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Abstract: Artificial neural networks (ANNs) are used to solve many problems, such as modeling,
identification, prediction, and classification. The success of ANN is directly related to the training
process. Meta-heuristic algorithms are used extensively for ANN training. Within the scope of
this study, a feed-forward artificial neural network (FFNN) is trained using the marine predators
algorithm (MPA), one of the current meta-heuristic algorithms. Namely, this study is aimed to
evaluate the performance of MPA in ANN training in detail. Identification/modeling of nonlinear
systems is chosen as the problem. Six nonlinear systems are used in the applications. Some of them
are static, and some are dynamic. Mean squared error (MSE) is utilized as the error metric. Effective
training and testing results were obtained using MPA. The best mean error values obtained for six
nonlinear systems are 2.3 × 10−4, 1.8 × 10−3, 1.0 × 10−4, 1.0 × 10−4, 1.2 × 10−5, and 2.5 × 10−4. The
performance of MPA is compared with 16 meta-heuristic algorithms. The results have shown that
the performance of MPA is better than other algorithms in ANN training for the identification of
nonlinear systems.

Keywords: marine predators algorithm; feed-forward neural network; nonlinear systems;
system identification

1. Introduction

Meta-heuristic algorithms are one of the important artificial intelligence techniques.
After 2000, the emergence of meta-heuristic algorithms gained momentum. They have
been used successfully in solving many challenging problems. Optimization problems
that metaheuristic algorithms deal with can appear in different forms, such as single
multi-objective, continuous, discrete, constrained, or unconstrained. The fact that they
can reach optimal solutions in a short time, especially in the solution of complex and
high-dimensional problems, has increased the interest in metaheuristic algorithms [1]. It
is seen that meta-heuristic algorithms are influenced by different metaphors in nature.
Some of them are gravitation, electromagnetic force, ecosystem, water, plant, human, birds,
animals, insects, and natural evolution [2]. Meta-heuristic algorithms can be classified
as evolutionary-based, physical-based, chemical-based, human-based, and swarm-based
algorithms according to their formation.

One of the most important meta-heuristic algorithms proposed recently is the marine
predators algorithm (MPA) [3]. Although MPA was first proposed in 2020, it has been used
to solve many problems and has achieved successful results. This success has increased the
popularity of the algorithm. Energy, power systems, networking, engineering applications,
classification and clustering, feature selection, image and signal processing, maths, global
optimization, and scheduling are some of the areas where MPA is used [4].

One of the important uses of meta-heuristic algorithms is the training of artificial
neural networks (ANNs). The training process is very important in order to obtain effective
results with ANNs. An effective training process is possible with meta-heuristic algorithms.
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Therefore, it is possible to reach many studies based on meta-heuristic algorithms in the
literature [5,6]. When looking at neural network-based studies using MPA, it is seen that
there is a limited number of studies [7–9]. These studies are not sufficient to express the
performance of MPA in ANN training compared to other meta-heuristic algorithms. This
shows that there is a need for comparative studies showing the success of MPA in neural
network training. Therefore, within the scope of this study, it is aimed to evaluate the
performance of MPA in ANN training in detail in order to shed light on the literature.
Identification of nonlinear systems is chosen for the applications. Identification of nonlinear
systems is extensively used for performance analysis in the neural network training [10–12].
The nonlinear systems are especially complex and difficult. This makes the identification of
systems important. Therefore, nonlinear systems were used to determine the performance
of MPA in neural network training. Namely, neural network training was performed using
MPA for the identification of nonlinear systems. At the same time, its performance has been
compared with many metaheuristic algorithms. These compose the innovative aspects of
this study. The main contributions of this study are listed below:

• The performance of MPA was evaluated in detail in the ANN training;
• The performance of the proposed approach in the identification of nonlinear systems

was analyzed;
• The performance of MPA was compared with sixteen different meta-heuristic algo-

rithms to solve the related problem;
• The effect of changing the network structure of ANN on the performance of MPA and

other meta-heuristic algorithms was examined.

2. Related Works

MPA has been used to solve many problems since it was first developed. Especially
successful results have increased the popularity of the MPA [4,13,14]. Abd Elminaam
et al. [15] proposed a hybrid method based on MPA and k-Nearest Neighbors (k-NN).
Their proposed method was evaluated on 18 well-known UCI medical dataset bench-
marks, and its performance was compared to such meta-heuristics as gray wolf optimizer
(GWO), moth flame optimization algorithm (MFO), sine cosine algorithm (SCA), whale
optimization algorithm (WOA), slap swarm algorithm (SSA), butterfly optimization al-
gorithm (BFO), and Harris hawks optimization (HHO). It was reported that their pro-
posed method had effective results. Abdel-Basset et al. [16] designed an improved MPA
(IMPA) to accurately estimate photovoltaic (PV) model parameters. The performance
of IMPA was compared with different approaches based on meta-heuristic algorithms.
Al-Qaness et al. [17] optimized the parameters of ANFIS by using MPA for forecasting
confirmed cases of COVID-19 in Italy, the USA, Iran, and Korea. The performance of
MPA was compared with different meta-heuristic approaches, and it was observed that the
results obtained with MPA were effective. Soliman et al. [18] used MPA for parameter iden-
tification of triple-diode photovoltaic models. Zhong et al. [19] proposed a multi-objective
version of MPA. Shaheen et al. [20] suggested an algorithm based on improved MPA and
particle swarm optimization (IMPAPSO) to solve the optimal reactive power dispatch
(ORPD) problem. The performance of IMPAPSO was evaluated by using various test cases.
The performance of IMPAPSO was compared with different meta-heuristic algorithms, and
it was stated that its performance was better than the others. Houssein et al. [21] proposed
a hybrid approach called MPA-CNN, based on MPA and convolutional neural network
(CNN), to classify the non-ectopic, ventricular ectopic, supraventricular ectopic, and fusion
ECG types of arrhythmia. Eid et al. [22] introduced an improved MPA (IMPA) for the
optimal allocation of active and reactive power resources in distribution networks. The
performance of IMPA was compared with MPA, AEO, and PSO algorithms. It has been
emphasized that the performance of IMPA is better than the others. Abdel-Basset et al. [23]
proposed four versions of the MPA for solving multi-objective optimization problems.
Abd Elaziz et al. [24] developed a version of MPA (QMPA) by using quantum theory. The
performance of QMPA was compared with different meta-heuristic algorithms such as
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MPA, WOA, SCA, SSA, GOA, ALO, MFO, and GWO. The results showed that the QMPA
was more effective according to other algorithms in terms of convergence and the quality of
segmentation. Zhong et al. [25] combined MPA and teaching–learning-based optimization
(TLBO) algorithm and proposed a novel algorithm called teaching–learning-based marine
predator algorithm (TLMPA) to solve global optimization and engineering design problems.
Abdel-Basset et al. [26] developed a new binary MPA (BMPA) for the 0–1 knapsack problem.
Apart from these, there are different MPA-based studies in the literature [27–31].

