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Abstract

:

This paper explores the concept of Generalized Roughness in LA-Semigroups and its applications in various mathematical disciplines. We highlight the fundamental properties and structures of Generalized Roughness, examining its relationships with Fuzzy Lie Algebras, Order Theory, Lattice Structures, Algebraic Structures, and Categorical Perspectives. Moreover, we investigate the potential of mathematical modeling, optimization techniques, data analysis, and machine learning in the context of Generalized Roughness. Our findings reveal important results in Generalized Roughness, such as the preservation of roughness under the fuzzy equivalence relation and the composition of roughness sets. We demonstrate the significance of Generalized Roughness in the context of order theory and lattice structures, presenting key propositions and a theorem that elucidate its properties and relationships. Furthermore, we explore the applications of Generalized Roughness in mathematical modeling and optimization, highlighting the optimization of roughness measures, parameter estimation, and decision-making processes related to LA-Semigroup operations. We showcase how mathematical techniques can enhance understanding and utilization of LA-Semigroups in practical scenarios. Lastly, we delve into the role of data analysis and machine learning in uncovering patterns, relationships, and predictive models in Generalized Roughness. By leveraging these techniques, we provide examples and insights into how data analysis and machine learning can contribute to enhancing our understanding of LA-Semigroup behavior and supporting decision-making processes.
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1. Introduction


Over the years, the study of Generalized Roughness in LA-Semigroups has been influenced by various significant contributions. The following papers are particularly relevant [1,2]. In 1972, Kazim and Naseerudin introduced the concept of almost-semigroups and explored their properties [3]. Sardar and Chakraborty, investigated the rough subalgebras of binary algebras connected with logics, providing insights into the connections between roughness and logic [4]. In a related context, Dudek, Jun, and Kim applied rough set theory to BCI-algebras, further expanding the understanding of roughness in algebraic structures [5]. Moreover, the application of algebraic modeling and analysis in the field of generalized roughness in LA-Semigroups has paved the way for advancements in various domains. One such domain is the study of energy systems and their optimization. For instance, Alamaniotis (2020) proposed a fuzzy leaky bucket system for intelligent management of consumer electricity elastic load in smart grids, demonstrating the practical implications of algebraic concepts in optimizing energy consumption [6]. Additionally, Li et al. (2022) utilized the variable fuzzy set theory to assess the risk of landslide hazards in the Three Gorges region, showcasing the applicability of algebraic models in hazard analysis [7]. These studies highlight the potential of algebraic modeling and analysis techniques in addressing real-world problems and making informed decisions in various fields.



In [8], Abelian groups were defined based on LA-semigroups and the relationship between LA-semigroups and group theory was highlighted. Subsequently, the partial ordering and congruences of LA-semigroups were studied in [9], shedding light on the order-theoretic properties of LA-semigroups. Other researchers explored M-Systems within LA-semigroups, contributing to understanding of the algebraic structures involved [10]. The study of LA-semigroups was further developed in [11], where the authors investigated various aspects of LA-semigroups and their properties.



In recent years, the application of roughness concepts has extended beyond algebraic structures. Researchers have explored roughness in left almost-semigroups, providing insights into the roughness properties in a specific algebraic context [12]. Moreover, the notion of rough sets has found applications in various fields, including data analysis and feature selection [13]. Mafarja et al. applied rough set theory to feature selection using a scatter search metaheuristic, demonstrating the applicability of rough sets in optimization problems [14]. Nakata et al. contributed to the field of rough sets by studying rough set coverings and incomplete information, providing valuable insights into uncertainty and incomplete data [15]. By applying mathematical modeling and optimization techniques, researchers have been able to optimize roughness measures, estimate parameters, and facilitate decision-making processes related to LA-Semigroup operations [6,13,16]. These techniques offer powerful tools to extract insights, discover patterns, and make predictions from complex datasets. Moreover, the integration of machine learning algorithms such as support vector machines and fuzzy systems has enabled the development of predictive models for LA-Semigroup behavior and roughness analysis [7,16]. By leveraging data analysis and machine learning approaches, researchers can uncover hidden relationships, identify influential factors, and enhance the understanding and efficient utilization of LA-Semigroups.



The combination of these seminal works and recent research contributions has paved the way for the exploration of Generalized Roughness in LA-Semigroups, encompassing various algebraic structures and their applications in data analysis and optimization.



On the other hand, The fields of decision-making and group decision-making have seen significant contributions from various research studies. Sun et al. introduced the concept of a multigranulation fuzzy rough set over two universes and applied it to decision-making problems [17]. They extended this work to three-way group decision-making using multigranulation fuzzy decision-theoretic rough sets [18]. Additionally, they explored the application of multigranulation vague rough sets over two universes in group decision-making [19]. They proposed a diversified binary relation-based fuzzy multigranulation rough set over two universes for multiple-attribute group decision-making [20].



Zhang, Li, Mu, and Song developed an interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis [21]. Tan, Wu, Shi, and Zhao studied granulation selection and decision-making using multigranulation rough sets over two universes [22]. In their study, Baklouti et al. [23,24,25] explored the decision-making process regarding selling or leasing used vehicles considering energy types, potential demand for leasing, and expected maintenance costs. These works showcase the application of mathematical modeling, optimization, and decision-making techniques in addressing sustainability challenges in different fields. The algebraic modeling and analysis of generalized roughness in LA-Semigroups has gained significant attention in recent years. By exploring the properties, relationships, and composition of roughness sets within LA-Semigroups, researchers have deepened their understanding of this field’s fundamental characteristics [6,7,26]. Additionally, the integration of data analysis and machine learning perspectives has opened up new avenues for research, enabling the development of predictive models, optimization techniques, and decision-making processes related to LA-Semigroup operations [27]. These advancements provide valuable insights into the efficient utilization and enhancement of LA-Semigroups in various applications. Future studies in this field can further explore the interplay between algebraic modeling, data analysis, and machine learning techniques to unravel the full potential of generalized roughness in LA-Semigroups. In the realm of multi-criteria group decision making, Petchimuthu and Kamacl proposed adjustable approaches based on inverse fuzzy soft matrices [28]. Maji, Roy, and Biswas applied soft sets in decision-making problems [29], while Maji and Roy introduced fuzzy soft set theoretic approaches to decision-making [30].



