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Abstract: In survey sampling, we aspire to obtain sound and consistent responses, which are not
achieved while dealing with sensitive issues. Frequently, respondents give elusive responses to
sensitive questions, so we employ randomized response techniques that facilitate finding an appro-
priate proportion of socially sensitive characteristics. In the present study, we proposed a hidden
logit estimation method using Huang, Warner, and Mangat’s randomized response techniques. This
study depicts that the estimates become closer to the standard logits as the values of p increase. We
found that the hidden logit estimates obtained by the Huang randomized response technique were
nearer to the parametric values, in contrast to the other existing techniques, and we demonstrate
an increase in accuracy as well. The simulation-based AIC and SIC values are used to assess model
performance. We found that the Huang model is the best model for the proposed hidden logit method.
This paper contributes towards the application of logistic models in the case of sensitive or socially
stigmatized issues.

Keywords: randomized response; logit models; logistic regression; sensitive characteristics; hidden
logit estimation

1. Introduction

Survey sampling is a strategy for gathering data about a specific trait of a population
based on a sub-part of that population, when there is limited time or cost to observe each
person in the entire population. It involves taking samples from the population, analyzing
them, and then using the results of the samples to draw final statements, interpretations,
and conclusions about the whole population. Survey sampling is a comprehensive and
widely used strategy in various areas of data collection. The most compelling goal in data
collection is to obtain precise, predictable, and reliable outcomes.

1.1. Survey Sampling and Randomized Response

In conducting surveys, there are many issues of interest when somebody needs to
gather data on sensitive or stigmatized issues. The findings might be misleading if we have
sensitive characteristics under study, such as scams, the use of illegal drugs or intoxicating
beverages, prohibited or unlawful earnings, evading income tax, reserves in the form of
prize bonds, number of induced abortions, exploitation of finances, etc.

The main aim in survey sampling is to obtain accurate and reliable data, which mostly
fails in the case of sensitive issues. When surveys are conducted with a direct questioning
or interviewing method regarding sensitive issues, it is expected to get ambiguous or false
results. Issues like scams, prohibited drugs, and tax evasion are considered as sensitive
issues. Let us first discuss some real life examples, in which our variable of interest is
considered as sensitive or socially stigmatized.

Racism is a major workplace sensitivity issue that refers to making colleagues feel
uncomfortable regarding their background or skin tone. If we want to know about people
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who perpetrate racism, direct questioning methods will fail to elicit authentic responses.
Therefore, racism is a highly sensitive issue, especially in business research, as discussed
in detail by Geurts [1]. As another example, if our interest is to assess the proportion of
users of illicit medication and alcoholic items in a local area where such substances are
completely restricted, respondents may hesitate to reveal their sensitive traits. Thus, if an
interviewer conducts a direct inquiry such as “do you smoke or take alcoholic drinks?”
the respondents will wonder whether or not to share an accurate response to this delicate
inquiry about their drinking status with the interviewer.

Harassment is also one of the sensitive issues where we experience difficulty in
collecting data. Harassment can be on the basis of race, religion, gender, or national origin.
Workplace harassment, in all its forms, is unacceptable. Mirhosseini et al. [2] presented a
descriptive analysis of sexual harassment and its coping strategies. Although connections
between coworkers might develop over time, they should always adhere to company policy.
A coworker with unprofessional motives should never make an employee feel pressured
or uneasy. Beyond interpersonal interactions, harassing, intimidating, or bullying another
employee needs to be addressed swiftly and firmly. Therefore, if a person is interested
in collecting data about harassment in their workplace, the respondents may not provide
them with accurate information.

When we are intrigued to know the proportion of individuals who evade income tax
by making payments through contacts or nepotism, sensitive issues may arise. A detailed
study on factors persuading taxpayers to engage in tax evasion was done by Kassa [3].
If an income tax officer conducts a survey for such purposes, the respondents will likely
lie regarding non-payment of income tax due to their fear of punishment and penalties
imposed by the authorities or government accountability. Similarly, if we wish to know
about the living standards and comforts of individuals in a specific local area, we have to
know about their income. Here, on the off chance that we apply the condition that we know
their normal pay, and it does not coordinate with their marvelous expectation for everyday
comforts, then we need to know the extent of individuals who are engaged with unlawful
pay and illegal income. For the most part, respondents conceal their pay and never want to
be asked or questioned about their unlawful pay or additional kinds of revenue. Therefore,
they may under-report their illegal means of obtaining income to an interviewer who is
a stranger.

The respondent frequently wonders whether or not to answer honestly in the case
where respondents are straightforwardly presented with these sorts of sensitive inquiries.
The respondents experience dread that either their actual response about the sensitive
inquiries being posed would be a reason for humiliation or that they would be ridiculed
in the general public. Once in a while, they feel that their truthful reaction might draw
punishment or their privacy might be violated. The apprehension that the legal framework
can be prompt results in either refusal to answer or in evasive answers. Such a scenario
might prompt social desirability bias (SDB). Some of the time, we face such conditions
when the study variable is sensitive. Sensitive attributes can be the use of drugs, not paying
tax, being involved in illegal activities, etc.

Warner [4] discovered a randomized response (RR) survey model for countering the
reservations amongst respondents in the case of susceptible or socially stigmatized inquiries;
such a technique is very much needed when we want to obtain reliable and authentic data.
This method is very effective at lessening SDB up to a massive degree. To develop the
self-assurance of and cater to the confidentiality of the respondents, the unrelated question
model is recommended by Greenberg et al. [5]. Some striking work associated with the RR
model has been done by a variety of researchers. Let us have a brief discussion on a few
of them. Moors [6] altered the model of Greenberg [5] in the case of unknown parameters
of the population’s characteristics. He also calculated the values for the probabilities p1
and p2. In the situation when Moors’s [6] model fails, three straightforward alternative RR
models are suggested by Mahmood et al. [7]. Upon comparing his proposed estimators
with those of Greenberg et al. [5], it is evident that his estimators are more efficient. The
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work of Christofides [8] advances the groundbreaking work of Warner [4] by presenting an
alternate randomized response technique (RRT). He also included Warner’s [4] approach
in his proposed procedure as a special case. Huang [9] proved that his proposed approach
is more efficient than a number of widely used RR approaches. His technique is applicable
to direct response surveys as well as in RR surveys when we are striving to obtain genuine
responses regarding sensitive issues.