When the literature is examined, it is seen that many real-world problems exhibit
nonlinear behavior. Artificial intelligence has an important area of use for the solution
of non-linear system-based problems. Kaya and Baştemur Kaya [10] proposed a new
neural network training algorithm based on a modified ABC algorithm called ABCES
for the identification of nonlinear systems. Branco et al. [32] realized the time series
analysis by using the wavelet LSTM for fault prediction in electrical power grids. The
performance of wavelet LSTM was compared with methods such as ANFIS, GMDH, and
ensemble. It was stated that the proposed method was effective in solving the related
problem. Wu et al. [33] proposed an approach called a data-knowledge-based fuzzy
neural network (DK-FNN) for nonlinear system identification. It has been shown that
DK-FNN is more successful than TL-NN, KL-TSK-FS, KL-FNN, GPFNN, SOFNN-AGA,
and GDFNN approaches in identifying related systems. Stefenon et al. [34] realized a time
series forecasting on Italian electricity spot prices and used Facebook prophet methodolo-
gies in their proposed approach. Bastemur Kaya and Kaya [35] presented a time series
analysis approach based on ANN and flower pollination algorithm (FPA) to predict the
number of COVID-19 cases belonging to Turkey. Klaar et al. [36] proposed an approach
based on empirical wavelet transform (EWT) and LSTM for insulator fault prediction.
Stefenon et al. [37] applied Christiano–Fitzgerald random walk (CFRW) and the group
data-handling (GMDH) methods for insulator fault prediction. Jhang et al. [38] applied
a functional link neural network (FLNN) on FPGA for solving nonlinear control prob-
lems. Kaya [12] evaluated the performance of sixteen meta-heuristic algorithms in neural
network training for the identification of nonlinear systems. Cuevas et al. [39] presented
a hybrid method based on ANFIS and a gravitational search algorithm for nonlinear
system identification. Mao et al. [40] used a gray wolf optimizer (GWO) in the learn-
ing process of the type-2 fuzzy neural network (T2FNN) for nonlinear system identifica-
tion. Apart from these studies, there are many studies in the literature on the nonlinear
system identification [11,41–44].

3. Materials and Methods
3.1. Marine Predators Algorithm (MPA)

The MPA proposed by Faramarzi et al. is inspired by the Lévy and Brownian move-
ments which are foraging strategies of oceanic predators. In this process, the optimal
coincidence rate of prey and predator is considered [3].

Like many animals in nature, marine predators choose a random walking strategy
for foraging. The next position depends on the current position according to this strat-
egy. This process, developed by predators, is a survival strategy, and it can be modeled
mathematically. Lévy is a special class of random walking. It is indicated that Lévy is the
most efficient search strategy for prey with low concentration and uneven distribution. On
the other hand, it is determined that in an environment where prey is plentiful, Brownian
motion is used. In this case, a marine predator uses Lévy and Brownian motions alternately
according to the prey density. Marine predators use these motions in an almost equal
percentage throughout their life. In unusual situations (eddy, fish aggregating devices, etc.),
they can change their hunting strategy.

When the speed rate of predator to prey is expressed as v, in low speed (v = 0.1), the
best strategy for the predator is Lévy when the prey is moving in a Brownian or Lévy. In
unit velocity (v = 1), if the prey is moving in Lévy, the best strategy for the predator is
Brownian. In high speed (v ≥ 10), when the prey is moving in Brownian or Lévy, the best
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strategy for the predator is not to move. The predator keeps the places where it obtains
successful results in memory and takes advantage of it when necessary.

MPA is a population-based approach. The process of MPA begins with a random
solution using (1), as in other meta-heuristic algorithms. Xmin and Xmax are the lower and
upper bounds, respectively. rand represents a random number in the range of [0, 1].

X0 = Xmin + rand(Xmax − Xmin) (1)

There are two arrays called Prey and Elite in MPA. During the construction of the Elite
matrix, the most dynamic solution is assigned as the best predator. Searching and finding
the prey is controlled by this matrix.

Elite =



X I
1,1

X I
2,1

...

...

...
X I

n,1

X I
1,2

X I
2,2

...

...

...
X I

n,2

· · ·

· · ·
...
...
...
· · ·

X I
1,d

X I
2,d
...
...
...

X I
n,d


n x d

(2)

→
X I symbolizes the best predator vector; n is search agents, and d is the number of

dimensions. Both predator and prey are the search agents. The Elite is updated if the best
predator changes with each iteration. Prey has the same size as the Elite. Predators update
their positions via prey.

Prey =



X1,1
X2,1
X3,1
...
...

Xn,1

X1,2
X2,2
X3,2
...
...

Xn,2

· · ·
· · ·
· · ·

...

...
· · ·

X1,d
X2,d
X3,d
...
...

Xn,d


n x d

(3)

Xi,j offers jth dimension of ith prey. In MPA, the whole optimization process is directly
relevant to these two matrices.

The algorithm is basically structured according to three phases. These phases are
scenarios created by considering the speed rate of the prey and the predator. MPA utilizes
these three stages to update solutions based on the speed ratio of predator and prey. They
are the following:

In stage 1, the predator moves faster than the prey. It is used in the initial iterations
of optimization where discovery is important. The best strategy for the predator is to not
move at all in this phase. If Iter < ((Max_Iter)/3), this phase occurs. Iter is the current
iteration number. Max_Iter is the maximum iteration number. The mathematical equation
for this stage is presented below. RB is a vector containing random numbers based on
normal distribution representing the Brownian motion. P is a constant number, and its
value is 0.5. R represents a random number in the range [0, 1]. The multiplication of RB by
prey simulates the movement of prey.

−−−−→
stepsizei =

→
RB ⊗

(−−→
Elite i −

→
RB ⊗

−−→
Prey i

)
i = 1, . . . n

−−→
Prey i =

−−→
Prey i + P·

→
R ⊗
−−−−→
stepsizei

(4)



Symmetry 2023, 15, 1610 5 of 22

In stage 2, the predator and the prey move at the same speed. Half of the population
is reserved for exploration and half for exploitation. The predator is responsible for
reconnaissance, and the prey is responsible for exploitation. If the prey moves in Lévy,
the predator must move in Brownian. If ((Max_Iter)/3) < Iter < ((2Max_Iter)/3, this phase
occurs. For the first half of the population, that is, for the prey that used the Lévy motion,
(5) is used. For the other half of the population, namely, the predator performing the
Brownian motion, (6) is used.

−−−−→
stepsizei =

→
RL ⊗

(−−→
Elite i −

→
RL ⊗

−−→
Prey i

)
i = 1, . . . n/2

−−→
Prey i =

−−→
Prey i + P·

→
R ⊗
−−−−→
stepsizei

(5)

−−−−→
stepsizei =

→
RB ⊗

(→
RB ⊗

−−→
Elite i −

−−→
Prey i

)
i = n/2, . . . n

−−→
Prey i =

−−→
Elite i + P·CF⊗

−−−−→
stepsizei

CF =
(

1− Iter
Max_Iter

)(2 Iter
Max_Iter )

(6)

In stage 3, the predator moves faster than the prey. The best strategy for the predator
is Lévy in this stage. If Iter > ((2Max_Iter)/3), this phase occurs. The mathematical equation
for this stage is presented below:

−−−−→
stepsizei =

→
RL ⊗

(→
RL ⊗

−−→
Elite i −

−−→
Prey i

)
i = 1, . . . n

−−→
Prey i =

−−→
Elite i + P·CF⊗

−−−−→
stepsizei

(7)

The behavior of the marine predators can be affected by the factors such as eddy
formation or Fish Aggregating Devices (FADs). The effect of FADs is formulated as follows.

Here, FADs is 0.2.
→
U is the binary vector with arrays including zero and one. r is the

uniform random number in [0, 1].
→
Xmin and

→
Xmax are the vectors containing the lower and

upper bounds of the dimensions. r1 and r2 denote random indexes of the prey matrix.