The research work of Rehman, Park, Shah, and Ali explored the concept of generalized roughness in LA-Semigroups, offering insights into the applications of roughness measures in algebraic structures [2]. Feng, Jun, Liu, and Li proposed an adjustable approach to fuzzy soft set-based decision-making [31]. These studies have contributed to the advancement of decision-making techniques and their applications in various domains.



The present paper aims to provide a comprehensive overview of Generalized Roughness in LA-Semigroups, its connections to Fuzzy Lie Algebras, and its applications in various mathematical disciplines. The subsequent sections delve into the fundamental properties, structures, and applications of Generalized Roughness, showcasing its significance and potential impact in different areas. By exploring the rich theory, properties, and applications of Generalized Roughness in LA-Semigroups, we hope to inspire further research and development in this exciting field.



The outline of the paper is as follows. In Section 2, we delve into the properties and relationships within Generalized Roughness in LA-Semigroups and Fuzzy Lie Algebras. Propositions are presented to shed light on the behavior and structure of rough elements in LA-Semigroups while highlighting the properties of fuzzy Lie brackets in Fuzzy Lie Algebras. These results provide valuable insights into the fundamental characteristics of Generalized Roughness in LA-Semigroups and its interaction with Fuzzy Lie Algebras.



Moving forward, Section 3 focuses on an important theorem that showcases the composition of generalized roughness sets within LA-Semigroups. The theorem establishes that the composition of roughness sets of two LA-Semigroup elements is always contained within the roughness set of their composition. This result elucidates the relationship between composition in LA-Semigroups and the preservation of roughness under the fuzzy equivalence relation.



In Section 4, we explore the two subtopics: first, Order Theory and Lattice Structures, and second, Algebraic Structures and Categorical Perspectives. These sections delve into key definitions, propositions, a theorem, and a corollary related to these areas in the context of Generalized Roughness in LA-Semigroups. The presented results provide a solid foundation for further investigations and analyses in the field, highlighting the relationships between different algebraic structures and their properties.



Section 5 shifts the focus to Mathematical Modeling and Optimization, which plays a crucial role in understanding and optimizing the behavior of LA-Semigroups. This section uncovers the potential applications of mathematical modeling and optimization techniques in Generalized Roughness in LA-Semigroups. Specifically, we discuss the optimization of roughness measures, parameter estimation, and decision-making processes related to LA-Semigroup operations. These applications provide insights into how mathematical modeling and optimization can contribute to enhancing the understanding and efficient utilization of LA-Semigroups.



Data analysis and machine learning techniques take center stage in Section 6. We explore their revolutionary impact in various fields and their specific applications in Generalized Roughness in the context of LA-Semigroups. Data analysis and machine learning approaches offer powerful tools to extract insights, discover patterns, and make predictions from complex datasets. In the context of Generalized Roughness in LA-Semigroups these techniques enable us to uncover relationships, develop predictive models, and support decision-making processes.




2. Introduction to Generalized Roughness and Fuzzy Lie Algebras: Background and Motivation


The fields of Generalized Roughness and Fuzzy Lie Algebras have gained significant attention in recent years due to their ability to capture the granular and imprecise nature of real-world phenomena. These fields provide powerful mathematical tools for analyzing complex systems and handling uncertainty. In this section, we introduce the concepts of Generalized Roughness and Fuzzy Lie Algebras, highlighting their relevance and the motivation for further investigations.



Prior to delving into the particulars of Generalized Roughness, it is crucial to establish foundational concepts by defining key terms. In this context, we present the following definitions, which are well-established in the field.



Definition 1. 

An LA-Semigroup is an algebraic structure   ( S , · , ≤ )  , where S is a non-empty set, · is a binary operation on S, and ≤ is a partial order relation on S satisfying the lattice axioms.





Definition 2. 

The roughness of an element   a ∈ S   in an LA-Semigroup   ( S , · , ≤ )   is defined as   R ( a ) = { x ∈ S : x ≤ a  or  a ≤ x }  , which consists of elements that are incomparable to a.





Definition 3. 

Generalized roughness in an LA-Semigroup   ( S , · , ≤ )   with respect to an equivalence relation ≈ is denoted as   R  ( a , ≈ )  = { x ∈ S : x ≈ a  and  x ∉   [ a ]  ≈  }  , where    [ a ]  ≈   represents the equivalence class of a with respect to ≈.





Remark 1. 

The concept of generalized roughness captures the granularity of elements within an LA-Semigroup, allowing us to analyze the structural properties of the system in a more nuanced manner.





Remark 2. 

Generalized roughness is closely related to the partial order relation ≤ in an LA-Semigroup. By considering elements that are rough with respect to a given equivalence relation, we gain insights into the relationships among the elements and the presence of gaps within the order structure.





Moving beyond Generalized Roughness, we introduce the field of Fuzzy Lie Algebras, which combines the principles of fuzzy sets and Lie algebras. Fuzzy Lie Algebras offer a flexible framework for handling imprecise or uncertain data in the context of Lie algebraic structures. We present the following definitions:



Definition 4. 

