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Abstract: Our paper explores warped product pointwise semi-slant submanifolds with a semi-
symmetric metric connection in an odd-dimensional sphere and uncovers fundamental results. We
also demonstrate how our findings can be applied to the homology of these submanifolds. Notably,
we prove that under a specific condition, there are no stable currents for these submanifolds. This
work adds valuable insights into the stability and behavior of warped product pointwise semi-slant
submanifolds and sets the foundation for further research in this field.
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1. Introduction

Bishop and O’Neill [1] developed the concept of warped products to construct illus-
trations of Riemannian manifolds with negative curvature. In fact, the warped product
B×b F of two pseudo-Riemannian manifolds (B, gB) and (F, gF) with a positive valued
smooth function b on B provided the metric tensor g = gB ⊕ b2gF. Here, (B, gB) is known
as the base manifold; however, (F, gF) is the fiber and b is the warping function. Warped
product manifolds with a conformal Killing vector have been studied in the context of
Einstein–Weyl geometry; in this setting, the warping function plays the role of a conformal
factor, and the geometry is determined by a conformal class of metrics. For more details,
see the works of Leistner and Nurowski [2,3]. Warped product manifolds have been used
to construct various examples of Ricci solitons, which are self-similar solutions to the Ricci
flow. In particular, the so-called “cigar solitons” on the Euclidean space have been studied
extensively [4,5].

B. Y. Chen [6] was the first to examine the notion of warped products in the submani-
fold theory. In fact, Chen developed a CR-warped product submanifold in the setting of
almost Hermitian manifolds and provided an approximation for the norm of the second
fundamental form in the expressions of the warping function. Inspired by Chen, Hesigawa
and Mihai [7] explored the contact form of these submanifolds and obtained a comparable
approximation for the second fundamental form of a contact CR-warped product submani-
fold of a Sasakian space form. In addition, in [8], the authors concluded that the homology
groups were trivial and that there were no stable currents in a contact CR-warped product
submanifold immersed in an odd-dimensional sphere due to the non-existence of stable
integral currents and the vanishing of homology. As a step forward, F. Sahin [9,10] has
shown that the CR-warped product submanifold in Rn and S6 yields identical results.
However, several scholars obtained different findings on the topological and differentiable
structures of submanifolds by imposing certain constraints on the second fundamental
form [8,11–14].
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An algebraic description of a manifold can be found in its homology groups, which
are significant topological features. Besides other issues, these groups include extensive
topological data on the related parts, holes, tunnels, and the structure of manifolds, and
this theory has numerous applications. In fact, homology theory has implications for root
construction, molecular mooring, segmentation of images, and genetic expression informa-
tion. Homology theory has found applications in data analysis, particularly in topological
data analysis. Persistent homology, a variant of homology theory, is used to analyze the
topological features of complex data sets, such as point clouds or graphs. It provides a
way to detect and quantify the presence of holes and voids in the data [15]. It is well
known that submanifold theory and homological theory have a strong relationship. In this
context, Federer and Fleming [16] demonstrated that any non-trivial integral homological
group Hp(M, Z) is connected by stable currents. Later, Lawson and Simon [17] extended
the same study to the submanifold of a sphere and proved that there does not exist an
integral current under a pinching condition of the second fundamental form. However,
Leung [18] and Xin [12] expanded the results from a sphere to Euclidean space. Further,
in a similar line of research, Zhang [19] studied the homology of the torus. In addition,
Liu and Zhang [14] proved that stable integral currents do not exist for specific kinds of
hypersurfaces in Euclidean spaces.