−−→
Prey i =


−−→
Prey i + CF

[→
Xmin +

→
R ⊗

(→
Xmax −

→
Xmin

)]
⊗
→
U, r ≤ FADs

−−→
Prey i + [FADs(1− r) + r]

(−−→
Prey r1 −

−−→
Prey r2

)
, r > FADs

(8)

Marine predators have good memories. They remember places where they successfully
hunted for foraging. This situation is simulated as a memory saving in MPA. After the prey
is updated and the FADs effect is applied, the results are evaluated. Elite is updated if the
results have better value. Thus, the solution quality increases. A flowchart showing the
process in MPA is given in Figure 1.

3.2. Feed-Forward Neural Network (FFNN)

A FFNN generally consists of input, hidden, and output layers. It is formed by the
interconnection of many neurons. Information transfer is from the input layer to the output
layer. As seen in (9), calculations are performed on artificial neurons in the structure of the
network. x is the input value. w represents the weight value. b is the bias value. f is the
activation function. y is the output of the artificial neuron. Here, the summing function is
used as the transfer function. Each artificial neuron can be the input of a different artificial
neuron. There is no interaction between artificial neurons in the same layer. The general
structure of artificial neurons is shown in Figure 2. Weight and bias values in FFNN directly
affect the success of the network. It is aimed at finding the most appropriate weight and
bias values in the training of the network. Two data sets have an important place in the
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network training process. These are training and test datasets. The training dataset is used
during the training of the network. The training process is guided according to the error
value obtained during the training. The error value is calculated from the relationship
between the actual output and the predicted output. In successful training, the error value
should be low. The training process of FFNN takes place over the data known. In the test
process, data that has not been known before are given to the network. It is expected that a
successful network will also be effective in the testing process.
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y = f

(
m

∑
i=1

wixi + b

)
(9)
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4. Simulation Results

In this study, the training of FFNN was realized by using MPA for the identification of
nonlinear systems. The nonlinear systems given in Table 1 were used for the applications.
As seen in Table 1, D1 and D2 are in a dynamic structure. Other systems are nonlinear
systems with static behavior. D1, D2, and S4 consist of three inputs. S1 has one input.
Other systems consist of two inputs. All systems have one output. In the identification of
all systems, 80% of the data is reserved for the training process. The rest belongs to the
testing process.

Table 1. Nonlinear systems used in applications.

System Equation Inputs Output Number of Training/Test Data

D1
y(k + 1) = y(k)y(k−1)[y(k)+2.5]

1+[y(k)]2+[y(k−1)]2
+ u(k)

u(k) = sin(2πk/25)
y(k), y(k− 1), u(k) y(k + 1) 200/50

D2
y(k + 1) = y(k)

1+y(k−1) + u(k)3

u(k) = sin(πk/25)
y(k), y(k− 1), u(k) y(k + 1) 200/50

S1 y = 2sin(πx1) x1 y 80/20

S2 y = 10.391{(x1 − 0.4)(x2 − 0.6) + 0.36} x1, x2 y 80/20

S3 y = tanh(x1 + x2 − 11) x1, x2 y 80/20

S4 y = 1 + x1
0.5 + x2

−1 + x3
−1.5 x1, x2, x3 y 173/43

Different network structures are used to analyze the effect of network structure on
performance in applications. For each system, neurons in the range of [2,15] were utilized
in the hidden layer, and the results were obtained. In other words, 14 different network
structures were created for each system, and their effects on performance were evaluated.
The sigmoid function was used for each neuron. At the same time, bias was applied. All
data for the training and testing process are scaled in the [0, 1] range. All the results in
this study were obtained by considering the scaled data. The number of search agents and
the maximum number of iterations of MPA were taken as 20 and 2500, respectively. Mean
squared error (MSE) was used as the error metric. Each application was run 30 times, and
the mean error value was calculated.

The training results obtained for D1 are given in Table 2. The best error value
was found with a 3-8-1 network structure. The best mean error value was obtained as
2.3 × 10−4 with 3-12-1. With 3-12-1, a performance increase of approximately 66% was
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achieved compared to 3-2-1. The test results of D1 are presented in Table 3. As in the training
results, the mean best error value was found with the 3-12-1 network structure. Compared
to the 3-2-1 network structure, a significant performance increase was achieved. The best
test error value was obtained as 7.8 × 10−5 with a 3-13-1 network structure. Effective
standard deviation values were achieved in both the training and testing processes.

Table 2. Training results obtained with the proposed approach for the D1 system.

System
Network
Structure

The Results

Best Mean Worst Std.

D1

3-2-1 3.4 × 10−4 6.6 × 10−4 8.3 × 10−4 1.5 × 10−4

3-3-1 2.1 × 10−4 4.2 × 10−4 6.5 × 10−4 1.5 × 10−4

3-4-1 1.4 × 10−4 3.3 × 10−4 8.2 × 10−4 1.5 × 10−4

3-5-1 1.5 × 10−4 3.4 × 10−4 6.0 × 10−4 1.3 × 10−4

3-6-1 1.3 × 10−4 2.8 × 10−4 5.6 × 10−4 1.1 × 10−4

3-7-1 1.1 × 10−4 2.4 × 10−4 4.2 × 10−4 9.0 × 10−5

3-8-1 8.9 × 10−5 2.4 × 10−4 4.9 × 10−4 9.3 × 10−5

3-9-1 1.2 × 10−4 2.5 × 10−4 5.9 × 10−4 1.1 × 10−4

3-10-1 1.2 × 10−4 2.8 × 10−4 5.8 × 10−4 1.2 × 10−4

3-11-1 9.4 × 10−5 2.7 × 10−4 5.0 × 10−4 9.3 × 10−5

3-12-1 9.4 × 10−5 2.3 × 10−4 5.4 × 10−4 8.7 × 10−5

3-13-1 1.1 × 10−4 2.4 × 10−4 4.7 × 10−4 9.1 × 10−5

3-14-1 9.1 × 10−5 2.4 × 10−4 4.4 × 10−4 8.4 × 10−5

3-15-1 1.1 × 10−4 2.4 × 10−4 3.9 × 10−4 8.1 × 10−5

Table 3. Test results obtained with the proposed approach for the D1 system.

System
Network
Structure

The Results

Best Mean Worst Std.

D1

3-2-1 3.4 × 10−4 7.5 × 10−4 1.3 × 10−3 1.8 × 10−4

3-3-1 2.1 × 10−4 4.9 × 10−4 8.7 × 10−4 2.0 × 10−4

3-4-1 1.5 × 10−4 4.3 × 10−4 8.7 × 10−4 1.7 × 10−4

3-5-1 1.5 × 10−4 4.2 × 10−4 1.2 × 10−3 2.1 × 10−4

3-6-1 1.3 × 10−4 3.1 × 10−4 6.3 × 10−4 1.3 × 10−4

3-7-1 1.1 × 10−4 2.7 × 10−4 5.3 × 10−4 1.1 × 10−4

3-8-1 7.9 × 10−5 2.5 × 10−4 5.1 × 10−4 1.1 × 10−4

3-9-1 1.5 × 10−4 3.3 × 10−4 9.8 × 10−4 1.7 × 10−4

3-10-1 1.1 × 10−4 3.1 × 10−4 6.4 × 10−4 1.4 × 10−4

3-11-1 9.5 × 10−5 2.7 × 10−4 7.0 × 10−4 1.1 × 10−4

3-12-1 9.8 × 10−5 2.3 × 10−4 5.3 × 10−4 8.7 × 10−5

3-13-1 7.8 × 10−5 2.6 × 10−4 4.9 × 10−4 1.0 × 10−4

3-14-1 9.6 × 10−5 2.6 × 10−4 4.6 × 10−4 9.0 × 10−5

3-15-1 1.0 × 10−4 2.4 × 10−4 3.4 × 10−4 7.1 × 10−5

The training results of D2 are presented in Table 4. The best error value was obtained
by using a 3-12-1 network structure. The best error value is 1.1 × 10−3. When the mean
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error values were examined, the best mean error value was found with a 3-15-1 network
structure. The performance usually increases until the number of neurons is 15 in the
hidden layer. The test results obtained for D2 are given in Table 5. As in the training results,
the best error value was found with a 3-12-1 network structure, while the best mean error
value was obtained with a 3-15-1 network structure.