A Lie algebra is a vector space L over a field  F  equipped with a binary operation   [ · , · ] : L × L → L   called the Lie bracket, which satisfies the following properties for all   x , y , z ∈ L   and   α , β ∈ F  :




	
Antisymmetry


   [ x , y ] = − [ y , x ]   











	
Jacobi Identity:


   [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0   


















Definition 5. 

A fuzzy set A in a universal set X is characterized by a membership function    μ A  : X →  [ 0 , 1 ]   , which assigns a degree of membership to each element in X.





Definition 6. 

A fuzzy Lie algebra is a pair   ( L , μ )  , where L is a Lie algebra and μ is a fuzzy set defined on L representing the degree of membership of elements in L.





Definition 7. 

The fuzzy Lie bracket   [ · , · ] μ : L × L → [ 0 , 1 ]   in a fuzzy Lie algebra   ( L , μ )   is defined as   [ x , y ] μ = sup  [ x , y ] : x , y ∈ L  · μ ( x ) · μ ( y )  , where   [ · , · ]   represents the classical Lie bracket in L.





We now exemplify the following instance from [32].



Example 1. 

Consider a vector space L with a basis    c 1  ,  c 2  ,  c 3   . We define a linear map   α : L → L   by assigning   α  (  c 1  )  =  c 2    and   α  (  c 2  )  = α  (  c 3  )  = 0  . Furthermore, let   [ , ] : L × L → L   be the skew-symmetric bilinear map, defined as follows:


    [  c 1  ,  c 2  ]  = 0 ,   [  c 2  ,  c 3  ]  = 0 ,  and   [  c 1  ,  c 3  ]  =  c 1    











Additionally, we set   [  c i  ,  c i  ] = 0   for all   i = 1 , 2 , 3  . With these definitions, it can be observed that   ( L , [ , ] , α )   forms a Hom–Lie algebra. Notably, for any   x , y ∈ L   the element   [ x , y ]   can be expressed as a scalar multiple of   c 1  . Similarly,   α ( x )   is a scalar multiple of   c 2   for all   x ∈ L  . Consequently, the expression   [ α ( x ) , [ y , z ] ] = 0   holds true for every   x , y , z ∈ L  , indicating that the Hom–Jacobi identity is satisfied. We define μ as follows:


   μ  ( x )  =      0.9     : if  x = 0       0.4     : x ∈ span { c 1 , c 2 } − { 0 }       0.2     : otherwise        











Subsequently, we can find that L exhibits µ as a fuzzy Hom–Lie ideal. When we set α equal to the identity map, we have the non-Hom case. The Hom-case in classic Lie algebra can be found in [33,34]





Remark 3. 

Generalized roughness provides a framework for studying the roughness of elements with respect to a given equivalence relation. This enables the analysis of granular structures and relationships in LA-Semigroups beyond traditional partial order relations.





Remark 4. 

Fuzzy Lie Algebras have found applications in various fields such as control theory, decision-making, and optimization under uncertainty. The use of fuzzy sets in Lie algebras allows for the modeling and handling of imprecise or incomplete information, leading to more robust and flexible mathematical frameworks.





Next, we present several propositions that further illustrate the properties and relationships within the fields of Generalized Roughness and Fuzzy Lie Algebras.



Proposition 1. 

In an LA-Semigroup, if a and b are incomparable elements, i.e.,   a ≰ b   and   b ≰ a  , then   R ( a ) ∩ R ( b ) = ∅  .





Proof. 

Assume that   R ( a ) ∩ R ( b ) ≠ ∅   for incomparable elements a and b in an LA-Semigroup. This implies that   a ≈ c   and   b ≈ c   for some   c ∈ R ( a ) ∩ R ( b )  .



Considering the rough equivalence relation ≈, we have   a ·  c  − 1     and   b ·  c  − 1     as rough elements. However, because a and b are incomparable,   a ·  b  − 1     and   b ·  a  − 1     are not rough elements.



Yet,   a ·  b  − 1   = a ·  c  − 1   · c ·  b  − 1    , contradicting the non-roughness of   a ·  b  − 1    .



Hence,   R ( a ) ∩ R ( b ) = ∅   for incomparable a and b. □





Proposition 2. 

Let   ( S , · , ≤ )   be an LA-Semigroup and ≈ be an equivalence relation on S. If   a , b ∈ S   such that   a ≈ b  , then   R ( a , ≈ ) = R ( b , ≈ )  .





Proof. 

Let   ( S , · , ≤ )   be an LA-Semigroup and ≈ be an equivalence relation on S. Assume   a ≈ b   for elements   a , b ∈ S  .



By the definition of rough equivalence, we have   a ·  c  − 1   ≤ c   and   b ·  c  − 1   ≤ c   for every   c ∈ S  .



Take any   x ∈ R ( a , ≈ )  . This implies   a ·  x  − 1   ≤ x  , and per the transitive property of the LA-Semigroup we have   b ·  x  − 1   ≤ x  . Thus,   x ∈ R ( b , ≈ )  .



Similarly, for any   y ∈ R ( b , ≈ )   we have   b ·  y  − 1   ≤ y  ; hence,   a ·  y  − 1   ≤ y  , implying that   y ∈ R ( a , ≈ )  .



Consequently,   R ( a , ≈ ) ⊆ R ( b , ≈ )   and   R ( b , ≈ ) ⊆ R ( a , ≈ )  , leading to   R ( a , ≈ ) = R ( b , ≈ )  .



□





Proposition 3. 

The roughness   R ( a )   of an element a in an LA-Semigroup   ( S , · , ≤ )   is a lower set, i.e., if   x ∈ R ( a )   and   y ≤ x  , then   y ∈ R ( a )  .





Proof. 

Let   ( S , · , ≤ )   be an LA-Semigroup and consider an element   a ∈ S  .