On the other hand, Friedmann and Schouten [20] first proposed the concept of a semi-
symmetric linear connection on a Riemannian manifold. Afterwards, Hayden [21] defined
a semi-symmetric connection as a linear connection ∇ that exists on an n−dimensional
Riemannian manifold (M, g) and whose torsion tensor T satisfies T(ω1, ω2) = η(ω2)ω1 −
η(ω1)ω2, where η is a 1-form and ω1, ω2 ∈ TM. K. Yano [22] investigated semi-symmetric
metric connections and analyzed some of their features. He demonstrated that a con-
formally flat Riemannian manifold with a semi-symmetric connection has a vanishing
curvature tensor. Further, Sular and Ozgur [23] investigated warped product manifolds
with a semi-symmetric metric connection and took into account Einstein’s warped product
manifolds with a semi-symmetric metric connection. However, in [24], they also obtained
some more results on warped product manifolds with a semi-symmetric metric connec-
tion. Furthermore, the studies mentioned in [25–38] are important contributions to soliton
theory and submanifold theory, etc., related to the relevant topics. Motivated by these
studies, we are interested in determining the impact of a semi-symmetric metric connec-
tion on the warped product pointwise semi-slant submanifolds and their homology in an
odd-dimensional sphere.

2. Preliminaries

Let (M̄, g) be an odd-dimensional Riemannian manifold. Then, M̄ is said to be an
almost contact metric manifold if there exists on M̄ a tensor field φ of type (1, 1) and a
global vector field ξ such that

φ2ω1 = −ω1 + η(ω1)ξ, g(ω1, ξ) = η(ω1)

g(φω1, φω2) = g(ω1, ω2)− η(ω1)η(ω2)

where η is the dual 1-form of ξ. It is well known that an almost contact metric manifold is a
Sasakian manifold if and only if

( ¯̄∇ω1 φ)ω2 = g(ω1, ω2)ξ − η(ω2)ω1. (1)

On a Sasakian manifold M̄, it is easy to see that

¯̄∇ω1 ξ = −φω1, (2)

where ω1, ω2 ∈ TM̄, and ¯̄∇ is the Riemannian connection with respect to g.
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Now, defining a connection ∇̄ as

∇̄ω1 ω2 = ¯̄∇ω1 ω2 + η(ω2)ω1 − g(ω1, ω2)ξ (3)

such that ∇̄g = 0 for any ω1, ω2 ∈ TM, where ¯̄∇ is the Riemannian connection with respect
to g. The connection ∇̄ is semi-symmetric because T(ω1, ω2) = η(ω2)ω1− η(ω1)ω2. Using
(3) in (1), we have

(∇̄ω1 φ)ω2 = g(ω1, ω2)ξ − g(ω1, φω2)ξ − η(ω2)ω1 − η(ω2)φω1 (4)

and
∇̄ω1 ξ = ω1 − η(ω1)ξ − φω1. (5)

A Sasakian manifold M̄ is said to be a Sasakian space form if it has a constant
φ−holomorphic sectional curvature c and is denoted by M̄(c). The curvature tensor
R̄ with respect to the semi-symmetric metric connection ∇̄ is

R̄(ω1, ω2)ω3 = ∇̄ω1∇̄ω2 ω3 − ∇̄ω2∇̄ω1 ω3 − ∇̄[ω1,ω2]
ω3. (6)

Similarly, we can also define the curvature tensor ¯̄R for the Riemannian connection ¯̄∇.
Let

β(ω1, ω2) = (∇̄ω1 η)ω2 − η(ω1)η(ω2) +
1
2

g(ω1, ω2)η(P). (7)

Now, by the application of (3), (6) and (7), we get

R̄(ω1, ω2, ω3, ω4) =
¯̄R(ω1, ω2, ω3, ω4) + β(ω1, ω3)g(ω2, ω4)

− β(ω2, ω3)g(ω1, ω4) + β(ω2, ω4)g(ω1, ω3)− β(ω1, ω4)g(ω2, ω3).
(8)

When utilizing the value of ¯̄R(ω1, ω2, ω3, ω4), which is further elaborated in [39], we
obtain the subsequent expression for the curvature tensor R̄ of a Sasakian space form M̄(c)
endowed with a semi-symmetric metric connection, as mentioned in [40].