Table 4. Training results obtained with the proposed approach for the D2 system.

System
Network
Structure

The Results

Best Mean Worst Std.

D2

3-2-1 3.8 × 10−3 3.9 × 10−3 4.3 × 10−3 1.5 × 10−4

3-3-1 2.4 × 10−3 2.9 × 10−3 3.8 × 10−3 4.1 × 10−4

3-4-1 1.6 × 10−3 2.5 × 10−3 4.0 × 10−3 4.8 × 10−4

3-5-1 1.7 × 10−3 2.2 × 10−3 3.1 × 10−3 3.5 × 10−4

3-6-1 1.7 × 10−3 2.2 × 10−3 3.1 × 10−3 3.4 × 10−4

3-7-1 1.6 × 10−3 2.1 × 10−3 2.9 × 10−3 3.7 × 10−4

3-8-1 1.4 × 10−3 2.1 × 10−3 3.2 × 10−3 5.1 × 10−4

3-9-1 1.5 × 10−3 2.1 × 10−3 3.0 × 10−3 4.2 × 10−4

3-10-1 1.4 × 10−3 2.0 × 10−3 3.3 × 10−3 4.6 × 10−4

3-11-1 1.4 × 10−3 2.0 × 10−3 2.8 × 10−3 4.0 × 10−4

3-12-1 1.1 × 10−3 1.8 × 10−3 2.4 × 10−3 3.2 × 10−4

3-13-1 1.3 × 10−3 1.9 × 10−3 3.1 × 10−3 4.5 × 10−4

3-14-1 1.4 × 10−3 1.9 × 10−3 3.1 × 10−3 4.4 × 10−4

3-15-1 1.3 × 10−3 1.8 × 10−3 2.7 × 10−3 3.4 × 10−4

Table 5. Test results obtained with the proposed approach for the D2 system.

System
Network
Structure

The Results

Best Mean Worst Std.

D2

3-2-1 3.8 × 10−3 4.0 × 10−3 4.8 × 10−3 2.8 × 10−4

3-3-1 2.5 × 10−3 3.0 × 10−3 4.0 × 10−3 4.1 × 10−4

3-4-1 1.6 × 10−3 2.6 × 10−3 4.0 × 10−3 5.0 × 10−4

3-5-1 1.7 × 10−3 2.4 × 10−3 3.2 × 10−3 3.7 × 10−4

3-6-1 1.7 × 10−3 2.3 × 10−3 3.7 × 10−3 4.0 × 10−4

3-7-1 1.6 × 10−3 2.2 × 10−3 3.0 × 10−3 3.9 × 10−4

3-8-1 1.4 × 10−3 2.2 × 10−3 3.5 × 10−3 5.2 × 10−4

3-9-1 1.5 × 10−3 2.2 × 10−3 3.7 × 10−3 5.0 × 10−4

3-10-1 1.5 × 10−3 2.1 × 10−3 3.4 × 10−3 5.0 × 10−4

3-11-1 1.4 × 10−3 2.0 × 10−3 3.0 × 10−3 4.2 × 10−4

3-12-1 1.2 × 10−3 1.9 × 10−3 2.6 × 10−3 3.4 × 10−4

3-13-1 1.3 × 10−3 2.0 × 10−3 3.3 × 10−3 5.0 × 10−4

3-14-1 1.4 × 10−3 2.0 × 10−3 3.1 × 10−3 4.7 × 10−4

3-15-1 1.3 × 10−3 1.8 × 10−3 2.9 × 10−3 3.6 × 10−4

The training results that obtained for S1 are given in Table 6. The best error value was
found as 4.6 × 10−5 with a 1-11-1 network structure. A serious performance increase was
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observed until the number of neurons was 11 in the hidden layer. The best mean error
value was obtained with a 1-12-1 network structure. The test results of S1 are presented
in Table 7. As in the training results, the best test error value was reached with a 1-11-1
network structure. The best mean error value was found as 8.2 × 10−4 with a 1-8-1 network
structure. In the training results, the most effective standard deviation value was obtained
with a 1-12-1 network structure. In the test results, the best standard deviation value was
found in the 1-10-1 network structure.

Table 6. Training results obtained with the proposed approach for the S1 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S1

1-2-1 1.2 × 10−3 1.6 × 10−3 2.4 × 10−3 4.9 × 10−4

1-3-1 6.0 × 10−4 7.0 × 10−4 9.2 × 10−4 7.9 × 10−5

1-4-1 5.0 × 10−5 4.2 × 10−4 1.2 × 10−3 3.1 × 10−4

1-5-1 5.5 × 10−5 3.7 × 10−4 6.8 × 10−4 2.3 × 10−4

1-6-1 5.1 × 10−5 3.0 × 10−4 8.4 × 10−4 2.6 × 10−4

1-7-1 4.9 × 10−5 1.4 × 10−4 6.7 × 10−4 1.3 × 10−4

1-8-1 5.6 × 10−5 2.2 × 10−4 6.2 × 10−4 1.8 × 10−4

1-9-1 4.7 × 10−5 1.8 × 10−4 6.5 × 10−4 1.7 × 10−4

1-10-1 5.3 × 10−5 1.4 × 10−4 5.8 × 10−4 1.4 × 10−4

1-11-1 4.6 × 10−5 1.4 × 10−4 5.4 × 10−4 1.2 × 10−4

1-12-1 5.3 × 10−5 1.0 × 10−4 4.1 × 10−4 6.4 × 10−5

1-13-1 4.7 × 10−5 1.5 × 10−4 5.0 × 10−4 1.2 × 10−4

1-14-1 5.8 × 10−5 1.4 × 10−4 4.0 × 10−4 8.2 × 10−5

1-15-1 4.7 × 10−5 1.4 × 10−4 3.9 × 10−4 8.4 × 10−5

The training results of S2 are presented in Table 8. The best error value was found
with a 2-12-1 network structure. A significant increase in performance was observed
until reaching the 2-12-1 network structure from the 2-12-1 network structure. The best
mean error value was found with a 2-10-1 network structure as 1.0 × 10−4. The test
results obtained for S2 are given in Table 9. The best test error value was reached with a
2-5-1 network structure. The best mean error value was obtained with the 2-6-1 network
structure. It is seen that the standard deviation values obtained from the training and error
results are effective.

The training results that found for S3 are given in Table 10. The best error value was
reached with a 2-9-1 network structure. It is 5.3 × 10−6. The best mean error value was
found with a 2-15-1 network structure. In Table 11, the test results of S3 are presented.
The best test error value and the best mean error value were found with a 2-12-1 network
structure. As seen in both the training and test results, the most effective standard deviation
value was obtained with a 2-2-1 network structure.