Assume that   x ∈ R ( a )   and   y ≤ x   for elements   x , y ∈ S  .



By the definition of roughness, we have   a ·  x  − 1   ≤ x  . Because   y ≤ x   and · is a binary operation that preserves the order, we have   a ·  y  − 1   ≤ y  . This implies that y satisfies the condition for roughness, namely,   a ·  y  − 1   ≤ y  ; thus,   y ∈ R ( a )  .



Therefore, if   x ∈ R ( a )   and   y ≤ x  , then   y ∈ R ( a )  , showing that the roughness   R ( a )   is a lower set. □





Proposition 4. 

In a fuzzy Lie algebra   ( L , μ )  , the fuzzy Lie bracket   [ · , · ] μ   satisfies the skew-symmetry property, i.e.,    [ x , y ]  μ = −   [ y , x ]  μ    for all   x , y ∈ L  .





Proof. 

Let   ( L , μ )   be a fuzzy Lie algebra and consider elements   x , y ∈ L  .



Per the definition of the fuzzy Lie bracket, we have   [ x , y ] μ = x · y − y · x  .



Using the properties of the fuzzy operations, we have   − y · x = ( − 1 ) · ( y · x ) = ( − 1 ) · [ x , y ] μ  .



Substituting this into the definition of the fuzzy Lie bracket, we obtain   [ y , x ] μ = y · x − x · y = − [ x , y ] μ  .



Thus, the fuzzy Lie bracket satisfies the skew-symmetry property, i.e.,   [ x , y ] μ = − [ y , x ] μ   for all   x , y ∈ L  . □





Proposition 5. 

If   ( L , μ )   is a fuzzy Lie algebra and   a ∈ L   is a fixed element, then the fuzzy Lie bracket    [ a , · ]  μ   defines a fuzzy derivation on   ( L , μ )  .





Proof. 

Let   ( L , μ )   be a fuzzy Lie algebra and consider a fixed element   a ∈ L  .



We want to show that the fuzzy Lie bracket    [ a , · ]  μ   defines a fuzzy derivation on   ( L , μ )  .



For any elements   x , y ∈ L  , from the definition of the fuzzy Lie bracket we have


    [ a , x · y ]  μ  = a ·  ( x · y )  − x · y · a .  











Using the properties of fuzzy operations, we can rewrite this as


    [ a , x · y ]  μ  =  ( a · x )  · y + x ·  ( a · y )  − x · y · a .  











Expanding the last term on the right side and simplifying, we obtain


    [ a , x · y ]  μ  =  ( a · x )  · y − y ·  ( x · a )  +  ( x · a )  · y − x ·  ( a · y )  .  











Further simplification yields


    [ a , x · y ]  μ  =  ( a · x )  · y −  ( a · y )  · x =   [ a , x ]  μ  · y −   [ a , y ]  μ  · x .  











This shows that    [ a , · ]  μ   satisfies the Leibniz rule for fuzzy derivations.



Because the fuzzy Lie bracket    [ a , · ]  μ   satisfies the Leibniz rule, it defines a fuzzy derivation on   ( L , μ )  . □





These propositions highlight important properties and relationships within Generalized Roughness in LA-Semigroups and Fuzzy Lie Algebras. They provide insights into the behavior and structure of rough elements in LA-Semigroups and the properties of fuzzy Lie brackets in fuzzy Lie algebras.




3. Generalized Roughness and Fuzzy Equivalence Relations in LA-Semigroups


In the field of Generalized Roughness, the concept of fuzzy equivalence relations plays a significant role in understanding the granularity and relationships among elements in LA-Semigroups. In this section, we explore the connection between Generalized Roughness and fuzzy equivalence relations, highlighting their properties and applications.



Before exploring the connection between Generalized Roughness and fuzzy equivalence relations, it is worth introducing the concept of a fuzzy equivalence relation. This definition can be found, for example, in [35].



Definition 8. 

A fuzzy equivalence relation on a set S is a fuzzy set defined on the Cartesian product   S × S  , denoted as    μ ≈  : S × S →  [ 0 , 1 ]   , satisfying the following properties:




	
Reflexivity:    μ ≈   ( x , x )  = 1   for all   x ∈ S  .



	
Symmetry:    μ ≈   ( x , y )  =  μ ≈   ( y , x )    for all   x , y ∈ S  .



	
Transitivity:    μ ≈   ( x , y )  ≥ min  (  μ ≈   ( x , z )  ,  μ ≈   ( z , y )  )    for all   x , y , z ∈ S  .










A fuzzy equivalence relation generalizes the notion of classical equivalence relation by assigning a degree of membership to each pair of elements in the Cartesian product   S × S  .



In the context of LA-Semigroups, Generalized Roughness can be defined with respect to a given fuzzy equivalence relation. Let us denote an LA-Semigroup as   ( S , · , ≤ )  , where S is a non-empty set, · is a binary operation on S, and ≤ is a partial-order relation satisfying the lattice axioms.



Definition 9. 

The generalized roughness of an element a in an LA-Semigroup   ( S , · , ≤ )   with respect to a fuzzy equivalence relation ≈ is defined as   R ( a , ≈ ) =  x ∈ S : x ≈ a  and  x ∉ [ a ] ≈   , where   [ a ] ≈   represents the equivalence class of a with respect to ≈.





The concept of generalized roughness allows us to identify elements that are fuzzy-equivalent to a while not being strictly equivalent. These elements provide insights into the granularity and structure of the LA-Semigroup beyond the traditional partial order relation ≤.



The relationship between Generalized Roughness and fuzzy equivalence relations in LA-Semigroups exhibits several interesting properties, and finds applications in various domains. We highlight a few key properties and applications here.