R̄(ω1, ω2, ω3, ω4) =
c + 3

4
{g(ω2, ω3)g(ω1, ω4)− g(ω1, ω3)g(ω2, ω4)}

+
c− 1

4
{η(ω1)η(ω3)g(ω2, ω4)− η(ω2)η(ω3)g(ω1, ω4)

+ g(ω1, ω3)η(ω2)η(ω4)− g(ω2, ω3)η(ω1)η(ω4)

+ g(φω2, ω3)g(φω1, ω4) + g(φω3, ω1)g(φω2, ω4)

− 2g(φω1, ω2)g(φω3, ω4)}+ β(ω1, ω3)g(ω2, ω4)

− β(ω2, ω3)g(ω1, ω4) + β(ω2, ω4)g(ω1, ω3)

− β(ω1, ω4)g(ω2, ω3),

(9)

for all ω1, ω2, ω3, ω4 ∈ TM̄.
For a submanifold M isometrically immersed in a differentiable manifold M̄, by

a routine calculation, the Gauss and Weingarten formulae for a semi-symmetric metric
connection are ∇̄ω1 ω2 = ∇ω1 ω2 + h(ω1, ω2) and ∇̄ω1 N = −ANω1 +∇⊥ω1

N + η(N)ω1,
where∇ is the induced semi-symmetric metric connection on M, N ∈ T⊥M, h is the second
fundamental form of M, ∇⊥ is the normal connection on the normal bundle T⊥M, and
AN is the shape operator. The second fundamental form h and the shape operator are
associated by the following formula:

g(h(ω1, ω2), N) = g(ANω1, ω2).
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For the vector fields ω1 ∈ TM and ω3 ∈ T⊥M, we have the following decomposition:

φω1 = Tω1 + Fω1 (10)

and
φω3 = tω3 + f ω3 (11)

where Tω1(tω3) and Fω1( f ω3) are the tangential and normal parts of φω1(φω3), respec-
tively.

Let R be the Riemannian curvature tensor of M. Then, the equation of Gauss for a
semi-symmetric connection is given by

R̄(ω1, ω2, ω3, ω4) = R(ω1, ω2, ω3, ω4)− g(h(ω1, ω4), h(ω2, ω3)) + g(h(ω2, ω4), h(ω1, ω3)) (12)

for ω1, ω2, ω3, ω4 ∈ TM.
In [23], Sular and Oz̈gur considered the warped products of the type M1 × f M2,

admitting a semi-symmetric metric connection with associated vector field P on M1 × f M2,
where M1, M2 are the Riemannian manifolds and f is a positive differentiable function on
M1, called the warping function. Now, we compile some results of [23] in the form of the
following lemma, which is important for the subsequent study.

Lemma 1. Let M1 × f M2 be a warped product manifold with a semi-symmetric metric connec-
tion ∇̄.

(i) If the associated vector field P ∈ TM1, then

∇̄ω1 ω3 =
ω1 f

f
ω3 and ∇̄ω3 ω1 =

ω1 f
f

ω3 + η(ω1)ω3

(ii) If P ∈ TM2, then

∇̄ω1 ω3 =
ω1 f

f
ω3 and ∇̄ω3 ω1 =

ω1 f
f

ω3,

where ω1 ∈ TM1, ω3 ∈ TM2 and η is the 1-form associated with the vector field P.

Let us consider the warped product submanifold M = M1 × f M2 of a Sasakian
manifold M̄. In this case, we have the curvature tensors R and R̃ associated with the sub-
manifold M and its induced semi-symmetric metric connection∇ and induced Riemannian
connection ∇̃, respectively. Then,

R(ω1, ω2)ω3 =R̃(ω1, ω2)ω3 + g(ω3,∇ω1 P)ω2 − g(ω3,∇ω2 P)ω1

+ g(ω1, ω3)∇ω2 P− g(ω2, ω3)∇ω1 P

+ η(P)[g(ω1, ω3)ω2 − g(ω2, ω3)ω1]

+ [g(ω2, ω3)η(ω1)− g(ω1, ω3)η(ω2)]P

+ η(ω3)[η(ω2)ω1 − η(ω1)ω2],

(13)

for any vector field ω1, ω2, ω3 on M [23].
For the warped product submanifold M = M1 × f M2, from part (ii) of Lemma 3.2

of [23], we have

R̃(ω1, ω2)ω3 =
H f (ω1, ω2)

f
ω3, (14)

where ω1, ω2 ∈ TM1, ω3 ∈ TM2, respectively, and H f is the Hessian of the warping
function.