The concept of RR introduced by Warner [4] has also been extended by many re-
searchers to identify the deficiencies and propose solutions in his model. Kim and
Warde [10] offered some fresh findings on the RR model, where response variables are
presumptively distributed via multinomial distribution. They used Hopkins’s test using a
randomization device to produce estimates, considering it with and without the assumption
of truthful responses. Many scholars have offered numerous alternative ways to address
the privacy issue in contrast to the Moors [6] RR model. However, their models might result
in a significant loss of data information and incur considerable costs in maintaining secrecy.
Compared to earlier RR models, Kim and Warde [11] suggested a simpler model, while
still maintaining confidentiality using stratified sampling. The stratified Warner’s [4] RR
approach and the unrelated question RR model were combined by Kim and Elam to create a
new RRT [12]. A three-stage stratified RR approach using optimal allocation was proposed
by Kim and Chae [13], which expands upon the two-stage stratified RRT developed by
Kim and Elam [12]. They demonstrated their suggested RR estimator to be more effective
than Kim and Elam’s [12] estimator, but it provided less privacy protection. A new, more
efficient RR procedure was sought by Mangat and Singh [14] using two randomization
devices. Their model was confusing to the respondents as the respondents had to cater
two randomizing devices while responding. Therefore, Mangat [15] presented a simpler
technique which was more efficient.

The work of Narjis and Shabbir [16] and Hsieh et al. [17] is also to be noted in the
case of the use of two-stage RR models in order to find the commonness of a sensitive
characteristic. Singh and Singh [18] offered a technique for finding the population fraction
of a stigmatized characteristic, making use of very well-known distribution that is negative
binomial distribution for his work. Singh et al. [19] projected a three-stage randomized
response model, making use of poisson distribution. Halim et al. [20] derived the transition
matrices of the conditional misclassification probabilities of multiple above mentioned
models and also worked on finding the association of variables while taking RR into
account. Jaiswal et al. [21] projected the calibrated estimator of population mean under a
unit response condition using inverse linear, logistic, and exponential integrated models.

1.2. Logistic Regression

When we are working on regression models, our top priority is to approximate the
parameters of the mathematical model or the function involved. For this specific goal
of parameter estimation, numerous techniques can be adopted. Regression has multiple
applications in almost every field. Linear and quadratic multiple regression analysis to find
the behavior of certain reactions in the chemistry field was carried out by Falodun et al. [22].
Dorugade [23] introduced new ridge parameters for ridge regression. The Bayesian ap-
proach was also used by Ateeq et al. [24] to find the recovery time for the patients of a
contagious disease. The ordinary least square (OLS) regression is an incredible asset when
the variables of interest are continuous; however, in the case of dichotomous variables,
OLS is not valid. A few examples of binary variables are: a head shows up on flipping a
coin, an individual smoking or not, a medical test having positive or negative outcomes, an
individual having ownership of an industry or not, or a corporation coming to a decision
to provide additional benefit to their workers. These referenced models result in a “yes”
or “no” reaction. One method to evaluate such dichotomous response variables is logistic
regression. Many researchers have utilized this technique of logistic regression in many
exploration regions, especially in various subjects of psychological and social examinations,
such as those by Clark and Beck [25], Waldman et al. [26], and many others. Not only in the
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social sciences but in numerous other studies in different fields, the predicted variable is
usually stigmatized or sensitive, for example, drug addiction, tax evasion, induced abortion,
sexual abuse etc. We express the effect of one variable on other variable(s) in terms of odds
ratios in logit estimation.

1.3. Logit Estimation in Randomized Response

We need a procedure which can provide complete privacy to the respondent so that
they have no fear of being stigmatized, as stated by Corstange [27]: “If the problem is
that people have incentives to hide their true opinions or behavior from the interviewer,
then our science suffers unless we can develop means to nullify these incentives. Survey
respondents may not be willing to reveal their true answers to sensitive questions without
foolproof guarantees of anonymity—not only from outside observers such as law enforce-
ment or friends and family, but even from the interviewers themselves.” Ordinary logit
models are not suitable when the response dichotomous variable relates to a sensitive issue.
Corstange [27,28] projected a method which is known as hidden logit to deal with such
problems. The hidden logit model is a customized structure of standard logit which stan-
dardizes the outcome of a tool or device which is used for randomization. This technique
operates to display the genuine likelihood of a “yes” reply as a function of a predictor
variable X. The odd ratio is known as:

ln
(

π

1− π

)
= Xβ (1)

Considering π as the likelihood of a “yes” answer, we work to crack any RR model
for π and supplant it in standard logits in order to get the hidden logit model. Utilizing an
identical condition, we can discover our estimates of logits using ML methodology. We have
to create the logit model form in terms of “X” and “β.” According to Corstange [27], the RR
model consists of the following methodology: If flipping a coin is the randomizing device
and if the coin lands on heads, the respondent is asked to say “yes” without clarification;
however, if the coin lands on tails, they are supposed to provide a “yes/no” response
according to the actual state they possess. Let us consider π as the probability of absolute
“yes” and pas the real fraction of participants who truly answer “yes,” then the probability
of a “yes” answer derived by Corstange [27] is provided as:

p(y) = θ = π + (1 − π) p (2)

Solving Equation (2) for π and putting its value in Equation (1) to solve for θ, we obtain:

π = θ−p
1−p

θ = eXi β+p
1+eXi β

(3)

Let us regard “yi” as a dichotomous variable, for which “1” represents a “yes” response
and “0” represents a “no” reply. Subsequently the likelihood function of β is provided as:

L( β|yi) =
n

∏
i=1

θ
yi
i (1− θi)

1−yi , (4)

The first derivative of Equation (4) is

∂ ln L
∂β

=
n

∑
i=1

[
yi

{
eXi β(

p + eXi β
)}− (1 + e−Xi β )−1

]
Xi (5)

Setting Equation (5) as equivalent to zero maximizes this articulation, yet we cannot solve
it scientifically. Therefore, to measure the parameters, this equation is settled numerically.
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Hussain and Shabbir [29] and Hussain et al. [30] also employed different RRTs in
order to calculate the hidden logits. The same has been accomplished by Halim et al. [31]
for Mangat and Singh [14] RRT. Cruff et al. [32] and Chang et al. [33] also worked on
logistic regression in different capacities. Hsieh and Perri [34] worked on finding more
advanced approaches to check the components that are faced by researchers dealing with
two stigmatized variates, taking RRT into account. Our study helps to find the estimates of
logistic models in the case of sensitive issues when there is a complex RRT, like in the case
of Huang [9]. This study significantly advances the use and evaluation of logistic models
in situations when it is challenging to get sincere responses.

The rest of this article has the following sections. In Section 2, the proposed method-
ology of hidden logit is discussed using three RRTs. Section 3 presents the results and
discussions using simulation. The last section states some concluding remarks.

2. Proposed Hidden Logits using Randomized Response Technique

In the past, many researchers have worked on finding the proportion of “yes” re-
sponses while working with sensitive or stigmatized issues. Generally, they have repre-
sented the probability of a “yes” response in the form of θ and used different RR devices
to calculate it. We propose a methodology that involves finding the π of three RRTs and
then incorporating it into the log–odd ratio to determine the value of θ, which is called the
hidden logit. It is then used to find the estimates and standard errors of hidden logits and
compare them with ordinary logits.

2.1. Proposed Hidden Logit Using Huang [9]

Huang [9] launched a survey technique which was very undemanding to approximate
the sensitivity of survey inquiry. His recommended technique is better used to compute a
fraction, when the participant of the underlying study responds fairly about possessing
sensitive characteristic. One point to be noted is that this technique is also equally applied
in the case of direct response surveys as in the case of randomized response surveys in order
to get authentic responses. His suggested method has been shown to be more effective
than several established RR methods. In the case that the respondent chooses “no,” the
individual is provided with a randomization device with two explanations of having a
place or not having a place in a sensitive group possessing certain probabilities, p and
(1 − p). Regardless on the small chance that a direct or a randomized response process
is utilized, the respondents will not tell a lie. In this example, it is imaginable for the
interviewer that respondents will answer sincerely using the provided RR device in the
case of a sensitive group and also in the case of the standard direct response procedure.
Here, p is the population proportion of individuals who belong to sensitive group “A.” Let
“T” be the probability that the respondents belonging to sensitive group “A” report the
truth. The proportion of a “yes” answer is provided as:

p (y) = θ = p π (1 − T) + (1 − p) (1 − π) (6)

Solving Equation (1) for π, we obtain:

θ = p π − p π T + 1 − p − π + p π
θ = π (p − p T + p − 1) + 1 − p
π (p − p T + p − 1) = θ − 1 + p

π = θ −1+p
2p − pT−1 .

(7)
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Now we substitute the value of π from (7) in ordinary logits (1) and solve for θ:

ln
[

θ−1+p
2p−pT−1

/
1− θ−1+p

2p−pT−1

]
= Xiβ

ln [ θ−1+p
p−pT−θ ]= Xiβ

θ(1 + e Xi β ) = (p− pT)eXi β + 1− p

θ = (p−pT)eXi β+ 1−p
1+eXi β

(8)

We can see that, for p = 1, T = 0, Equation (8) behaves as the ordinary logits. Further
calculations to work on the likelihood function are done as shown below.

Let us first find ∂θi/∂β:

∂θi
∂β =

(1+e Xi β) ∂
∂β {(p−pT)e Xi β+ 1−p}− {(p−pT)e Xi β+ 1−p} ∂

∂β (1+e Xi β)

(1+eXi β)
2

∂θi
∂β = eXi βXi(2p−pT−1)

(1+eXi β)
2 .

(9)

Replacing ∂θi/∂β from (9) and θ from (8) in the derivative of log likelihood function ∂
ln L/∂β from (5), we get:

=
n
∑

i=1

{
eXi βXi(2p−pT−1)

(1+eXi β)

[
yi

(p−pT)eXi β+1−p
+ yi

1+eXi β−(p−pT) e
Xi β−1+p

− 1
1+eXi β−(p−pT) e

Xi β−1+p

]}
∂ln L

∂β =
n
∑

i=1

{
eXi βXi(2p−pT−1)

{1+ eXi β−(p−pT) e
Xi β− 1+p }

[ yi

{(p−pT)eXi β+ 1−p }
− 1

(1+eXi β)
]

} (10)

Setting Equation (10) as equivalent to zero maximizes this articulation, yet we cannot
solve it scientifically. Therefore, to gauge the parameters, this equation is settled numerically.

2.2. Proposed Hidden Logit Using Warner [4]

Warner [4] initiated the RR technique to use with socially stigmatized or sensitive
characteristics. He employed a spinner as a RR device, consisting of two mutually exclusive
groups. He used a spinner with two proclamations of fitting in to group “A” or to group
“B.” Here, “A” is the cluster of people possessing a susceptible attribute. In RR, such a
security assurance is provided so that the respondent simply responds with a “yes” or “no”
relying upon his standing of having a susceptible attribution. Here p and (1 − p) are the
respective probabilities of whether the spinner will point to the first or second statement.
The probability of a “yes” response is given as:

p (y) = θ = p π + (1 − p) (1 − π) (11)

Getting the value of π from (11), we obtain:

π =
θ − (1− p)

2p− 1
(12)

Now replacing value of π from (12) in ordinary logits (1) and solving for θ, we obtain:

ln
[

θ−(1−p)
2p−1

/
1− θ−(1−p)