In Table 12, the training results for S4 are presented. An increase was observed in the
performance until the number of neurons was nine in the hidden layer. The best standard
deviation value was obtained with a 3-11-1 network structure. The test results of S4 are
given in Table 13. The best error value was reached with the 3-11-1 network structure.
With a 3-7-1 network structure, the best mean error value was found as 7.8 × 10−4. A
3-10-1 network structure has the best standard deviation value in the test.
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Table 7. Test results obtained with the proposed approach for the S1 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S1

1-2-1 2.4 × 10−3 2.9 × 10−3 4.4 × 10−3 7.9 × 10−4

1-3-1 1.3 × 10−3 1.8 × 10−3 2.4 × 10−3 3.8 × 10−4

1-4-1 4.3 × 10−4 1.4 × 10−3 2.4 × 10−3 6.3 × 10−4

1-5-1 4.3 × 10−4 1.3 × 10−3 2.4 × 10−3 5.6 × 10−4

1-6-1 3.3 × 10−4 1.1 × 10−3 2.3 × 10−3 5.9 × 10−4

1-7-1 3.4 × 10−4 8.8 × 10−4 1.9 × 10−3 3.6 × 10−4

1-8-1 3.4 × 10−4 8.2 × 10−4 1.9 × 10−3 3.9 × 10−4

1-9-1 3.7 × 10−4 9.8 × 10−4 2.4 × 10−3 5.4 × 10−4

1-10-1 3.8 × 10−4 9.0 × 10−4 1.5 × 10−3 3.0 × 10−4

1-11-1 3.0 × 10−4 1.0 × 10−3 3.5 × 10−3 5.7 × 10−4

1-12-1 3.2 × 10−4 9.7 × 10−4 1.9 × 10−3 4.0 × 10−4

1-13-1 4.1 × 10−4 1.1 × 10−3 2.9 × 10−3 4.9 × 10−4

1-14-1 3.5 × 10−4 9.8 × 10−4 1.9 × 10−3 4.6 × 10−4

1-15-1 4.6 × 10−4 1.0 × 10−3 2.7 × 10−3 5.2 × 10−4

Table 8. Training results obtained with the proposed approach for the S2 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S2

2-2-1 4.4 × 10−3 5.0 × 10−3 6.0 × 10−3 3.4 × 10−4

2-3-1 6.6 × 10−4 9.1 × 10−4 2.8 × 10−3 4.9 × 10−4

2-4-1 1.4 × 10−4 3.8 × 10−4 7.4 × 10−4 2.0 × 10−4

2-5-1 5.5 × 10−5 2.2 × 10−4 6.0 × 10−4 1.4 × 10−4

2-6-1 5.5 × 10−5 1.4 × 10−4 3.5 × 10−4 6.0 × 10−5

2-7-1 5.0 × 10−5 1.3 × 10−4 2.5 × 10−4 5.0 × 10−5

2-8-1 5.0 × 10−5 1.4 × 10−4 7.0 × 10−4 1.1 × 10−4

2-9-1 4.7 × 10−5 1.1 × 10−4 2.8 × 10−4 6.9 × 10−5

2-10-1 4.9 × 10−5 1.0 × 10−4 2.7 × 10−4 4.6 × 10−5

2-11-1 6.4 × 10−5 1.1 × 10−4 2.0 × 10−4 3.7 × 10−5

2-12-1 4.4 × 10−5 1.2 × 10−4 4.9 × 10−4 8.2 × 10−5

2-13-1 6.1 × 10−5 1.2 × 10−4 2.2 × 10−4 4.0 × 10−5

2-14-1 5.7 × 10−5 1.1 × 10−4 2.7 × 10−4 4.5 × 10−5

2-15-1 5.2 × 10−5 1.1 × 10−4 2.6 × 10−4 5.0 × 10−5
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Table 9. Test results obtained with the proposed approach for the S2 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S2

2-2-1 9.2 × 10−3 1.5 × 10−2 2.5 × 10−2 6.1 × 10−3

2-3-1 5.4 × 10−3 7.0 × 10−3 2.5 × 10−2 3.4 × 10−3

2-4-1 7.1 × 10−4 3.8 × 10−3 8.4 × 10−3 2.4 × 10−3

2-5-1 6.7 × 10−4 3.2 × 10−3 1.0 × 10−2 2.2 × 10−3

2-6-1 1.0 × 10−3 2.3 × 10−3 8.5 × 10−3 1.3 × 10−3

2-7-1 8.0 × 10−4 2.4 × 10−3 8.8 × 10−3 1.6 × 10−3

2-8-1 1.1 × 10−3 2.7 × 10−3 1.5 × 10−2 2.5 × 10−3

2-9-1 1.3 × 10−3 2.7 × 10−3 9.2 × 10−3 1.7 × 10−3

2-10-1 7.5 × 10−4 2.4 × 10−3 6.5 × 10−3 1.0 × 10−3

2-11-1 7.8 × 10−4 2.4 × 10−3 6.0 × 10−3 1.1 × 10−3

2-12-1 1.4 × 10−3 2.6 × 10−3 5.0 × 10−3 9.1 × 10−4

2-13-1 1.3 × 10−3 2.8 × 10−3 8.3 × 10−3 1.2 × 10−3

2-14-1 1.0 × 10−3 3.1 × 10−3 7.3 × 10−3 1.4 × 10−3

2-15-1 1.5 × 10−3 3.3 × 10−3 9.3 × 10−3 1.9 × 10−3

Table 10. Training results obtained with the proposed approach for the S3 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S3

2-2-1 3.0 × 10−5 3.1 × 10−5 3.2 × 10−5 6.0 × 10−7

2-3-1 8.2 × 10−6 1.6 × 10−5 3.2 × 10−5 7.2 × 10−6

2-4-1 8.0 × 10−6 1.6 × 10−5 3.4 × 10−5 6.2 × 10−6

2-5-1 7.1 × 10−6 1.3 × 10−5 2.9 × 10−5 4.9 × 10−6

2-6-1 7.5 × 10−6 1.5 × 10−5 3.1 × 10−5 5.3 × 10−6

2-7-1 6.7 × 10−6 1.6 × 10−5 4.0 × 10−5 8.4 × 10−6

2-8-1 6.1 × 10−6 1.4 × 10−5 2.9 × 10−5 5.6 × 10−6

2-9-1 5.3 × 10−6 1.4 × 10−5 2.9 × 10−5 5.2 × 10−6

2-10-1 6.1 × 10−6 1.4 × 10−5 2.7 × 10−5 5.4 × 10−6

2-11-1 6.0 × 10−6 1.7 × 10−5 1.1 × 10−4 1.8 × 10−5

2-12-1 6.2 × 10−6 1.4 × 10−5 4.2 × 10−5 6.5 × 10−6

2-13-1 7.9 × 10−6 1.8 × 10−5 4.6 × 10−5 1.0 × 10−5

2-14-1 6.8 × 10−6 1.5 × 10−5 2.9 × 10−5 5.2 × 10−6

2-15-1 7.2 × 10−6 1.2 × 10−5 2.4 × 10−5 3.8 × 10−6
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Table 11. Test results obtained with the proposed approach for the S3 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S3