By considering Equations (13) and (14), we can deduce the following:
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R(ω1, ω3)ω2 =
H f (ω1, ω2)

f
+

P f
f

g(ω1, ω2)ω3 + η(P)g(ω1, ω2)ω3 + g(ω2,∇ω1 P)ω3

− η(ω1)η(ω2)ω3,
(15)

for the vector fields ω1, ω2 ∈ TM1, ω3 ∈ TM2, and P ∈ TM1.
Since we defined the semi-symmetric connection in Equation (3) by taking P = ξ,

therefore, for a warped product submanifold M = M1 × f M2 of a Riemannian manifold
M̄, we deduce the following relation by part (i) of Lemma 1:

∇ω1 ω3 = ω1ln f ω3 (16)

and
∇ω3 ω1 = ω1ln f ω3 + η(ω1)ω3. (17)

Furthermore, by utilizing the Gauss formula in Equation (15) along with Equation (5),
we obtain

R(ω1, ω3)ω2 =
H f (ω1, ω2)

f
ω3 +

ξ f
f

g(ω1, ω2)ω3 + 2g(ω1, ω2)ω3 − 2η(ω1)η(ω2)ω3

− g(ω2, φω1)ω3,
(18)

for ξ, ω1, ω2 ∈ TM1, and ω3 ∈ TM2.
For the Laplacian ∆ f of the warping function, it is easy to see the following expression:

∆ f
f

= ∆ln f − ‖∇ln f ‖2. (19)

3. Warped Product Pointwise Semi-Slant Submanifolds and Their Homology

The concept of semi-invariant submanifolds in an almost contact metric manifold
was introduced by A. Bejancu in 1981 [41]. According to this concept, an m−dimensional
Riemannian submanifold M of a Sasakian manifold M̄ is referred to as a semi-invariant
submanifold if the characteristic vector field ξ is tangent to M, and if there exists a differ-
entiable distribution D on M such that Dx, the distribution at x ∈ M is invariant under
φ. The distribution D⊥x , which is the orthogonal complementary distribution of Dx on M,
is anti-invariant, meaning that φD⊥x ⊆ T⊥x M, where Tx M and T⊥x M are the tangent space
and normal space at point x ∈ M, respectively. In [7], Hesigawa and Mihai studied the
warped product submanifold of the form MT × f M⊥ of a Sasakian manifold M̄, where MT
is an invariant submanifold, M⊥ is an anti-invariant submanifold, and ξ is an element of
TMT . They referred to this type of submanifold as a contact CR-submanifold and provided
some fundamental results on it.

In recent times, the concept of pointwise slant submanifolds was introduced by F. Etayo
in a paper in which these submanifolds were referred to as quasi-slant submanifolds [42].
Subsequently, B. -Y Chen and O. J. Garay [6] studied the properties of pointwise slant
submanifolds in the context of almost Hermitian manifolds. Afterward, Park [43] defined
the concept of the pointwise slant submanifold in the setting of an almost contact metric
manifold. In fact, he defined pointwise slant submanifolds as follows: a submanifold M of
an almost contact metric manifold (M̄, φ, ξ, η, g) is considered to be pointwise slant if, for
every point x ∈ M, the angle θ = θ(X) between φX and Tx M remains constant regardless
of the choice of non zero vector field X ∈ Tx M, where g(X, ξ(x)) = 0. This angle is denoted
by θ(X) and is called the slant function as a function on M. The necessary and sufficient
condition for the submanifold M to be a pointwise slant is whether the endomorphism T
satisfies the following relation:

T2ω = −λ(ω− η(ω)ξ) (20)
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for any ω ∈ TM and λ ∈ [0, 1] such that λ = cos2 θ. The following formulae can be
deduced by using (10) and (20):

g(Tω1, Tω2) = cos2 θ[g(ω1, ω2)− η(ω1)η(ω2)], (21)

g(Fω1, Fω2) = sin2 θ[g(ω1, ω2)− η(ω1)η(ω2)]. (22)

Further, in the same paper, he introduced the notion of the pointwise semi-slant
submanifold in the frame of an almost contact metric manifold. Further, he studied
different types of warped product pointwise semi-slant submanifolds of almost contact
metric manifolds. Basically, he proved the non-existence of the warped product of the types
NT × f Nθ , with ξ ∈ T⊥M, where NT is an invariant submanifold and Nθ is the pointwise
slant submanifold. After that, he considered the vector field ξ tangential to NT and proved
the existence of the warped products NT × f Nθ .

We begin our analysis by examining a particular type of submanifold, namely the
warped product pointwise semi-slant submanifolds of the form Nθ × f NT in a Sasakian
manifold equipped with a semi-symmetric metric connection. Here, Nθ is a pointwise slant
submanifold, and NT is an invariant submanifold that satisfies ξ ∈ TNT .

Our investigation yields the following result:

Theorem 1. Let (M̄, φ, ξ, η, g) be a Sasakian manifold with a semi-symmetric metric connection.
Then, there does not exist a warped product pointwise semi-slant submanifold of the type Nθ × f NT ,
such that ξ ∈ TNT .

Proof. For any ω1, ω2 ∈ TNT and ω3 ∈ TNθ , by part (ii) of Lemma 1, the Gauss formula,
(10) and (4), we have

ω3ln f g(ω1, ω2) = g(∇̄ω1 ω3, ω2) = g(φ∇̄ω1 ω3, φω2) + η(∇̄ω1 , ω3)η(ω2)

= g(∇̄ω1(Tω3 + Fω3), φω2)− g((∇̄ω1 φ)ω3, φω2)

+ ω3ln f η(ω1)η(ω2).

(23)

On further simplification, we get

ω3ln f g(ω1, ω2) = −(φ∇̄ω1 Tω3, ω2)− g(h(ω1, φω2), Fω3) + ω3ln f η(ω1)η(ω2). (24)

Again, by Equations (4) and (21), the Weingarten formula, and part (ii) of Lemma 1,
the preceding equation yields

sin2 θω3ln f g(ω1, ω2) = g(h(ω1, ω2), FTω3)− g(h(ω1, φω2), Fω3) + ω3ln f η(ω1)η(ω2). (25)

Replacing ω1 and ω2 by ξ in the above equation and using Equation (5), we obtain
cos2 θω3ln f = 0; this means that the warping function f is constant and proves the
result.

Throughout this study, we focus on warped product pointwise semi-slant submani-
folds NT × f Nθ that admit semi-symmetric metric connections, such that ξ ∈ TNT . With
that in mind, we begin by presenting the following initial results.

Lemma 2. Let M = NT × f Nθ be a non-trivial warped product proper pointwise semi-slant
submanifold of a Sasakian manifold admitting a semi-symmetric metric connection; then,

(i) g(AFω3 ω4, ω1) = g(AFω4 ω3, ω1),
(ii) ξln f = 0,

for ξ, ω1 ∈ TNT and ω3, ω4 ∈ TNθ .
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Proof. Making use of the Weingarten formula along with (10), we have

g(AFω3 ω4, ω1) = g(∇̄ω1 φω3, ω4) + g(∇̄ω1 Tω3, ω4). (26)

Now, using (4) and (16), we get the required result. To prove part (ii), by Equations (5) and
(10), we have ∇ω3 ξ = ω3 − Tω3; applying Equation (17), we get the required result.

Lemma 3. Let M = NT × f Nθ be a non-trivial warped product proper pointwise semi-slant
submanifold of a Sasakian manifold admitting semi-symmetric metric connection; then,

g(h(ω1, ω4), FTω3) = −φω1ln f g(Tω3, ω4)− η(ω1)g(Tω3, ω4)−ω1ln f cos2 θg(ω3, ω4) (27)

for ω1 ∈ TNT and ω3, ω4 ∈ TNθ .