2p−1

]
= Xiβ

ln [ θ−1+p
p−θ ]= Xiβ

θ − 1 + p = (p− θ)eXi β

θ − 1 + p = peXi β − θeXi β

θ = peXi β+1−p
1+eXi β

(13)

For p = 1, Equation (13) behaves as the standard logits. Further calculations to work
on the likelihood function are done as shown below.
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Let us first find ∂θi/∂β

∂θi
∂β =

(1+e Xi β) ∂
∂β (peXi β+1−p)−(peXi β+1−p) ∂

∂β (1+e Xi β)

(1+eXi β)
2

∂θi
∂β = peXi βXi+pe2Xi βXi−pe2Xi βXi−eXi βXi+peXi βXi

(1+eXi β)
2

∂θi
∂β = (2p−1)XieXi β

(1+eXi β)
2

(14)

Replacing ∂θi/∂β from (14) and θ from (13) in the derivative of log likelihood function
∂ln L/∂β from (5), we get:

∂ln L
∂β =

n
∑

i=1

yi
1(

peXi β+1−p

1+eXi β

) (2p−1)XieXi β

(1+eXi β)
2 + (1− yi)

1(
1−
(

peXi β+1−p

1+eXi β

)) (−1) (2p−1)XieXi β

(1+eXi β)
2


=

n
∑

i=1

{
(2p−1)XieXi β

(eXi β(1−p)+p)

(
yi

(peXi β+1−p)
− 1

(1+eXi β)

)}
∂ln L

∂β =
n
∑

i=1

{
(2p−1)XieXi β

(eXi β(1−p)+p)

(
yi

(peXi β+1−p)
− 1

(1+eXi β)

)} (15)

2.3. Proposed Hidden Logit Using Mangat [15]

The two-stage RRT utilized by Mangat and Singh [14] has been criticized by Man-
gat [15] for perhaps misleading the respondents when they are reporting. Therefore,
Mangat [15] suggested a less complex method to address this problem. Respondents in
the suggested technique are instructed to employ Warner’s [4] randomized device with
fitting in or no in group A, and they must respond “yes” or “no” as per the outcomes of
the randomized tool and their genuine standing. The probability of a “yes” response is
provided as:

p (y) = θ = π + (1 − π) (1 − p) (16)

Solving Equation (16) for the value of π, we obtain:

π =
θ − (1− p)

p
(17)

Putting the value of π in standard logit as defined in Equation (1) and working for θ,
we obtain:

θ−1+p
1−θ = eXi β

θ + θeXi β = eXi β + 1− p

θ = eXi β+ 1−p
1+eXi β

(18)

For p = 1, Equation (18) behaves as the standard logits. Further calculations to work
on the likelihood function are done as shown below.

Let us first find ∂θi/∂β

∂θi
∂β =

(1+e Xi β) ∂
∂β (eXi β+ 1−p)− (eXi β+ 1−p) ∂

∂β (1+e Xi β)

(1+eXi β)
2

=
(1+e Xi β

)
eXi βXi −(eXi β+1−p)eXi βXi

(1+eXi β)
2

= eXi β Xi +e
2Xi β

Xi −e2Xi βXi −eXi βXi +peXi βXi

(1+eXi β)
2

∂θi
∂β = pXieXi β

(1+eXi β)
2

(19)
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Replacing ∂θi/∂β from (19) and θ from (18)in the derivative of the log likelihood
function ∂ ln L/∂β from (5), we get:

∂ln L
∂β =

n
∑

i=1

[
yi

1
θi

∂θi
∂β + (1− yi )

1
1−θi

(−1) ∂θi
∂β

]
=

n
∑

i=1

yi
1(

eXi β+1−p

1+eXi β

) pXieXi β

(1+eXi β)
2 + (1− yi)

1(
1−
(

eXi β+1−p

1+eXi β

)) (−1) pXieXi β

(1+eXi β)
2


=

n
∑

i=1

[
yi

pXieXi β

(eXi β+1−p)(1+eXi β)
− (1−yi)eXi βXi

(1+eXi β)

]
=

n
∑

i=1

[
yi

{
p+eXi β+1−p

(eXi β+1−p)(1+e−Xi β)

}
− (1 + e−Xi β )−1

]
∂ln L

∂β =
n
∑

i=1

[
yi

{
eXi β

(eXi β+1−p)

}
− (1 + e−Xi β )−1

]
Xi

(20)

As discussed earlier, setting Equations (5), (10), (15) and (20) as equivalent to zero
maximizes them, yet we cannot solve them scientifically; therefore, to gauge the parameters,
this equation is settled numerically.

3. Simulation Study

For empirical illustration, using the “Eviews” software, sample sizes of 1000 are
produced, setting different values of p and T. A model for three regressors is considered for
simulation. The data are generated by taking uniform distribution for parameters ranging
from −3 to 3. Hence, the logit estimation is carried out using the starting values of β, set as
(0, 1, 1, 1), where 0 is a constant or intercept term and 1’s are the estimates of β.

This section consists of three parts. In each part, the proposed methodology is adopted
to get the estimates of the β’s which are represented by b’s, with their standard errors,
Akaike Information Criterion (AIC), and Schwarz Information Criterion (SIC) values for all
three RRTs, respectively.

The AIC and SIC are among the best methods for model selection. They serve as
principles for selecting the best model from among many models of interest. The model
with the minimum AIC among all the models is considered a good model, indicating that a
lower AIC value signifies a better fit. AIC can be calculated using the following formula:

AIC = −2 ln(L) + 2k (21)

SIC is closely interrelated to AIC but not the same.SIC can be calculated using the
following formula:

SIC = −2 ln(L) + 2 ln (N)k (22)

3.1. Estimates Using Huang [9] RRT

In the first part, we conduct assessment of the proposed hidden logit model by
Huang [9] for various values of p and T. We utilize the proposed hidden logit structure
delivered in Equation (8) for this purpose. Tables 1–3 and Figures 1–3 exhibit the estimation
of the b’s, standard errors (SE), AIC, and SIC values and their graphs, respectively. In
Tables 1 and 2, all values show the standard logits, which are acquired by taking p = 1 and
T = 0 in the noted RRT.
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Table 1. Estimates of b’s for different values of p and T using Huang [9] RRT.

