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1. Introduction

It is well known that “Physics and Symmetry/Asymmetry” is a topical Section of
Symmetry. Accordingly, we sought to give a brief overview of the activities of the Special
Issue “Foundations of Continuum Mechanics and Mathematical Physics” carried out from
2021 to 2022, and there is no better method of doing so than providing a detailed description
of the published papers. These papers, to varying degrees, represent the scope and subject
matter of the articles we included in the description of the Special Issue.

Foundations of Continuum Mechanics: As is well known, the basic equations of con-
tinuum mechanics are obtained by imposing suitable invariance properties on Lagrangian
functionals under suitable symmetry groups. Invariance in the Galilean symmetry group is
involved in the equations of classical continuum mechanics, while invariance in the Lorentz
group is involved in relativity.

Differential Equations of Mathematical Physics: In the section on Differential Equa-
tions of Mathematical Physics, questions related to the solvability, regularity, stability,
and asymptotic behavior of solutions to the equations of mathematical physics and PDE,
including the hydrodynamic (Stokes equations) and Helmgotz equations, were proposed
for consideration.

In addition, this Special Issue addressed other qualitative properties of linear and
nonlinear equations and systems of mathematical physics, such as scattering theory, inverse
problems, variational methods, and variational calculus.

2. Description of Articles [1,2]

First, let us briefly discuss the papers that demonstrate the importance of analyzing the
general properties of symmetry in the mechanics of deformable media. As examples, we
can conditionally isolate three areas where the consideration of symmetry properties is not
only sometimes decisive in the construction of deformation models but also an important
factor from the perspective of new, effective models of extended thermodynamics and
complicated models of media accounting for the effects of the connectivity of physical
fields (for example, heat and mass transfer) and mechanical deformation fields.

In [3–7], it is shown that for the extensive class of elasticity models, including those re-
garding gradient elasticity, additional symmetry conditions from classical elasticity models
must be met. Otherwise, models intended to simulate a deformable, defect-free medium
become erroneous because the condition of the continuity of distortions, i.e., the condition
of the absence of a field of defects, is not satisfied.

In [5], it was demonstrated that this symmetry condition is essential to ensuring
the validity of free variational formulations commonly employed for deriving the field
equations of strain gradient elasticity. Using this symmetry condition, a symmetry-related
unified theory of isotropic strain gradient elasticity (dubbed GL (Gusev–Lurie) theory in
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the literature) with two independent strain gradient material coefficients was explicitly
derived. The presented theory has simple stability criteria, and its factorized displacement
form equations of equilibrium allow for the expedient identification of the fundamental
solutions operative in specific theoretical and practical studies.

In [3], a recent paper, an analysis of the symmetry conditions for the tensor compo-
nents of the generalized elastic moduli of gradient elasticity is provided, and the symmetry
conditions are established, which are characteristic only for the gradient models. It is shown
that when constructing a boundary value problem based on the variational approach using
the generalized Lagrange functional, the symmetry conditions can be lost in the bound-
ary conditions. The authors obtained a nontrivial result revealing that the energetically
insignificant components of the tensor of gradient elastic moduli can lead to an erroneous
form of static boundary conditions for the vector gradient models.

This result is purely geometric and is, in fact, related to strain compatibility equations.
Therefore, it also extends to non-gradient models of anisotropic media, for which the
general structure of elastic modulus tensors is very complex. These issues were partly
considered in [4,6]. The same papers discuss the issues of symmetry in the structure of
elastic modulus tensors related to the potentiality of the strain energy density and the
issues of the inheritance of the symmetrical anisotropy properties from the classical theory
in a gradient anisotropic medium.

The authors of [1,2] present a solution to a three-dimensional non-stationary problem
regarding the action of a moving source of heat flux induced by laser radiation on the
surface of a half-space using the superposition principle and non-stationary functions.

In [1], the corresponding solution is based on a Green’s function method, according to
which the influence function of a surface-concentrated heat source is derived at the first
stage. The influence function has axial symmetry, and the problem of determining the
influence function is axisymmetric. To determine the Green’s function, Laplace and Fourier
integral transforms were used.

The novelty of the obtained analytical solution is that the heat transfer at the free
surface of the half-space is taken into account. The Green’s function that was obtained is
used to construct an analytical solution to the moving heat-source problem in the integral
form. The kernel of the advising integral operator is the constructed Green’s function.
The Gaussian distribution is used to analytically calculate the integrals of spatial variables.