Proof. From part (i) of Lemma 2 and the Weingarten equation, we find

g(AFTω3 ω4, ω1) = g(AFω4 Tω3, ω1) = −g(∇̄Tω3 Fω4, ω1).

Using (4), (10), and (17), we obtain

g(AFTω1 ω4, ω1) = −g(g(Tω3, ω4)ξ − g(Tω3, φω4)ξ, ω1) + g(∇Tω3 ω4, φω1)

− g(Tω4, ω1ln f Tω3 + η(ω1)Tω3).
(28)

Solving further, the above equation can be reduced to

g(AFTω3 ω4, ω1) = −g(Tω3,ω4)η(ω1) + cos2 θη(ω1)g(ω3, ω4)− g(ω4, φω1ln f Tω3)

− cos2 θω1ln f η(ω1)g(ω3, ω4)− η(ω1) cos2 θg(ω3, ω4).
(29)

Finally, we get the following equation:

g(h(ω1, ω4), FTω3) = −η(ω3)g(Tω3, ω4)− φω1ln f g(Tω3, ω4)−ω1ln f cos2 θg(ω3, ω4), (30)

which is the required result.

Lemma 4. Let M = NT × f Nθ be a non-trivial warped product proper pointwise semi-slant
submanifold of a Sasakian manifold admitting a semi-symmetric metric connection. Then,

(i) g(h(ω1, ω3), FTω3) = −ω1ln f cos2 θ‖ω3‖2,
(ii) g(h(φω1, ω3), Fω3) = ω1ln f ‖ω3‖2,

for ω1 ∈ TNT and ω3 ∈ TNθ .

Proof. Replacing ω4 by ω3 in Equation (27), we get part (i), and using the Gauss formula
along with Equation (10), we obtain

g(h(φω1, ω3), Fω3) = g(∇̄ω3 φω1, φω3)− g(∇̄ω3 φω1, Tω3). (31)

Finally, on applying the Gauss formula and Equation (17), we obtain g(h(φω1, ω3), Fω3) =
ω1ln f ‖ω3‖2, which is the required result.

Now, we study the stable currents on warped product pointwise semi-slant subman-
ifolds. In fact, we prove that under some specific conditions, there do not exist stable
currents. Now, we exhibit the well-known results of Simons, Xin, and Lang
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Lemma 5 ([14,17]). For a compact submanifold Mn with dimension n of a space form M̄(c) with
a positive curvature c, if the second fundamental form satisfies the following inequality,

p

∑
i=1

n

∑
s=p+1

(2|h(ui, uj)|2 − g(h(ui, ui), h(ui, us))) < pqc, (32)

then there do not exist stable currents in Mn, where p, q ∈ Z+, such that p + q = n, {u1, . . . , un}
is a set of orthonormal bases at Tx M, x ∈ M. In addition, H̃p(Mn, Z) = 0, H̃q(Mn, Z) = 0, such
that Hj(M, Z) denotes the j−th homology of M with integer coefficients.

It is well known that the odd-dimensional sphere S2n+1(1) is the Sasakian manifold
with constant sectional curvature one [39]. Now, we have the following theorem:

Theorem 2. Let Mp+q+1 = Np+1
T × f Nq

θ be a compact warped product pointwise semi-slant

submanifold of S2( p
2 +q)+1(1) with a semi-symmetric metric connection. If the following inequality

holds,

∆ f −
p+1

∑
i=1

β(ui, ui) +
p + 1

q

q

∑
j=1

β(uj, uj) > (csc2 θ + cot2 θ + 1− q)‖∇ln f ‖2 − q
f

η(∇ f )− 1, (33)

then the (p + 1)−stable currents are absent in Mp+1+q. In addition, Hp+1(Mn, Z) = 0,
Hq(Mn, Z) = 0, where Hj(M, Z) is the j−th homology group of M, and p + 1, q are the di-

mensions of the invariant submanifold Mp+1
T and the pointwise slant submanifold Mq

θ , respectively.