T
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

b0 −0.2315 −0.3557 −0.4683 −0.5968 −37.6483 3.8144 6.7190 0.1959 0.1495 0.2143

b1 1.1506 1.2740 1.0982 0.8187 12.9302 26.0445 51.5573 1.1533 1.0205 1.3130

b2 1.0181 1.0824 0.9519 0.8025 20.7750 26.5393 52.6652 1.1957 1.0487 1.3005

b3 1.1022 1.1938 1.0767 0.8287 8.8708 24.8303 49.4321 1.0586 0.9761 1.2327

0.2

b0 0.2198 0.3139 0.4217 0.8703 29.0133 −0.9106 −7.7908 −0.5114 −0.4490 −0.2226

b1 0.9557 0.8826 0.9293 1.1556 17.8077 22.9154 82.8046 1.9142 1.3616 1.0345

b2 0.8906 0.8499 0.9187 1.2254 14.3520 12.8654 51.2237 1.5453 1.2430 0.9949

b3 0.9205 0.9042 0.9822 1.1701 13.8383 18.9082 67.6219 1.7264 1.2706 0.9998

0.3

b0 0.0532 0.0940 0.1065 0.1578 35.5098 −17.8329 −0.6050 −0.2031 −0.0517 −0.1252

b1 1.0789 1.1320 1.0845 1.1173 68.2762 3.1502 1.3498 0.9860 1.0210 0.9978

b2 0.9792 0.9799 0.8830 0.8698 36.0714 21.9152 1.5595 0.9426 1.0222 1.0171

b3 1.0858 1.0905 1.0995 1.2533 75.5237 20.4426 1.5491 0.8958 1.0067 0.9436

0.4

b0 −0.0372 0.0001 0.0677 0.1156 −0.1714 2.0771 0.0293 0.0828 0.1007 0.1844

b1 0.9027 0.8830 0.9823 0.8133 1.3839 20.1394 0.4858 0.6307 0.7131 0.9475

b2 0.9873 0.9387 1.0575 0.8932 1.5794 17.1867 0.1139 0.4789 0.6378 0.9445

b3 0.8793 0.8528 0.9375 0.7474 1.0533 16.5136 0.2683 0.5596 0.7022 0.9939

0.5

b0 0.1453 0.2506 0.2688 0.1421 0.4587 45.6701 −4.7114 −15.1090 −0.0787 −0.1730

b1 1.0350 1.0837 1.0169 1.1230 0.8571 5.3868 5.1990 30.7226 1.2067 1.0224

b2 1.0104 1.0218 0.9685 1.0063 0.9455 12.0369 21.7138 48.5209 1.3344 1.0162

b3 0.9213 0.9435 0.9463 1.0235 0.8549 39.1664 18.5134 47.7135 1.2549 1.0472
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Table 1. Cont.

T
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

b0 0.0367 0.0177 0.1599 0.2048 0.2079 0.0932 −29.0775 −16.9430 −0.2394 −0.0752

b1 0.9194 0.9406 0.9292 0.8878 1.0052 0.7331 −8.4218 20.5701 0.9922 0.9680

b2 0.9765 0.9928 0.9477 0.8344 0.9076 0.9249 16.6294 38.8792 1.2645 0.9397

b3 0.8855 0.8885 0.7763 0.7206 0.7477 0.5576 5.7839 50.1951 1.4359 0.9764

0.7

b0 −0.0191 −0.0516 −0.1179 −0.1626 0.0271 0.2667 1.2094 −31.4399 −0.1193 0.0174

b1 0.9302 0.9399 0.9953 0.9284 0.9511 0.5609 −0.2200 25.3507 0.8590 1.0268

b2 1.0065 1.1064 1.1523 1.0652 1.2451 1.0934 0.9642 −14.2620 0.2901 1.0739

b3 0.9348 0.9873 1.0521 0.9505 0.9456 1.0024 0.6781 −3.4737 0.6145 1.0780

0.8

b0 −0.0824 −0.0556 −0.1036 −0.0945 −0.1405 −0.3094 0.0584 −24.7924 17.0574 −0.0551

b1 1.1424 1.0254 1.0048 0.9978 1.0100 1.2652 1.0481 17.3721 26.5109 0.9780

b2 1.0503 0.9605 0.9658 0.8524 0.7711 0.9920 0.3900 −7.9325 27.7356 1.1377

b3 1.1869 1.1363 1.1683 1.0326 1.0402 1.2088 0.9503 25.8390 29.4190 1.0852

0.9

b0 0.1479 0.2048 0.1076 0.0432 −0.0520 −0.1903 −0.1274 0.2546 25.1478 −0.0819

b1 1.2641 1.0087 1.1408 1.1645 1.4097 1.5891 1.2565 1.4464 17.7483 0.8769

b2 0.9889 0.7779 0.8848 0.8781 0.9722 1.0113 0.7659 0.4046 −8.7823 1.0096

b3 1.1542 0.8877 1.0750 1.0892 1.3924 1.3874 1.0369 0.8891 20.9405 0.8866



Symmetry 2023, 15, 1636 11 of 21

Table 2. The s.e(b’s) for different values of p and T using Huang [9] RRT.