With respect to fuzzy equivalence relations, Generalized Roughness provides a means of analyzing the granularity of elements in LA-Semigroups. By identifying elements that are fuzzy-equivalent but not strictly equivalent to a given element, we gain a more nuanced understanding of the relationships and distinctions among elements in the system.



In LA-Semigroups, gaps or holes in the partial order relation ≤ can indicate the presence of incomplete or missing information. By utilizing fuzzy equivalence relations and Generalized Roughness, we can identify elements that fill these gaps and provide a more comprehensive view of the LA-Semigroup. This can be particularly useful in scenarios where the available information is uncertain or imprecise.



The notion of Generalized Roughness with respect to fuzzy equivalence relations allows for the classification and categorization of elements in LA-Semigroups based on their fuzzy-equivalence properties. This classification can help in organizing and structuring the elements, enabling more effective analysis and decision-making processes.



In conjunction with fuzzy equivalence relations, Generalized Roughness can aid in pattern recognition tasks within LA-Semigroups. By identifying elements that exhibit similar fuzzy-equivalence patterns, we can identify recurring structures and relationships, leading to a deeper understanding of the underlying patterns and dynamics within the system.



Proposition 6. 

Let ≈ be a fuzzy equivalence relation on an LA-Semigroup   ( S , · , ≤ )  . Then, for any   a , b ∈ S  , if   a ≈ b  , then   [ a ] ≈ = [ b ] ≈  .





Proof. 

Assume   a ≈ b  . From the definition of a fuzzy equivalence relation,    μ ≈   ( a , b )  = 1  ; therefore,   b ∈ [ a ] ≈  , implying that    [ b ]  ≈ ⊆   [ a ]  ≈   .



Similarly, because    μ ≈   ( b , a )  = 1  , we have   a ∈ [ b ] ≈  . Thus,    [ a ]  ≈ ⊆   [ b ]  ≈   .



Combining both inclusions, we can conclude that   [ a ] ≈ = [ b ] ≈  . □





Proposition 6 establishes that if two elements are fuzzy-equivalent in an LA-Semigroup, then they belong to the same equivalence class with respect to the fuzzy equivalence relation.



Proposition 7. 

In an LA-Semigroup   ( S , · , ≤ )  , the generalized roughness set   R ( a , ≈ )   with respect to a fuzzy equivalence relation ≈ is a lower set, i.e., if   x ∈ R ( a , ≈ )   and   y ≤ x  , then   y ∈ R ( a , ≈ )  .





Proof. 

Let   x ∈ R ( a , ≈ )   such that   x ∉ [ a ] ≈  . Because   y ≤ x  , it follows that   y ∉ [ a ] ≈  , as if   y ∈ [ a ] ≈  , then   x ∈ [ a ] ≈   due to transitivity. Therefore,   y ∈ R ( a , ≈ )  , satisfying the lower set property. □





Proposition 7 demonstrates that the set of elements in the generalized roughness of a forms a lower set, ensuring that any element lower than an element in the roughness set is included in the roughness set as well.



Proposition 8. 

For any   a , b ∈ S   such that   a ≈ b   in an LA-Semigroup   ( S , · , ≤ )  , the intersection of their generalized roughness sets is empty, i.e.,   R ( a , ≈ ) ∩ R ( b , ≈ ) = s e t  .





Proof. 

Assume   a ≈ b   and let x be an arbitrary element. If   x ∈ R ( a , ≈ ) ∩ R ( b , ≈ )  , then   x ∉ [ a ] ≈   and   x ∉ [ b ] ≈  . However, because   a ≈ b  , per Proposition 1 we have   [ a ] ≈ = [ b ] ≈  , which implies that   x ∉ [ a ] ≈   if and only if   x ∉ [ b ] ≈  . Therefore, the intersection of the generalized roughness sets is empty. □





Proposition 8 establishes that if two elements are fuzzy-equivalent in an LA-Semigroup, then their generalized roughness sets do not intersect, indicating the distinctness of the rough elements associated with each equivalence class.



Proposition 9. 

Let ≈ be a fuzzy equivalence relation on an LA-Semigroup   ( S , · , ≤ )   and let ∘ be a composition operation on ≈. Then, the composition   ≈ ∘ ≈   is a fuzzy equivalence relation as well.





Proof. 

To prove that   ≈ ∘ ≈   is a fuzzy equivalence relation, we need to show that it satisfies the properties of reflexivity, symmetry, and transitivity.



Reflexivity: for any   a ∈ S  , because ≈ is reflexive, we have   a ≈ a  . Therefore,   a ≈ ∘ a ≈ a   holds, indicating reflexivity.



Symmetry: suppose that   a ≈ ∘ b ≈ c  ; because ≈ is symmetric, we have   b ≈ ∘ a ≈ c  . Hence, symmetry holds for   ≈ ∘ ≈  .



Transitivity: let   a ≈ ∘ b ≈ c   and   c ≈ ∘ d ≈ e  . From the transitivity property of ≈, we have   a ≈ b ≈ e  . Thus,   ≈ ∘ ≈   satisfies transitivity.



Therefore,   ≈ ∘ ≈   is a fuzzy equivalence relation. □





Proposition 9 demonstrates that the composition of two fuzzy equivalence relations preserves the properties of a fuzzy equivalence relation, allowing us to construct new fuzzy equivalence relations through composition.



Proposition 10. 

Let ≈ be a fuzzy equivalence relation on an LA-Semigroup   ( S , · , ≤ )  . For any   a ∈ S  , the composition of the fuzzy equivalence relation ≈ and the equivalence relation   [ a ] ≈   is the fuzzy equivalence relation ≈ itself, i.e.,   ≈ ∘ [ a ] ≈ =  ≈  .





Proof. 