2-2-1 1.7 × 10−3 1.7 × 10−3 1.8 × 10−3 1.9 × 10−5

2-3-1 1.5 × 10−3 1.6 × 10−3 1.9 × 10−3 1.1 × 10−4

2-4-1 1.1 × 10−3 1.5 × 10−3 2.1 × 10−3 2.4 × 10−4

2-5-1 1.2 × 10−3 1.6 × 10−3 2.2 × 10−3 2.3 × 10−4

2-6-1 1.2 × 10−3 1.6 × 10−3 2.3 × 10−3 2.5 × 10−4

2-7-1 1.1 × 10−3 1.6 × 10−3 2.6 × 10−3 3.6 × 10−4

2-8-1 1.0 × 10−3 1.5 × 10−3 2.1 × 10−3 2.4 × 10−4

2-9-1 1.1 × 10−3 1.5 × 10−3 2.3 × 10−3 3.0 × 10−4

2-10-1 9.7 × 10−4 1.5 × 10−3 2.0 × 10−3 2.5 × 10−4

2-11-1 1.1 × 10−3 1.7 × 10−3 5.2 × 10−3 7.1 × 10−4

2-12-1 8.0 × 10−4 1.4 × 10−3 2.0 × 10−3 2.9 × 10−4

2-13-1 8.7 × 10−4 1.6 × 10−3 3.3 × 10−3 5.2 × 10−4

2-14-1 9.9 × 10−4 1.6 × 10−3 3.6 × 10−3 5.4 × 10−4

2-15-1 1.2 × 10−3 1.5 × 10−3 2.3 × 10−3 2.4 × 10−4

Table 12. Training results obtained with the proposed approach for the S4 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S4

3-2-1 2.9 × 10−3 3.0 × 10−3 3.2 × 10−3 1.3 × 10−4

3-3-1 4.3 × 10−4 5.6 × 10−4 8.9 × 10−4 1.2 × 10−4

3-4-1 2.5 × 10−4 4.3 × 10−4 6.7 × 10−4 9.4 × 10−5

3-5-1 2.0 × 10−4 3.7 × 10−4 7.3 × 10−4 1.4 × 10−4

3-6-1 2.2 × 10−4 3.4 × 10−4 5.2 × 10−4 8.0 × 10−5

3-7-1 1.6 × 10−4 3.0 × 10−4 5.1 × 10−4 8.0 × 10−5

3-8-1 1.5 × 10−4 2.9 × 10−4 5.1 × 10−4 8.7 × 10−5

3-9-1 1.5 × 10−4 3.0 × 10−4 6.0 × 10−4 9.5 × 10−5

3-10-1 1.4 × 10−4 2.8 × 10−4 4.5 × 10−4 6.9 × 10−5

3-11-1 1.2 × 10−4 2.5 × 10−4 3.7 × 10−4 6.5 × 10−5

3-12-1 1.3 × 10−4 2.6 × 10−4 3.8 × 10−4 7.5 × 10−5

3-13-1 1.3 × 10−4 2.8 × 10−4 4.9 × 10−4 9.5 × 10−5

3-14-1 1.3 × 10−4 2.7 × 10−4 4.5 × 10−4 8.4 × 10−5

3-15-1 1.5 × 10−4 2.5 × 10−4 3.9 × 10−4 6.8 × 10−5
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Table 13. Test results obtained with the proposed approach for the S4 system.

System
Network
Structure

The Results

Best Mean Worst Std.

S4

3-2-1 3.6 × 10−3 4.0 × 10−3 4.5 × 10−3 4.4 × 10−4

3-3-1 6.4 × 10−4 1.1 × 10−3 2.0 × 10−3 3.7 × 10−4

3-4-1 4.0 × 10−4 1.0 × 10−3 1.8 × 10−3 3.8 × 10−4

3-5-1 4.3 × 10−4 8.6 × 10−4 1.5 × 10−3 2.7 × 10−4

3-6-1 3.8 × 10−4 9.4 × 10−4 1.7 × 10−3 3.2 × 10−4

3-7-1 3.5 × 10−4 7.8 × 10−4 1.8 × 10−3 3.2 × 10−4

3-8-1 4.6 × 10−4 8.8 × 10−4 1.5 × 10−3 3.1 × 10−4

3-9-1 2.8 × 10−4 9.3 × 10−4 2.1 × 10−3 4.1 × 10−4

3-10-1 3.2 × 10−4 8.9 × 10−4 1.4 × 10−3 2.6 × 10−4

3-11-1 2.5 × 10−4 8.7 × 10−4 1.5 × 10−3 3.4 × 10−4

3-12-1 3.6 × 10−4 8.6 × 10−4 1.7 × 10−3 3.2 × 10−4

3-13-1 2.5 × 10−4 8.5 × 10−4 1.5 × 10−3 3.4 × 10−4

3-14-1 2.8 × 10−4 9.7 × 10−4 1.6 × 10−3 3.3 × 10−4

3-15-1 3.1 × 10−4 8.8 × 10−4 1.5 × 10−3 2.8 × 10−4

It is important to compare the real output and the predicted output in order to analyze
the success status of the training process. In Figure 3, the comparison of the real output
and the predicted output is shown for all systems. These graphs were created by taking
into account the best results. In the graphs of D1, S1, S2, S3, and S4, it is seen that the real
and the predicted outputs overlap exactly. In D2, the similarity rate of both outputs is very
high. This is an indication of the success of the training process for the relevant systems.

The performance of MPA in solving related problems was compared with different
metaheuristic algorithms. The results of other algorithms are taken from [12]. The popula-
tion size and the maximum number of iterations taken were the same for a fair comparison.
For each system in the training process of ANN with MPA, neurons between 2 and 15
were utilized in the hidden layer, and the results were obtained. However, in [12], the
performance of networks with only 5, 10, and 15 neurons in the hidden layer was examined.
For a fair comparison, the results of networks with 5, 10, and 15 neurons were also taken
into account in MPA and placed in the comparison tables. The algorithms used in the
comparison are ABC, BAT, CS, FPA, PSO, JAYA, TLBO, SCA, BBO, WOA, BSA, HS, BA,
MVO, MFO, and SSA.

The comparison of the results obtained for D1 is given in Table 14. The best training
result was found with the proposed approach as 2.4 × 10−4. Likewise, the best test error
value belongs to the proposed approach, and it is 2.4 × 10−4. After the proposed approach,
the best training and test results were found with BBO. In addition, in seven of the seventeen
algorithms, the 3-15-1 network structure was seen to be more effective.

In Table 15, the comparison of the results belonging to D2 is presented. When the
relevant table is examined, it is seen that the best training and test error values are owned
by the proposed approach, as in D1. With a 3-15-1 network structure, the training and test
error value was found as 1.8 × 10−3. MFO and BBO are algorithms with the best training
and test error values after the proposed approach. The training and test error values of
these algorithms are 2.4 × 10−3 and 2.5 × 10−3, respectively. MFO was more effective in
the 3-15-1 network structure. On the other hand, BBO achieved a more successful result in
the 3-10-1 network structure.
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The comparison results of S1 are given in Table 16. The best training and test error
values were obtained by using the proposed algorithm. Unlike D1 and D2, the best error
values were achieved when the number of neurons was 10 in the hidden layer. After the
proposed algorithm, the best result was found with the MFO in both training and test error
values. When the results are examined, it is seen that the performance of the proposed
algorithm is significantly better than other algorithms.
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Table 14. Comparison of the best mean error values obtained using different metaheuristic algorithms
for D1 [12].