T
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

s.e(b0) 0.1187 0.1841 0.2789 0.4818 333.4179 14.2246 16.2981 0.2226 0.1429 0.0829

s.e(b1) 0.1309 0.2142 0.2832 0.3892 115.1187 98.1811 132.2272 0.2454 0.1452 0.1006

s.e(b2) 0.1213 0.1916 0.2574 0.3840 184.2341 100.0052 134.6427 0.2550 0.1498 0.1015

s.e(b3) 0.1263 0.2043 0.2788 0.3860 79.1464 93.9812 126.9071 0.2286 0.1390 0.0953

0.2

s.e(b0) 0.1063 0.1512 0.2376 0.5328 118.9557 6.8797 21.1552 0.3198 0.1807 0.0763

s.e(b1) 0.1073 0.1425 0.2260 0.5049 72.4404 112.2464 237.2196 0.5280 0.2260 0.0815

s.e(b2) 0.0993 0.1343 0.2165 0.5120 58.1661 64.1223 147.0931 0.4290 0.2049 0.0769

s.e(b3) 0.1029 0.1419 0.2297 0.5038 56.4476 92.9373 193.2615 0.4720 0.2089 0.0779

0.3

s.e(b0) 0.1040 0.1462 0.2074 0.3421 174.6854 319.9981 0.7528 0.2780 0.1812 0.0749

s.e(b1) 0.1161 0.1692 0.2327 0.3915 332.9167 57.3642 0.8839 0.2870 0.1941 0.0786

s.e(b2) 0.1074 0.1509 0.2001 0.3258 174.9152 388.2287 0.9772 0.2749 0.1921 0.0786

s.e(b3) 0.1138 0.1606 0.2286 0.4135 367.7805 363.6587 0.9675 0.2645 0.1882 0.0742

0.4

s.e(b0) 0.1049 0.1407 0.2011 0.2766 0.6394 23.0530 0.6072 0.2962 0.1946 0.0759

s.e(b1) 0.0997 0.1319 0.2026 0.2466 0.8380 199.2709 0.4059 0.2276 0.1604 0.0745

s.e(b2) 0.1077 0.1394 0.2168 0.2636 0.9542 170.3881 0.3477 0.2054 0.1527 0.0749

s.e(b3) 0.1003 0.1319 0.2000 0.2387 0.6852 163.3479 0.3764 0.2206 0.1615 0.0778

0.5

s.e(b0) 0.1016 0.1365 0.1840 0.2700 0.4326 203.3125 34.4337 63.9027 0.3159 0.0776

s.e(b1) 0.1064 0.1461 0.1872 0.3016 0.3746 23.4865 37.7949 136.7667 0.3703 0.0800

s.e(b2) 0.1036 0.1391 0.1795 0.2756 0.3957 53.2446 156.7400 218.1805 0.3911 0.0782

s.e(b3) 0.0953 0.1291 0.1732 0.2740 0.3651 174.0958 133.5330 215.8915 0.3695 0.0784
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Table 2. Cont.

T
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

s.e(b0) 0.0995 0.1295 0.1678 0.2222 0.3430 0.5897 442.9549 72.1898 0.4089 0.0754

s.e(b1) 0.0962 0.1274 0.1611 0.2043 0.3436 0.4968 128.3952 86.8768 0.4120 0.0758

s.e(b2) 0.1008 0.1328 0.1657 0.2005 0.3281 0.5698 252.7913 165.1553 0.4913 0.0742

s.e(b3) 0.0941 0.1230 0.1452 0.1832 0.2890 0.4395 88.0650 212.9795 0.5411 0.0762

0.7

s.e(b0) 0.0946 0.1223 0.1600 0.2052 0.2877 0.4362 1.3614 242.1730 0.4177 0.0747

s.e(b1) 0.0956 0.1253 0.1702 0.2063 0.2983 0.3275 0.5764 194.6792 0.3729 0.0811

s.e(b2) 0.1017 0.1409 0.1899 0.2281 0.3613 0.4722 0.9774 109.9377 0.2631 0.0846

s.e(b3) 0.0970 0.1302 0.1771 0.2104 0.3006 0.4460 0.7676 27.0893 0.3273 0.0845

0.8

s.e(b0) 0.0992 0.1204 0.1516 0.1852 0.2432 0.3849 0.5409 227.5091 79.7597 0.0745

s.e(b1) 0.1116 0.1252 0.1552 0.1884 0.2480 0.4534 0.5690 158.6066 123.6629 0.0762

s.e(b2) 0.1071 0.1224 0.1548 0.1725 0.2116 0.3822 0.3542 73.3429 130.3087 0.0864

s.e(b3) 0.1151 0.1353 0.1740 0.1921 0.2511 0.4335 0.5302 235.3178 137.0930 0.0830

0.9

s.e(b0) 0.1023 0.1142 0.1436 0.1736 0.2332 0.3106 0.3801 0.6612 618.0020 0.0743

s.e(b1) 0.1256 0.1170 0.1630 0.2009 0.3172 0.4624 0.4653 0.8783 436.6087 0.0697

s.e(b2) 0.1024 0.0973 0.1334 0.1610 0.2313 0.3144 0.3238 0.4338 221.7021 0.0752

s.e(b3) 0.1159 0.1068 0.1549 0.1904 0.3131 0.4154 0.4088 0.6551 516.2336 0.0696
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Table 3. AIC and SIC for different values of p and T using Huang [9] RRT.

T
p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1
AIC 0.9767 1.1885 1.3493 1.4232 1.4530 1.4396 1.4026 1.3071 1.1642 0.5164