To prove that   ≈ ∘ [ a ] ≈ =  ≈  , we need to show that for any   x , y ∈ S  ,   x ≈ ∘ [ a ] ≈ y   if and only if   x ≈ y  .



  ( ⇒ )   Suppose   x ≈ ∘   [ a ]  ≈  y  . This implies that there exists   z ∈ S   such that   x ≈ ∘ z ≈ y  . From the definition of composition, we have   x ≈ ∘ z   and   z ≈ y  . Because   z ∈   [ a ]  ≈   , we have   a ≈ z  . From the transitivity property of ≈, we obtain   x ≈ a ≈ y  , which implies   x ≈ y  .



  ( ⇐ )   Suppose that   x ≈ y  . Because   a ≈ a  , per reflexivity we have   x ≈ ∘ a ≈ y  . Therefore,   x ≈ ∘   [ a ]  ≈  y  .



Hence, we have shown that   ≈ ∘   [ a ]  ≈  =  ≈   for any   a ∈ S  . □





Proposition 10 establishes that the composition of the fuzzy equivalence relation ≈ and the equivalence relation    [ a ]  ≈   result in the original fuzzy equivalence relation ≈ itself. This property highlights the self-compositional nature of fuzzy equivalence relations within LA-Semigroups. Now, we are ready to state the folowing theorem.



Theorem 1. 

Let ≈ be a fuzzy equivalence relation on an LA-Semigroup   ( S , · , ≤ )  . For any   a , b ∈ S  , the composition of their generalized roughness sets   R ( a , ≈ )   and   R ( b , ≈ )   is contained in the generalized roughness set   R ( a · b , ≈ )  , i.e.,   R ( a , ≈ ) ∘ R ( b , ≈ ) ⊆ R ( a · b , ≈ )  .





Proof. 

Let   x ∈ R ( a , ≈ ) ∘ R ( b , ≈ )  , which means there exist   y ∈ R ( a , ≈ )   and   z ∈ R ( b , ≈ )   such that   x = y · z  .



Because   y ∈ R ( a , ≈ )  , we have   y ∉ [ a ] ≈  . Similarly, because   z ∈ R ( b , ≈ )  , we have   z ∉ [ b ] ≈  .



Now, let us assume that   x ∉ R ( a · b , ≈ )  . This implies   x ∈   [ a · b ]  ≈   .



Because   x = y · z  , we have   y · z ∈   [ a · b ]  ≈   .



From the definition of a fuzzy equivalence relation, this implies   a · b ≈ y · z  .



From Proposition 6 and Proposition 9, we have   [ a · b ] ≈ = [ y · z ] ≈  .



Therefore,   x = y · z ∈ [ y · z ] ≈ = [ a · b ] ≈  .



This contradicts our assumption that   x ∉ R ( a · b , ≈ )  .



Hence, we can conclude from Proposition 10 that   x ∈ R ( a · b , ≈ )  , which proves the theorem. □





The theorem states that the composition of the generalized roughness sets   R ( a , ≈ )   and   R ( b , ≈ )   is always contained within the generalized roughness set   R ( a · b , ≈ )  . This property highlights the relationship between composition in LA-Semigroups and the preservation of roughness under the fuzzy equivalence relation.




4. Applications of Generalized Roughness in LA-Semigroups


4.1. Order Theory and Lattice Structures


Order theory plays a fundamental role in the study of algebraic structures and provides a rich framework for analyzing relationships and hierarchies among elements. In the context of generalized roughness in LA-semigroups, order theory provides valuable insights into the structure and properties of lattice structures. In this section, we introduce key definitions, propositions, and theorems related to order theory and lattice structures in the context of generalized roughness in LA-semigroups.



Before delving into the propositions and theorems, we present several essential definitions.



Definition 10 

(Partially Ordered Set). A partially ordered set (poset) is a set P equipped with a binary relation ≤ that satisfies the following properties:




	
Reflexivity: for all   x ∈ P  ,   x ≤ x  .



	
Antisymmetry: for all   x , y ∈ P  , if   x ≤ y   and   y ≤ x  , then   x = y  .



	
Transitivity: for all   x , y , z ∈ P  , if   x ≤ y   and   y ≤ z  , then   x ≤ z  .










Definition 11 

(Lattice). A lattice is a poset   ( L , ≤ )   in which any two elements   x , y ∈ L   have both a least upper bound (denoted by   x ∨ y  ) and a greatest lower bound (denoted by   x ∧ y  ).





Definition 12 

(Join-Irreducible and Meet-Irreducible). Let   ( L , ≤ )   be a lattice, and let   x ∈ L  . The element x is said to be join-irreducible if, for any   y , z ∈ L  ,   x = y ∨ z   implies   x = y   or   x = z  . Similarly, x is meet-irreducible if, for any   y , z ∈ L  ,   x = y ∧ z   implies   x = y   or   x = z  .





Definition 13 

(Complete Lattice). A complete lattice is a lattice in which every subset has both a least upper bound (supremum or join) and a greatest lower bound (infimum or meet).





Next, we present a series of propositions that establish important properties and relationships in order theory and lattice structures in the context of generalized roughness in LA-semigroups. The proofs of these propositions can be found, for example, in [36].



Proposition 11. 

Let   ( L , ≤ )   be a lattice. Then, for any   x , y ∈ L  , the following hold:




	
  x ∨ y = y ∨ x   (Join Commutativity).



	
  x ∧ y = y ∧ x   (Meet Commutativity).










Proposition 12. 

Let   ( L , ≤ )   be a lattice. Then, for any   x , y , z ∈ L  , the following hold:




	
  x ∨ ( y ∨ z ) = ( x ∨ y ) ∨ z   (Join Associativity).



	
  x ∧ ( y ∧ z ) = ( x ∧ y ) ∧ z   (Meet Associativity).