Algorithm
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

ABC 3-15-1 5.3 × 10−4 3-15-1 6.6 × 10−4

BAT 3-15-1 5.2 × 10−3 3-15-1 5.3 × 10−3

CS 3-10-1 8.6 × 10−4 3-5-1 9.3 × 10−4

FPA 3-10-1 9.9 × 10−4 3-10-1 1.1 × 10−3

PSO 3-5-1 1.3 × 10−3 3-5-1 1.3 × 10−3

JAYA 3-5-1 1.3 × 10−2 3-5-1 1.3 × 10−2

TLBO 3-10-1 6.2 × 10−4 3-10-1 6.7 × 10−4

SCA 3-5-1 3.5 × 10−3 3-5-1 3.9 × 10−3

BBO 3-5-1 5.2 × 10−4 3-5-1 6.1 × 10−4

WOA 3-5-1 5.3 × 10−3 3-5-1 5.7 × 10−3

BSA 3-15-1 6.5 × 10−3 3-15-1 6.8 × 10−3

HS 3-5-1 5.7 × 10−3 3-5-1 5.8 × 10−3

BA 3-10-1 6.7 × 10−3 3-10-1 7.0 × 10−3

MVO 3-15-1 6.7 × 10−4 3-15-1 7.6 × 10−4

MFO 3-15-1 5.4 × 10−4 3-15-1 6.3 × 10−4

SSA 3-15-1 6.9 × 10−4 3-15-1 8.1 × 10−4

Proposed 3-15-1 2.4 × 10−4 3-15-1 2.4 × 10−4

Table 15. Comparison of the best mean error values obtained using different metaheuristic algorithms
for D2 [12].

Algorithm
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

ABC 3-15-1 2.9 × 10−3 3-15-1 3.0 × 10−3

BAT 3-15-1 8.6 × 10−3 3-15-1 9.0 × 10−3

CS 3-15-1 3.4 × 10−3 3-15-1 3.5 × 10−3

FPA 3-15-1 3.7 × 10−3 3-15-1 3.9 × 10−3

PSO 3-5-1 4.1 × 10−3 3-5-1 4.1 × 10−3

JAYA 3-10-1 1.4 × 10−2 3-10-1 1.4 × 10−2

TLBO 3-10-1 3.0 × 10−3 3-10-1 3.2 × 10−3

SCA 3-5-1 6.2 × 10−3 3-5-1 6.6 × 10−3

BBO 3-10-1 2.4 × 10−3 3-10-1 2.5 × 10−3

WOA 3-5-1 8.8 × 10−3 3-5-1 9.1 × 10−3

BSA 3-10-1 1.1 × 10−2 3-10-1 1.1 × 10−2

HS 3-5-1 9.8 × 10−3 3-5-1 9.8 × 10−3

BA 3-10-1 9.7 × 10−3 3-10-1 1.0 × 10−2

MVO 3-15-1 3.1 × 10−3 3-15-1 3.2 × 10−3

MFO 3-15-1 2.4 × 10−3 3-15-1 2.5 × 10−3

SSA 3-15-1 3.6 × 10−3 3-15-1 3.8 × 10−3

Proposed 3-15-1 1.8 × 10−3 3-15-1 1.8 × 10−3
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Table 16. Comparison of the best mean error values obtained using different metaheuristic algorithms
for S1 [12].

Algorithm
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

ABC 1-15-1 7.1 × 10−4 1-15-1 1.5 × 10−3

BAT 1-10-1 2.2 × 10−2 1-10-1 2.3 × 10−2

CS 1-15-1 7.3 × 10−4 1-10-1 1.6 × 10−3

FPA 1-15-1 8.0 × 10−4 1-15-1 1.7 × 10−3

PSO 1-5-1 1.7 × 10−3 1-5-1 1.7 × 10−3

JAYA 1-10-1 1.3 × 10−2 1-15-1 1.4 × 10−2

TLBO 1-10-1 9.7 × 10−4 1-10-1 1.6 × 10−3

SCA 1-5-1 4.5 × 10−3 1-5-1 5.6 × 10−3

BBO 1-15-1 5.3 × 10−4 1-15-1 1.5 × 10−3

WOA 1-10-1 3.8 × 10−3 1-10-1 5.4 × 10−3

BSA 1-10-1 9.2 × 10−3 1-10-1 1.0 × 10−2

HS 1-5-1 1.1 × 10−2 1-5-1 1.2 × 10−2

BA 1-15-1 6.2 × 10−3 1-10-1 7.2 × 10−3

MVO 1-15-1 4.9 × 10−4 1-15-1 1.5 × 10−3

MFO 1-15-1 3.5 × 10−4 1-15-1 1.4 × 10−3

SSA 1-15-1 7.9 × 10−4 1-15-1 1.8 × 10−3

Proposed 1-10-1 1.4 × 10−4 1-10-1 9.0 × 10−4

In Table 17, the comparison results of S2 are given. The best training error value was
found by utilizing the proposed algorithm. This value was obtained as 1.0 × 10−4 with a
2-10-1 network structure. The proposed algorithm is followed by BBO with a 2-15-1 network
structure. The best test error value was found with PSO by using a 2-5-1 network structure.

The comparison of results for S3 is presented in Table 18. The best error value was
found with the proposed approach in the 2-15-1 network structure, and it is 1.2 × 10−5.
This value is followed by TLBO with a 2-5-1 network structure. It is seen that the results
found with the proposed algorithm in the training error values are much more successful
than the results found with other algorithms. The best test error value was found in the
PSO with a 2-5-1 network structure. This value is followed by the proposed approach with
a 2-15-1 network structure. In both the training and test results, it was observed that the
nine algorithms were more effective with the 2-5-1 network structure.

In Table 19, the comparison of results for S4 is given. The best training and test
error values were obtained with the proposed approach. While the best training result
was achieved with the 3-15-1 network structure, the best test error value was achieved
with the 3-5-1 network structure. The proposed algorithm is followed by TLBO with a
3-10-1 network structure in training and test error values.
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Table 17. Comparison of the best mean error values obtained using different metaheuristic algorithms
for S2 [12].

Algorithm
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

ABC 2-10-1 5.4 × 10−4 2-10-1 4.1 × 10−3

BAT 2-15-1 8.9 × 10−3 2-15-1 1.7 × 10−2

CS 2-15-1 9.8 × 10−4 2-10-1 4.4 × 10−3

FPA 2-15-1 1.1 × 10−3 2-10-1 5.8 × 10−3

PSO 2-5-1 1.8 × 10−3 2-5-1 1.8 × 10−3

JAYA 2-5-1 1.6 × 10−2 2-5-1 2.8 × 10−2

TLBO 2-10-1 6.2 × 10−4 2-10-1 4.0 × 10−3

SCA 2-5-1 7.5 × 10−3 2-5-1 1.7 × 10−2

BBO 2-15-1 4.7 × 10−4 2-15-1 4.3 × 10−3

WOA 2-5-1 9.1 × 10−3 2-15-1 2.1 × 10−2

BSA 2-10-1 8.6 × 10−3 2-10-1 1.8 × 10−2

HS 2-5-1 4.9 × 10−3 2-5-1 1.2 × 10−2

BA 2-5-1 1.0 × 10−2 2-10-1 2.3 × 10−2

MVO 2-15-1 5.5 × 10−4 2-15-1 3.8 × 10−3

MFO 2-15-1 5.2 × 10−4 2-15-1 3.7 × 10−3

SSA 2-15-1 1.2 × 10−3 2-15-1 6.7 × 10−3

Proposed 2-10-1 1.0 × 10 −4 2-10-1 2.4 × 10−3

Table 18. Comparison of the best mean error values obtained using different metaheuristic algorithms
for S3 [12].