SIC 0.9963 1.2081 1.3689 1.4428 1.4726 1.4592 1.4222 1.3268 1.1839 0.5360

0.2
AIC 1.0077 1.2162 1.3387 1.4087 1.4220 1.4119 1.3403 1.2590 1.1075 0.6667

SIC 1.0273 1.2358 1.3584 1.4283 1.4416 1.4316 1.3600 1.2787 1.1271 0.6863

0.3
AIC 0.9566 1.1628 1.2974 1.3738 1.4119 1.4231 1.3734 1.3128 1.1941 0.7118

SIC 0.9763 1.1824 1.3170 1.3934 1.4316 1.4427 1.3931 1.3324 1.2138 0.7315

0.4
AIC 1.0285 1.2259 1.3075 1.3710 1.3977 1.3966 1.3772 1.3143 1.2241 0.6822

SIC 1.0482 1.2455 1.3271 1.3906 1.4173 1.4162 1.3969 1.3340 1.2437 0.7019

0.5
AIC 0.9004 1.0516 1.1936 1.2898 1.3242 1.3399 1.3182 1.2662 1.1505 0.6235

SIC 0.9200 1.0712 1.2133 1.3095 1.3438 1.3595 1.3379 1.2858 1.1701 0.6431

0.6
AIC 0.9540 1.1140 1.2320 1.3010 1.3250 1.3193 1.2913 1.1898 1.0682 0.6666

SIC 0.9737 1.1336 1.2516 1.3206 1.3446 1.3390 1.3109 1.2094 1.0878 0.6862

0.7
AIC 0.9364 1.0801 1.1803 1.2579 1.2525 1.2052 1.1275 1.0050 0.9088 0.6575

SIC 0.9560 1.0997 1.2000 1.2776 1.2721 1.2249 1.1472 1.0247 0.9284 0.6771

0.8
AIC 0.8390 1.0082 1.1159 1.1739 1.1951 1.1587 1.0615 0.9650 0.6606 0.5955

SIC 0.8586 1.0278 1.1355 1.1936 1.2147 1.1783 1.0812 0.9847 0.6803 0.6151

0.9
AIC 0.8862 1.0515 1.0933 1.1132 1.0906 1.0295 0.9075 0.6574 0.3312 0.6730

SIC 0.9059 1.0711 1.1129 1.1328 1.1102 1.0491 0.9272 0.6770 0.3509 0.6926
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Figure 1. Estimates of b’s using Huang [9] RRT. (a) T = 0.1; (b) T = 0.2; (c) T = 0.3; (d) T = 0.4; (e) T = 0.5; (f) T = 0.6; (g) T = 0.7; (h) T = 0.8; (i) T = 0.9.
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Figure 2. The s.e(b’s) using Huang [9] RRT. (a) T = 0.1; (b) T = 0.2; (c) T = 0.3; (d) T = 0.4; (e) T = 0.5; (f) T = 0.6; (g) T = 0.7; (h) T = 0.8; (i) T = 0.9.
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Figure 3. AIC and SIC using Huang [9] RRT. (a) T = 0.1; (b) T = 0.2; (c) T = 0.3; (d) T = 0.4; (e) T = 0.5; (f) T = 0.6; (g) T = 0.7; (h) T = 0.8; (i) T = 0.9.
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Results Discussion for Huang [9] RRT

We have calculated the estimates of the b’s for the different values of T and p, which
are displayed in Table 1 and Figure 1. As an interpretation, we can state that taking the
upper values of p, however low the values of T are, these show the same patterns as those
of the standard logits. The logit estimates for Huang [9] RRT are altogether not the same as
the normal values of the standard logits for p = 0.5–0.7 when T is set under 0.5. Nonetheless,
these will generally move toward the standard logits when p is greater than 0.5. The values
are indeed extremely high for T, between 0.2–0.3 and p = 0.5, and as p rises, the values of
estimates decline and start approaching towards the standard logits. The same is the case
for T = 0.4–0.5 and p = 0.6. Similar patterns of estimates might be seen when T = 0.6–0.7 and
p = 0.7 are utilized. A very necessary point to be noted here is that the estimated values of
the b’s in the current technique exhibit extreme and divergent behavior when compared to
conventional logits for a very elevated p and T, for which we can say that estimates are not
reliable and consistent for the mentioned values of p and T. In all of the tables, the standard
logit estimates are shown with p = 1. All in all, we might express that, for each increase in p
and fall in T, the estimates are moving toward the ordinary logits.

The standard error of estimates for the proposed hidden logit for Huang [9] RRT can
be seen in Table 2 and Figure 2. For a greater p and lower T, one can interpret that the
standard errors lead to estimates that are fairly alike to regular logits. Elevated values of T
and p bring about standard errors that go incredibly amiss from the anticipated values and
show an unpredictable way of behaving. When p = 1, the standard errors of the estimates
of ordinary logits are displayed. As a conclusion, we can state that an elevated p and lower
values of T are associated with decreasing standard errors of estimations.

Table 3 and Figure 3 show the AIC and SIC to be more accurate for an elevated p and
T. One can observe that these values are smallest for the highest p and T; hence, the best
model fit for p and T can be considered as 0.9.

3.2. Estimates Using Warner [4] RRT

In the current section, we conduct an estimation of the proposed hidden logits using
Warner [4] RRT, setting various values of p. We use the proposed hidden logit form
produced in Equation (13) using the mentioned procedure in Section 2. Tables 4–6 and
Figure 4 demonstrate the estimates of the b’s, standard errors, AIC, and SIC values and
their graphs, respectively. In Tables 4 and 5, the values against p when it is equal to 1 are
standard logits, which can be obtained by taking p = 1 in Equation (13).

Table 4. Estimates of b’s for different values of p using Warner [4] RRT.

b’s/p 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

b0 0.1785 0.1554 0.2245 0.1680 −7.4527 −0.1875 0.1089 0.0252 −0.0415

b1 0.8971 0.9316 0.9397 0.7655 28.6584 1.2712 0.9870 1.0410 1.0192

b2 0.9361 0.9373 0.8488 0.6968 36.5850 1.3468 0.9870 1.0420 0.9907

b3 0.9193 0.8968 0.8565 0.8933 17.1397 0.9436 0.7939 0.9340 0.9356

Table 5. The s.e(b’s) for different values of p using Warner [4] RRT.

s.e(b’s)/p 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

s.e(b0) 0.1135 0.1668 0.2629 0.5182 15.7308 0.2994 0.1662 0.1138 0.0759

s.e(b1) 0.1077 0.1629 0.2559 0.4455 62.8987 0.3702 0.1704 0.1215 0.0799

s.e(b2) 0.1100 0.1622 0.2387 0.4223 80.2608 0.3798 0.1684 0.1200 0.0773

s.e(b3) 0.1072 0.1555 0.2362 0.4779 37.5954 0.2874 0.1446 0.1101 0.0736
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Table 6. AIC and SIC for different values of p using Warner [4] RRT.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AIC 1.0406 1.2401 1.3631 1.4344 1.4596 1.4222 1.3591 1.2463 0.9934 0.6506

SIC 1.0602 1.2597 1.3827 1.4540 1.4792 1.4418 1.3787 1.2659 1.0130 0.6702

Figure 4. Estimates of ’s, the s.e(b’s), AIC, and SIC using Warner [4] RRT. (a) b’s; (b) s.e(b’s); (c) AIC
and SIC.