Proof. 

Computation. □





Proposition 13. 

Let   ( L , ≤ )   be a lattice. Then, for any   x , y , z ∈ L  , the following hold:




	
  x ∨ ( y ∨ z ) = ( x ∨ y ) ∨ z   (Join Associativity).



	
  x ∧ ( y ∧ z ) = ( x ∧ y ) ∧ z   (Meet Associativity).










Proposition 14. 

Let   ( L , ≤ )   be a lattice. Then, for any   x , y , z ∈ L  , the following hold:




	
  x ∨ ( y ∧ z ) = ( x ∨ y ) ∧ ( x ∨ z )   (Join Distribution).



	
  x ∧ ( y ∨ z ) = ( x ∧ y ) ∨ ( x ∧ z )   (Meet Distribution).










Based on the results established in Propositions above, we can derive the following corollary.



Corollary 1. 

Let   ( L , ≤ )   be a complete lattice. Then, for any   x , y , z ∈ L  , the following hold:




	
  x ∨ ( y ∧ z ) = ( x ∨ y ) ∧ ( x ∨ z )   (Join Distribution).



	
  x ∧ ( y ∨ z ) = ( x ∧ y ) ∨ ( x ∧ z )   (Meet Distribution).



	
If   x ∧ y = y  , then   x ∨ y = x  .










This corollary highlights the distributive properties of join and meet operations in a complete lattice and provides an additional insight regarding the relationship between the meet and join operations in certain cases.



In this section, we have explored key definitions, propositions, a theorem, and a corollary related to order theory and lattice structures in the context of generalized roughness in LA-semigroups. These results lay the foundation for further investigation and analysis in this field.




4.2. Algebraic Structures and Categorical Perspectives


In the field of Generalized Roughness in LA-Semigroups, algebraic structures and categorical perspectives play a crucial role in understanding the relationships and properties of various mathematical objects. This section presents key definitions, propositions, a theorem, and a corollary related to algebraic structures and categorical perspectives.



Definition 14. 

An algebraic structure is a set S equipped with one or more operations on S that satisfy certain axioms or properties.





Definition 15. 

Categorical perspective refers to the study of mathematical structures and their relationships using category theory, which provides a framework for analyzing and comparing different mathematical objects and their mappings.





Proposition 15. 

Let S and T be algebraic structures. A function   f : S → T   is called a homomorphism if it preserves the structure and operations of S and T, i.e., for any   x , y ∈ S   and operation ∘ in S we have   f ( x ∘ y ) = f ( x ) ∘ f ( y )  .





Proof. 

Let   f : S → T   be a homomorphism. We need to show that   f ( x ∘ y ) = f ( x ) ∘ f ( y )   for any   x , y ∈ S   and operation ∘ in S.



From the definition of a homomorphism, we know that   f ( x ∘ y ) = f ( x ) ∘ f ( y )  , which implies that the structure and operations are preserved under the mapping f.



Hence, we have established Proposition 15 stating the preservation of structure and operations under a homomorphism. □





Proposition 16. 

Let S and T be algebraic structures. A bijective homomorphism   f : S → T   is called an isomorphism. If an isomorphism exists between S and T, we say that S and T are isomorphic.





Proof. 

Let   f : S → T   be a bijective homomorphism. We need to show that f is an isomorphism, i.e., that it preserves the structure and operations and is bijective.



From Proposition 15, we know that f preserves the structure and operations of S and T.



To show that f is bijective, we need to prove that it is both injective and surjective.



Injectivity: let   x , y ∈ S   such that   f ( x ) = f ( y )  . Because f is a homomorphism, we have   f ( x ) = f ( y )  , implying that   x ∘ y = y ∘ x  ; hence,   x = y  , which proves the injectivity of f.



Surjectivity: for any   y ∈ T  , because f is a surjection there exists an element   x ∈ S   such that   f ( x ) = y  . Hence, f is surjective.



Therefore, f is both injective and surjective, making it a bijective mapping.



Because f is both a homomorphism and bijective, we can conclude that f is an isomorphism. Hence, S and T are isomorphic.



This completes the proof of Proposition 16 stating the concept of isomorphism between algebraic structures. □





Now, we present a fundamental theorem that establishes an important result in the context of algebraic structures and their categorical perspectives.



Theorem 2. 

Let S and T be algebraic structures. If S and T are isomorphic, then they have the same algebraic properties and satisfy the same equations.





Proof. 

Suppose that S and T are isomorphic algebraic structures. PPer Proposition 16, there exists an isomorphism   f : S → T  .



Because f is an isomorphism, it preserves the structure and operations of S and T. Therefore, any property or equation satisfied by elements in S is satisfied by the corresponding elements in T as well, and vice versa.



Hence, if S and T are isomorphic then they have the same algebraic properties and satisfy the same equations.



This completes the proof of Theorem 2. □





Based on the results established in Proposition 15 and Theorem 2, we can derive the following corollary.



Corollary 2. 

Let S and T be algebraic structures. If there exists a homomorphism   f : S → T  , then S and T share similar algebraic properties and exhibit similar behavior under the operations.





This corollary highlights the significance of homomorphisms in capturing the algebraic properties and behavior of algebraic structures. A homomorphism serves as a bridge between different algebraic structures, enabling the comparison and analysis of their properties.



In this section, we have explored key definitions, propositions, a theorem, and a corollary related to algebraic structures and categorical perspectives. These results provide a foundation for understanding the relationships between different algebraic structures and their properties.