Gaussian law models the distribution of heat flux in a laser beam. As a result, the cor-
responding integrals of the spatial variables can be calculated analytically. A convenient
formula that allows one to study the non-stationary temperature distribution when the
heat source moves along arbitrary trajectories can be obtained.

In [2], the hyperbolic equation of transient thermal conductivity, accounting for re-
laxation time, was used to model the laser-heating process. It is assumed that the heat
flux is distributed symmetrically with respect to the center of the heating spot. A com-
bined numerical and analytical algorithm was developed and implemented, allowing one
to determine the temperature distribution on both the surface of and at deep regions in
the half-space. In this case, the principle of superposition was used along with a special
symmetric Gaussian distribution to describe the model of a source of high-intensity heat
flux. The use of such a symmetric distribution allowed the authors to analytically calculate
the integrals of the spatial variables.

The results of this paper could be used to estimate the contribution of the conductive
component in the overall heat transfer of materials exposed to intense heat flows (e.g.,
as in laser surface treatment, laser additive technologies, the streamlining and heating of
materials by high-enthalpy gases, etc.).

3. Description of Article [8]

The concept of combining the theories of gravitation and electromagnetism has in-
terested many researchers. Approaches to the unification of these theories have been
proposed by Einstein, Eddington, Weyl, Cartan, and others. The corresponding papers use
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the four-dimensional signature manifold (1, 3), which is the space we observe in everyday
life, with one temporal and three spatial coordinates. However, these unifying theories
have fundamental shortcomings that have forced researchers to introduce additional di-
mensions. Thus, the five-dimensional Kaluza–Klein model emerged, combining gravitation
and electromagnetism, and so did its various generalizations, such as super-symmetric
models, super-gravity theory, and others.

In these models, some compact manifold is added to the basic four-dimensional space-
time manifold in the form of writing the direct product. The resulting manifold represents
an extended space, and unified theories of gauge fields are constructed on this basis. The
gauge fields are induced by symmetry groups.

The number of dimensions introduced by the additional manifold can be quite large.
For example, the minimum number of additional dimensions required to construct a
gauge theory of super-unification is seven. Furthermore, the geometrical nature of these
dimensions of super-space is ambiguous. The commonly accepted way of arranging the
basic and additional manifolds is in terms of the bundle theory. The typical consideration in
this regard is that the additional manifold is not directly related to the geometric structure
of the basic manifold, so the additional dimensions do not have an interpretation associated
with the nature of the basic manifolds. This greatly complicates the task of creating a
unified and purely geometric theory of interactions. To the best of the authors’ knowledge,
no sufficiently convincing geometrical constructions have been proposed so far.

The authors attempt to develop the foundations of a unified theory of gravitation
and electromagnetism based on single, uniform space-time. The most symmetric case is
chosen, that is, the manifold with a symmetric signature (i.e., an equal number of spatial
and temporal dimensions), which extends the usual space of a signature (1, 3). The smallest
extension of this kind is obtained by adding two temporal dimensions, resulting in a
signature of (3, 3). It turns out that such a construction is sufficient for developing a
unified theory.

The structure of the cited work is as follows. A manifold combining elements of the
structures of Riemann, Weyl, and Finsler spaces (called RWF-space) is introduced for a
uniform description of gravitational and electromagnetic interactions. The RWF-space is
supplied with a metric tensor of a special kind depending on the coordinates and local
velocities. Setting the tensor induces a corresponding field in this space. A definition of the
geodesic in RWF-space is given. Geodesic lines are defined by second-order differential
equations, whose coefficients can be divided into those depending on the metric tensor
(relating to the gravitational interaction) and those depending on the vector field (relating
to the electromagnetic interaction). It is shown that when moving along the geodesic,
the space remains homogeneous and isotropic.