Results Discussion for Warner [4] RRT

Tables 4–6 are show the comparison of the performance for our proposed method’s
estimates with ordinary logit estimates. From Figure 4a, we perceive that the estimates
of our proposed methodology come back to the estimates of b’s, which are fairly close to
ordinary logits. We observe a symmetric behavior in the values of b’s around p = 0.5. For p
below 0.5, estimates are found to be increasing and then begin to decrease for p above 0.5.
When p is 0.5, the estimates do not exist, as defined by Warner [4]. Setting p = 0.9, standard
logits and the proposed hidden logit become quite close to the estimates of the standard
logits. Since Figure 4b exhibits the same behavior as Figure 4a, the same conclusion may be
applied to SE. An extremely important aspect worth highlighting here is that the estimated
values of b’s and their SE exhibit an extreme and divergent behavior for p = 0.6. Therefore,
we can say that estimates are not reliable and consistent for p = 0.6. Figure 4c illustrates
that AIC and SIC begin to decline when higher values of p are taken, and, hence, they are
the lowest for p = 0.9, which can be regarded as the best model fit for higher values of p.

3.3. Estimates Using Mangat [15] RRT

In the present section, we conduct an estimation of the hidden logits for Mangat [15]
RRT, setting various values of p. We use the proposed hidden logit form produced in
Equation (18) using the procedure mentio0ned in Section 2 for this purpose. Tables 7–9
show the b’s, SE, AIC, and SIC values. Also, Figure 5 depicts their graphical display for
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different values of p using Mangat [15]. In Tables 7 and 8, under p equals to 1, one can see
the standard logit values, which can be obtained by taking p as 1 in Equation (18).

Table 7. Estimates of b’s for different values of p using Mangat [15] RRT.

b’s/p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b0 0.4792 0.2964 0.4808 0.0060 −0.0150 0.2151 0.2160 0.1334 0.0934 0.1061

b1 1.3541 1.1228 1.2025 1.2514 1.1177 1.2235 1.1079 1.0846 1.0959 1.1219

b2 1.3213 1.0538 1.0382 1.3235 1.3531 1.3384 1.1475 1.0975 1.1971 1.2074

b3 1.4329 1.1512 1.2126 1.3275 1.1771 1.1937 1.0225 1.0266 1.0959 1.1199

Table 8. The s.e(b’s) for different values of p using Mangat [15] RRT.

s.e(b’s)/p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s.e(b0) 0.6178 0.3658 0.2980 0.2475 0.2006 0.1713 0.1358 0.1136 0.0955 0.07918

s.e(b1) 0.7534 0.4075 0.3338 0.3074 0.2233 0.2036 0.1500 0.1253 0.1059 0.08944

s.e(b2) 0.7130 0.3709 0.2903 0.2997 0.2455 0.2082 0.1473 0.1201 0.1072 0.08949

s.e(b3) 0.7678 0.4018 0.3278 0.3083 0.2220 0.1932 0.1377 0.1166 0.1019 0.086

Table 9. AIC and SIC for different values of p using Mangat [15] RRT.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AIC 0.2729 0.3836 0.6667 0.8767 0.9410 0.9392 0.9323 0.8907 0.7197 0.5381

SIC 0.2533 0.4032 0.6863 0.8963 0.9606 0.9588 0.9519 0.9103 0.7393 0.5578

Figure 5. Estimates of b’s, the s.e(b’s), AIC, and SIC using Mangat [15] RRT. (a) b’s; (b) s.e(b’s); (c) AIC
and SIC.
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Results Discussion for Mangat [15] RRT

Tables 7–9 are made to show the comparison of performance for our proposed
method’s estimates for Mangat [15] RRT with ordinary logit estimates. From Figure 5a,
we identify that the estimates of our proposed methodology show random behavior for
diverse values of p. The estimates move towards standard logits setting p = 0.9. Figure 5b
depicts that the values of SE decrease as p increases. Hence, no extreme pattern is observed.
Figure 5c depicts that the AIC and SIC are the minimum for the lowest value of p, so taking
p = 0.1can be considered as the best model fit.

4. Conclusions

This research depicts the results of the proposed hidden logit using different RRTs. A
comparison for each RRT has already been conducted for ordinary and proposed hidden
logits in Section 3. It can be observed that the calculated values converge to the ordinary
logits when setting a higher value of p for all RRTs and lower values of T using Huang [9]
RRT. We discovered that, as p increases, in all three RRTs, the hidden logit estimates
approach the population parametric values. Additionally, we observe that the standard
errors of the estimates decreases as p rises, and they are the least for p = 1. As a comparison
between all three used RRTs, we can state that estimates for our proposed methodology
using Huang [9] RRT are more accurate and are nearer to the population estimates. Thus, in
the case of sensitive parameters, hidden logit estimation adopting Huang [9] RRT is more
suitable to generate accurate estimates of population proportions. The AIC and SIC values
also lead us to the same conclusion. The model with the lowest AIC and SIC is considered
the best model. The values of AIC and SIC for Huang [9] are 0.3312 and 0.3509, which
are found to be the least among all the above-discussed models. Therefore, Huang [9] can
be considered the best model fit for higher values of p. This study makes a significant
contribution to the application and evaluation of logistic models when investigating a
sensitive topic and finding honest responses is difficult. We suggest that the proposed
methodology of hidden logits can be employed with other RRTs.
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