Algorithm
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

ABC 2-10-1 2.3 × 10−4 2-5-1 3.4 × 10−3

BAT 2-15-1 1.6 × 10−3 2-15-1 9.2 × 10−3

CS 2-5-1 1.4 × 10−4 2-5-1 3.5 × 10−3

FPA 2-5-1 2.0 × 10−4 2-5-1 4.0 × 10−3

PSO 2-5-1 2.1 × 10−4 2-5-1 2.1 × 10−4

JAYA 2-5-1 6.2 × 10−3 2-5-1 2.4 × 10−2

TLBO 2-5-1 5.6 × 10−5 2-10-1 2.8 × 10−3

SCA 2-5-1 1.2 × 10−3 2-5-1 7.6 × 10−3

BBO 2-10-1 1.0 × 10−4 2-10-1 3.5 × 10−3

WOA 2-5-1 1.6 × 10−3 2-5-1 9.8 × 10−3

BSA 2-15-1 2.2 × 10−3 2-15-1 1.4 × 10−2

HS 2-5-1 2.2 × 10−3 2-5-1 1.0 × 10−2

BA 2-5-1 2.7 × 10−3 2-5-1 9.8 × 10−3

MVO 2-10-1 1.2 × 10−4 2-15-1 3.6 × 10−3

MFO 2-10-1 2.0 × 10−4 2-10-1 4.5 × 10−3

SSA 2-15-1 1.1 × 10−4 2-15-1 3.6 × 10−3

Proposed 2-15-1 1.2 × 10−5 2-15-1 1.5 × 10−3
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Table 19. Comparison of the best mean error values obtained using different metaheuristic algorithms
for S4 [12].

Algorithm
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

ABC 3-10-1 1.5 × 10−3 3-10-1 2.1 × 10−3

BAT 3-5-1 1.5 × 10−2 3-5-1 1.5 × 10−2

CS 3-10-1 2.5 × 10−3 3-5-1 2.9 × 10−3

FPA 3-5-1 3.1 × 10−3 3-15-1 3.4 × 10−3

PSO 3-5-1 2.1 × 10−3 3-5-1 2.1 × 10−3

JAYA 3-5-1 3.0 × 10−2 3-5-1 2.9 × 10−2

TLBO 3-10-1 4.8 × 10−4 3-10-1 9.7 × 10−4

SCA 3-5-1 7.5 × 10−3 3-5-1 7.6 × 10−3

BBO 3-10-1 8.1 × 10−4 3-5-1 1.4 × 10−3

WOA 3-5-1 8.2 × 10−3 3-5-1 8.2 × 10−3

BSA 3-15-1 1.4 × 10−2 3-15-1 1.4 × 10−2

HS 3-5-1 8.2 × 10−3 3-5-1 7.9 × 10−3

BA 3-5-1 1.7 × 10−2 3-5-1 1.7 × 10−2

MVO 3-15-1 2.0 × 10−3 3-15-1 2.5 × 10−3

MFO 3-15-1 2.2 × 10−3 3-15-1 3.4 × 10−3

SSA 3-15-1 1.7 × 10−3 3-15-1 2.2 × 10−3

Proposed 3-15-1 2.5 × 10 −4 3-5-1 8.6 × 10−4

5. Discussion

One of the important problems used to evaluate the performances of approaches
based on neural networks and neuro-fuzzy is the identification of nonlinear systems. In
this context, there are nonlinear test functions used in the literature. Nonlinear systems
can exhibit static or dynamic behaviors due to their structure. There are differences in
the behavior of both problem groups. These problems are in the difficult problem group
by their nature. Therefore, the success of the developed artificial intelligence approaches
to these problem types gives an idea about the success and effectiveness of the related
algorithm. For this reason, both static and dynamic nonlinear test problems were used in
this study.

The effectiveness of ANN in the modeling of a system is directly related to the training
process. Namely, a successful training algorithm is required. Therefore, in this study, MPA
was chosen for an effective training process. In the solution of a system, the network
structure of the artificial neural network affects the performance positively or negatively.
Detailed analysis of the network structure is required for each problem. Therefore, in this
study, different network structures were used to solve each problem. Network structures
with 2 to 15 neurons in the hidden layer were tested for each problem. In general, it was
observed that the performance was worse at a lower number of neurons. Although it varies
according to the type of problem, increasing the number of neurons up to a certain level
improved the performance. The best mean results obtained for each problem are given in
Table 20. As seen in Table 20, the best mean training results were obtained in networks
including high neurons. On the other hand, when the test results were evaluated, it was
seen that different behaviors were exhibited according to the training process, except for D1
and D2. In the testing process of S1, S2, and S4, more effective results were obtained when
there were six to eight neurons in the hidden layer. Compared to the other static systems,
S3 exhibited more different behavior.
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Table 20. The best mean error values obtained for the systems.

System
Train Test

Network
Structure Mean (MSE) Network

Structure Mean (MSE)

D1 3-12-1 2.3 × 10−4 3-12-1 2.3 × 10−4

D2 3-15-1 1.8 × 10−3 3-15-1 1.8 × 10−3

S1 1-12-1 1.0 × 10−4 1-8-1 8.2 × 10−4

S2 2-10-1 1.0 × 10−4 2-6-1 2.3 × 10−3

S3 2-15-1 1.2 × 10−5 2-12-1 1.4 × 10−3

S4 3-11-1 2.5 × 10−4 3-7-1 7.8 × 10−4

Except for D2, mean error values smaller than 10−3 were obtained. As seen in Figure 3,
the comparison of the real and predicted output graphs of all systems overlapped with each
other with high accuracy except for D2. In D2, on the other hand, it was seen that there was
a high accuracy overlap except for a few regions. This indicates that the neural network
training using the MPA for the identification of the relevant systems was successful. This
successful situation was seen in both output graphics and solution quality. Each application
was run for 30 times. The standard deviation values obtained were generally low. This
situation shows that the solutions can be repeated at a certain standard deviation value.
In other words, although the initial population is randomly selected, it shows that similar
effective solutions can be achieved by using MPA.

The performance of MPA on the identification of related systems was compared
with 16 different metaheuristic algorithms. In most of the results, it was observed that
the proposed approach was more effective. This result shows that the ability of MPA to
produce solutions on the related systems is more effective than the other algorithms.

When the literature is examined, the optimization of the weight values is mostly
carried out in the training process of FFNN. As seen in [10–12], the sigmoid activation
function is more effective in solving the related problem. Moreover, the performance of
MPA in solving related problems was compared with different metaheuristic algorithms.
The results of other algorithms are taken from [12]. Parameters similar to [12] were chosen
for fair comparison. These parameter values are evaluated within the limitations. The
number of neurons and layers affects performance. However, increasing the number of
neurons and layers will increase the processing time. Therefore, the scope of this study was
limited in terms of the number of neurons and layers. All results in this study are valid
within the stated limitations.

This study gives important ideas about the success of MPA in neural network training.
The systems chosen for the training process are difficult and complex. The success of
the relevant training process shows that the proposed approach can be used in model-
ing different problems. It is possible that it can be used to solve modeling problems in
many fields, such as education, social sciences, engineering, economics, and medicine, in
future studies.

6. Conclusions

In this study, neural network training was carried out by using MPA for the identifi-
cation of nonlinear systems. Six nonlinear systems were used in the applications, and the
results were obtained for 14 different network structures. In addition, the performance of
the proposed approach was compared with 16 popular metaheuristic algorithms. The basic
results obtained within the scope of the research are:

• It has been observed that MPA is effective in the identification of nonlinear systems.
In general, low error values were obtained in both the training and testing processes;

• The performance of MPA was compared with different metaheuristic algorithms. It
has been observed that the MPA was more effective in the wide majority. This situation



Symmetry 2023, 15, 1610 21 of 22

shows that the solution-producing mechanism of the MPA is more effective than other
metaheuristic algorithms for solving related problems;

• It has been determined that the network structures used affect the performance signifi-
cantly. It has been observed that network structures with more neurons give better
performance in the identification of dynamic systems according to the static systems.
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