Proof. Suppose dim Np+1
T = p + 1 = 2α + 1 and dim Nq

θ = q = 2β, where NT and
Nθ are the integral manifolds of invariant distribution DT and the pointwise slant dis-
tribution Dθ . Let {u0 = ξ, u1, u2, . . . , uα, uα+1 = φu1, . . . , u2α = φuα} and {u2α+1 =
u∗1 , . . . , u2α+β = u∗β, u2α+β+1 = u∗β+1 = sec θTu∗1 , . . . , up+q = u∗q = sec θTu∗β} be orthonor-

mal bases of TNp+1
T and TNq

θ , respectively. Therefore, the orthonormal basis for the normal
subbundle FDθ is {un+1 = ū1 = csc θFu∗1 , . . . , un+β = ūβ = csc θFu∗1 , un+β+1 = ūβ+1 =
csc θ sec θFTu∗1 , . . . , un+2β = ū2β = csc θ sec θFTu∗β}.

Therefore, we are able to express the following relationship:

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} =
p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2

+
p

∑
i=0

n

∑
j=p+1

{‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))}.
(34)

Applying Gauss Equation (12) for a sphere of odd dimension,

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} =
p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2

+
p

∑
i=0

q

∑
j=1

g(R(ui, uj)ui, uj)−
p

∑
i=0

q

∑
j=1

g(R̄(ui, uj)ui, uj).

(35)
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On making use of formula (9) for an odd-dimensional sphere,

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} =
p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2

−(p + 1)q− (p + 1)
q

∑
j=1

β(uj, uj)− q
p

∑
i=0

β(ui, ui)

+
p+1

∑
i=0

q

∑
j=1

g(R(ui, uj)ui, uj).

(36)

From Equation (18), for the submanifold Np
T × f Nq

θ of S2( p
2 +q)+1,

p

∑
i=0

q

∑
j=1

g(R(ui, uj)ui, uj) =
p

∑
i=0

q

∑
j=1

H f (ui, ui)

f
g(uj, uj)

+
p

∑
i=0

q

∑
j=1
{2g(ui, ui)g(uj, uj)

− 2η(ui)η(ui)g(uj, uj)− g(uj, φui)g(uj, uj)}

=
q
f

p

∑
i=0

g(∇ui∇ f , ui) + 2(p + 1)q− 2q.

(37)

Ultimately, the subsequent equation is obtained.

p

∑
i=0

q

∑
j=1

g(R(ui, uj)ui, uj) =
q
f

p

∑
i=0

g(∇ui∇ f , ui) + 2pq. (38)

Initially, the computation of the term ∆ f is performed, which is the Laplacian of f ,
resulting in the following derivation.

∆ f = −
n

∑
k=1

g(∇uk∇ f , uk) = −
p

∑
i=0

g(∇ui∇ f , ui)−
q

∑
j=1

g(∇u∗j
∇ f , u∗j ) (39)

By utilizing the adapted orthonormal frame, the components of Nq
θ can be expressed

as follows:

∆ f = −
p

∑
i=0

g(∇ui∇ f , ui)−
β

∑
j=1

g(∇u∗j
∇ f , u∗j )− sec2 θ

β

∑
j=1

g(∇Tu∗j
∇ f , Tu∗j ). (40)

Since Np
T is totally geodesic in Mn and ∇ f ∈ TNT , we obtain

∆ f = − 1
f

β

∑
j=1

(g(u∗j , u∗j ) + sec2 θg(Tu∗j , Tu∗j ))‖∇ f ‖2 −
p

∑
i=0

g(∇ui∇ f , ui)− qη(∇ f ), (41)

or
∆ f
f

= −q‖∇ f ‖2 − 1
f

p

∑
i=0

g(∇ui∇ f , ui)−
q
f

η(∇ f ). (42)

Making use of (19), we find that

1
f

p

∑
i=0

g(∇ui∇ f , ui) = −∆(ln f ) + (1− q)‖∇ln f ‖2 − q
f

η(∇ f ) (43)
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or
q
f

p

∑
i=0

g(∇ui∇ f , ui) = −q∆(ln f ) + q(1− q)‖∇ln f ‖2 − q2

f
η(∇ f ). (44)