If there is no gravity, RWF-space transforms into a pseudo-Euclidean space with a
signature of (3, 3), and the geodesic equations take the form of the Lorentz equation de-
scribing the motion of a unit charge in an electromagnetic field. The connection between
the six-dimensional electrodynamics and and the traditional four-dimensional system of
Maxwell’s equations is outlined. Mapping from six to four dimensions allows for the
introduction of the notions of charge and current densities, which have a purely geometric
nature. The appearance of the point electric charge is associated with the circulation of
the vector potential around a dedicated time axis in the three-dimensional time subspace.
Thus, electric charge formation occurs in the unobservable three-dimensional temporal
region of six-dimensional space-time, and its existence is manifested in the effects ob-
served in the real three-dimensional physical subspace. These properties of six-dimensional
electrodynamics enable the abandonment of the concept of an electric charge in favor of
operating exclusively with the components of the electromagnetic tensor in six-dimensional
space-time. Traditionally, Maxwell’s equations in the four-dimensional theory of electro-
magnetism are interpreted as relationships between the spatial distribution of the charge
density and the electromagnetic field density, i.e., relationships between phenomenological
objects without a clear mathematical definition. In six-dimensional electrodynamics, this
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interpretation changes to a more rigorous and consistent understanding of the equations of
electromagnetism as solely relations between components of the electromagnetic tensor in
six-dimensional space.

Apparently, the proposed six-dimensional model of classical electrodynamics may
aid the adoption of a new perspective of the renormalization problem in quantum elec-
trodynamics. It is well known that permutation functions and Green’s functions have
singularities on the light cone of four-dimensional space-time. In six-dimensional electro-
dynamics, due to accounting for the mechanism of electric charge formation, the light cone
is replaced by a one-band hyperboloid, which should lead to a revision of the calculation
technique. It is probable that the occurrence of meaningless expressions in calculations
within traditional four-dimensional quantum electrodynamics is intimately connected with
an inappropriate choice of the dimensionality and structure of real physical space-time.

It is also shown that the Maxwell equations are invariant with respect to the group of
local eigenmovements of the Minkowski metric, which is wider than the Lorentz group.
A mutually unambiguous relation has been established between the admissible currents
included in the Maxwell equations and the local eigenmovements of the Minkowski metric.
An attempt to extend these results to arbitrary currents led to a change in the form of
Maxwell’s equations. Thus, Maxwell’s equations turn out to be valid not for arbitrary
currents, as is currently accepted, but only for a certain class of currents defined by the
maximum local group of eigenmovements of the Minkowski metric.

4. Description of Article [9]

As is known, for some areas of theoretical physics, such as wave mechanics, the theory
of oscillations, etc., the solutions of problems are reduced to the problem of eigenvalues.
In addition, the question of the unambiguous definition of a mechanical system, i.e., the
Hamilton function, through the spectrum of the eigenvalues of the linear differential
equation with which it is associated it is critical.

Considering the case where a string is vibrating and the boundary conditions are
natural, it was shown in [10] that the spectrum of eigenvalues uniquely determines the
differential equation, which, in Schrödinger’s theory, is called the “amplitude equation”.

One paper, [11], deals with the problem of determining the Hill equation (or the one-
dimensional Schrödinger equation) based on its spectrum and deriving the Hill equation
from the specific properties of its discriminant. A great deal is known about the analytic
structure of the discriminant (see, for example, [12,13]).

Numerous fundamental and applied scientific papers and books are devoted to the
asymptotic behavior and spectral properties of the Schrödinger operator, and we will note
some of them (see, [14–22]).

In particular, in [14,15], the spectral properties of the Schrödinger operator in domains
with an infinite boundary, as well as the behavior of the solution in non-stationary problems
as t → ∞, are studied.

In [22], regarding a one-dimensional Schrödinger equation with a quasi-periodic ana-
lytic potential on its shell, it was shown that the equation presents an Floquet representation
for almost any energy value, E, in the upper part of the spectrum. It was also proved that
the upper part of the spectrum is purely continuous, and, for the general potential, this is
the Cantor set. In addition, the authors also show that for a small potential, these results
can be extended to the entire spectrum.

In [9], the asymptotic behavior (as t → ∞) of solutions to an initial-boundary value
problem for a second-order hyperbolic equation with periodic coefficients on the half-axis
x > 0 was considered. The main approach to studying the problem under consideration
was based on the spectral theory of differential operators as well as on the properties of the
spectrum σ(H0) of the one-dimensional Schrödinger operator H0 with periodic coefficients
p(x) and q(x).
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In [23,24], similar questions were considered for the Cauchy problem with initial
conditions, as in the case of a positive Hill operator H0 > 0 and the case when the left end
of the spectrum σ(H0) of the Hill operator H0 is non-positive.

We hope that this Special Issue will inspire young talents with natural ambition to
make important discoveries in the field of symmetry in the foundations of continuum
mechanics and mathematical physics.
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