5, otherwise.
Wi Y <HY
M <alpp <y} =3 TR 1 - T < ¥(x) < ¥(y)
0.5, otherwise.

Next, the argument for the conditional inverse uncertainty distribution can be divided
into four cases.
Case 1: If ¥(y) < ¥(x) < %, we obtain

Y
M{m < xlp >y} = 1_(‘%
;fhen
<1+exp<"<}">>><—1>
o — (1+ exp(ZE)) (-1
Then
1+exp( (fg))
“= .
(exp(”sg;)))(exp( )+ exp( \[y))
Thus
‘Y;\;( ) =x=2—y- \[7(171(1/0&4—%;9( (\fay))a/a —1))).
Case 2: If H‘F( ) < ¥ (x), we easily obtain
(x) —¥(y)

Y(x)—
M < xlp >y} = 25—
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Then
(1+exp("22)) D) — (1 + exp(R524)) D
o= .
1= (1+exp(Z52)) 1
Then
o exp(Zh —e ()
(exp(* 50 exp(*520) + exp(" 5 2)
Thus
‘-I’;‘;(oc) =x=y— g(ln(l —a) — In(aexp( N(\ef;ay)) +1)).
Case3: If ¥(x) < @, we also easily obtain
_ ¥
M{m < x[p2 Sy} = T(y)
Then,
mT(e—=x) \\(-1
ey
(1 +exp(”£ef3_‘7y)))(*1)
Thus
‘F;‘;(zx) =x=e— @ln(l —a+exp( n(;gay) ))-

Case4: If 1 — @ < ¥(x) < ¥(y), we also easily obtain

Y(x)+Y¥(y) — 1.

M{m <x|p <y} =

()
Then,
(e=x) \y (-1 mle=y) yy(~1
(e Y ¢ (1 exp(Se) 1 -1
(1 +exp(7”£€f3_0y)))(*1)
Thus
‘I’;‘;(oc) =x=2—y— @ln(l —a+ zxexp(n(\e@_ay))).

Remark 3. Assume Y is the normal uncertainty distribution for uncertain variables 11, 12,
that 51 ~ N (e,0),n2 ~ N (e, 0), and ¥(y) < 1 for a real number y. Then, the conditional inverse
uncertainty distribution of M{m < x|12 > y} defined by Definition 11 is

1}/71
xly

@ 2e—y — Y2 (In(1/a + exp(TSL) (1/a—1)), if ¥(y) < ¥(x) < Y
&)= e— .

y =22 (In(1 - a) — Infaexp(FZ) +1)), if U < ().
Example 3. Assume i1 ~ N(2,9), 12 ~ N(2,9) and ¥ is the normal uncertainty distribution of

112, and ¥ (y) < 1 for a real number y. Then, the conditional inverse uncertainty distribution of
M{n1 < x|y > y} defined by Definition 11 is
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References

4fyf3n‘[(ln(1/¢x+exp( (\f )(1/a—=1))), if y<x<4fy—¥ [ +(exp(”(27y))]

y_

23(In(1—w) — In(aexp(TL2) 1)), if y+2LInQ2+exp(Tes

2 ) <

for0<a <1

Remark 4. Assume Y is the normal uncertainty distribution for uncertain variables 11, 12,
ie., 1 ~N(eo)n~Neo),and ¥(y) > 0 for a real number y. Then, the conditional inverse
uncertainty distribution of M{m < x|2 < y}defined by Definition 11 is

f"ln(l -+ exp(

) i ¥ < T
2e—y—gln( oc+1xexp( Y

-1 _
Foy(®) = ), if 1Y < () < ¥(y).

Example 4. Assume 171 ~ N (3,16), 12 ~ N'(3,16), and ¥ is the normal uncertainty distribution
of 71,112, and ¥ (y) > O for a real number y. Then, the conditional inverse uncertainty distribution
of M{n1 < x|np <y} defined by Definition 11 is

4/3 n(3-y) - 4f n(3—y)
3—Fn(l—a+exp(= 7)), if x<3—480n1+ 2exp( )]

43
_ , p(ZE2)y
6—y—4\—7§ln(1—a+aexp(ni3 3y))), if 3+ %Z”[Wﬁg))] <x <Yy
4V3

for0<a <1

5. Conclusions

The employment of conditional uncertain measures as well as the conditional uncer-
tainty distribution is crucial when dealing with uncertain problems and nonindependent
uncertain variable problems. Therefore, this study has successfully established theorems
concerning the conditional uncertainty distribution involving two uncertain variables.
Similarly, the utility of the conditional inverse uncertainty distributions holds immense
importance in various analytical and estimative contexts. So, a clear definition of the
conditional inverse uncertainty distribution has been presented, alongside the deriva-
tion of specific instances of such distributions in conjunction with particular conditional
uncertainty scenarios.

Looking ahead, our research trajectory will involve an exploration of uncertain vari-
ables characterized by interdependence rather than independence. Additionally, we will
delve into the practical applications of conditional inverse uncertainty distributions. Our fo-
cus will extend to constructing multidimensional functions involving dependent variables.
This framework will facilitate predictive modeling through the utilization of conditional
inverse uncertainty distributions, allowing for subsequent adjustments of distribution
functions in the presence of actual data.
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