Substituting the aforementioned value into Equation (38), we obtain

p

∑
i=0

q

∑
j=1

R((ui, uj)ui, uj) = −q∆ln f + q(1− q)‖∇ln f ‖2 + 2pq. (45)

Therefore, by Equation (36),

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} =
p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2

− (p + 1)q− (p + 1)
q

∑
j=1

β(uj, uj)− q
p

∑
i=0

β(ui, ui)

− q∆ln f + q(1− q)‖∇ln f ‖2 + 2pq− q2

f
η(∇ f ),

(46)

or equivalently,

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} =
p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2

− (1− p)q− (p + 1)
q

∑
j=1

β(uj, uj)− q
p

∑
i=0

β(ui, ui)

− q∆ln f + q(1− q)‖∇ln f ‖2 − q2

f
η(∇ f ),

(47)

Now, let ω1 = uα(1 ≤ α ≤ p + 1) and ω3 = u∗β(1 ≤ β ≤ q)

p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2 =
p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

g(h(ui, u∗j ), ū∗r )
2

=
p

∑
i=0

β

∑
j,r=1
{g(h(ui, u∗j ), csc θFu∗r )

2

+ g(h(ui, u∗j ), csc θ sec θFTu∗r )
2}

=
p

∑
i=0

β

∑
j,r=1
{g(h(ui, u∗j ), csc θFu∗r )

2

+ g(h(ui, u∗j ), csc θ sec θFTu∗r )
2}

+
α

∑
i=0

β

∑
j,r=1
{g(φui, u∗j ), csc θFu∗r )

2

+ g(h)φui, u∗j ), csc θ sec θFTu∗r )
2}.

(48)
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Applying Lemma 4 to the aforementioned equation yields

p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2 = (csc2 θ + cot2 θ)
α+1

∑
i=1

β

∑
j=1

(uiln f )2g(u∗j , u∗j )
2

+ (csc2 θ + cot2 θ)
α

∑
i=1

β

∑
j=1

(φuiln f )2g(u∗j , u∗j )
2

(49)

or equivalently,

p+2q+1

∑
r=n+1

p

∑
i=0

n

∑
j=p+1

(hr
ij)

2 = q(csc2 θ + cot2 θ)‖∇ln f ‖2. (50)

Using Equations (47) and (50), we can see that

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} − pq = q(csc2 θ + cot2 θ

+ 1− q)‖∇ln f ‖2 − q∆ln f − q− (p + 1)
q

∑
j=1

β(uj, uj)− q
p

∑
i=1

β(ui, ui)−
q2

f
η(∇ f ).

(51)

Assuming that condition (33) is satisfied, we can derive the following inequality:

p

∑
i=0

n

∑
j=p+1

{2‖h(ui, uj)‖2 − g(h(ui, ui), h(uj, uj))} < pq. (52)

Using Lemma 5 on the odd-dimensional sphere with c = 1 leads us to the final
conclusion of our theorem.

4. Conclusions

In the context of Riemannian manifolds, there are two well-known types of differen-
tiable connections: Levi–Civita connections and semi-symmetric metric connections. These
connections exhibit fundamental differences, and substantial effort has been devoted to
comparing and contrasting the geometry of submanifolds in relation to the Levi–Civita
connection and the semi-symmetric metric connection. While the Levi–Civita connection
has been extensively studied in the literature for the homology of warped product sub-
manifolds, the homology of these submanifolds with semi-symmetric connections remains
unknown. In light of this, we investigate the homology and stable currents of semi-invariant
warped product submanifolds of Sasakian manifolds with a semi-symmetric connection in
this paper. It is our hope that our study will spur further research into generalized warped
product submanifolds and their topological properties.
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36. Antić, M. Characterization of Warped Product Lagrangian Submanifolds in Cn. Results Math. 2022, 77, 1–15. [CrossRef]
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