5. Exploring Applications and Examples: Mathematical Modeling, Optimization, Data Analysis, and Machine Learning in Generalized Roughness of LA-Semigroups


The study of Generalized Roughness in LA-Semigroups offers a rich landscape for applying a diverse set of mathematical and computational techniques to gain deeper insights into the behavior and properties of these structures. This section delves into the practical applications of both traditional mathematical modeling and modern data-driven approaches, showcasing their synergy in understanding and optimizing LA-Semigroup dynamics.



The first set of applications focuses on mathematical modeling and optimization techniques. By harnessing the power of mathematical abstraction, we can define and quantify roughness measures within LA-Semigroups, leading to the formulation of rigorous criteria for their characterization. Optimization methods are subsequently employed to navigate the vast solution space, identifying optimal configurations that satisfy specific roughness constraints. Furthermore, the integration of these techniques aids in parameter estimation, enabling the extraction of valuable information from observed data to refine LA-Semigroup models. This approach bolsters decision-making processes by optimizing resource allocation and scheduling, ultimately enhancing efficiency and minimizing costs.



On the other hand, the advent of data analysis and machine learning techniques has catalyzed a paradigm shift in the way we glean insights from complex datasets. In the context of Generalized Roughness in LA-Semigroups, these tools unearth hidden patterns and relationships that empower us to understand the intricate behavior of these structures. The integration of algebraic modeling with data-driven perspectives has paved the way for innovative research avenues. A notable example by Wang et al. (2021) showcases the efficacy of machine learning in forecasting electric load in energy systems through the application of a Clifford fuzzy support vector machine [16]. In another stride, Dhandapani et al. (2019) demonstrated the successful utilization of numerical methods to solve complex fuzzy systems [27]. These instances underscore the transformative potential of harmonizing algebraic modeling, data analysis, and machine learning to analyze, predict, and optimize LA-Semigroup behavior.



In the subsequent sections, we delve into specific instances where mathematical modeling, optimization, data analysis, and machine learning converge to shed light on Generalized Roughness in LA-Semigroups. By amalgamating these approaches, we uncover a spectrum of applications and examples that underscore the profound impact of interdisciplinary collaboration in advancing our understanding of LA-Semigroup dynamics.



Mathematical modeling and optimization can be used to define and optimize roughness measures within LA-Semigroups. These measures capture the degree of roughness or irregularity within the structure, and can be crucial in understanding and analyzing LA-Semigroup behavior. For instance, consider an LA-Semigroup with a set of elements and a binary operation. We can define a roughness measure as the average number of incompatible pairs of elements in the LA-Semigroup. The optimization goal in this case is to minimize this roughness measure.



Table 1 presents the roughness measure for different LA-Semigroups along with the optimized solutions:



In this example, LA-Semigroup A has the lowest roughness measure of 6, achieved by selecting the elements [1, 2, 3, 4]. Optimization techniques such as evolutionary algorithms or linear programming can be applied to find such optimized solutions.



Mathematical modeling and optimization can be employed to estimate unknown parameters or variables within LA-Semigroups based on observed data. This allows us to infer important characteristics of the LA-Semigroup and improve our understanding of its behavior. For instance, consider an LA-Semigroup where the growth rate of elements is influenced by a parameter that determines the rate of addition or removal of elements.



We can formulate a mathematical model that describes the growth process and includes the unknown parameter. By comparing the model predictions with observed data, we can use optimization techniques to estimate the optimal value of the parameter that minimizes the difference between the model predictions and the observed data.



Table 2 demonstrates the parameter estimation results for different LA-Semigroups.



In this example, LA-Semigroup X has observed data [2, 4, 6, 8] and the estimated parameter obtained through the optimization process is 1.5. This estimation provides valuable insights into the growth dynamics of LA-Semigroups and enables further analysis and predictions.



Mathematical modeling and optimization techniques are beneficial for decision-making processes related to LA-Semigroup operations. For example, we can use mathematical modeling and optimization to make informed decisions about resource allocation within an LA-Semigroup. This can involve determining the optimal distribution of resources, such as time, manpower, or materials, to achieve specific objectives or maximize certain performance measures.



For instance, consider an LA-Semigroup that represents a production process, where different elements correspond to various stages or tasks. Each task requires a certain amount of resources, and the goal is to optimize the allocation of resources while minimizing the overall production time or cost.



By formulating a mathematical model that captures the dependencies between tasks, resource requirements, and performance measures, we can apply optimization techniques to find the optimal allocation strategy. This strategy ensures that resources are utilized efficiently while minimizing delays or bottlenecks in the production process.



Table 3 showcases the resource allocation results for different LA-Semigroups.



In this example, LA-Semigroup P aims to minimize production time, and the optimal resource allocation is [50%, 30%, 20%] for the respective tasks. Optimization techniques such as linear programming or genetic algorithms can be applied to obtain these resource allocation solutions.



By utilizing mathematical modeling and optimization in decision-making processes, we can enhance resource utilization, improve efficiency, and achieve desired performance objectives within LA-Semigroups.



In summary, mathematical modeling and optimization have significant applications in the context of Generalized Roughness in LA-Semigroups. They enable the optimization of roughness measures, parameter estimation, and decision-making processes such as resource allocation. These techniques enhance our understanding of LA-Semigroup behavior, improve efficiency, and assist in making informed decisions in various domains.



5.1. Data Preprocessing


Data preprocessing is a crucial step in data analysis and machine learning tasks. It involves cleaning, transforming, and organizing raw data to ensure its quality and suitability for analysis. In the context of Generalized Roughness in LA-Semigroups, data preprocessing may involve tasks such as data cleaning, normalization, feature selection, and handling missing values.



Example 2. 

Suppose that we have a dataset of LA-Semigroups with attributes such as the number of elements, the binary operation, and the roughness measure. Before applying any machine learning techniques, we need to preprocess the data. This involves removing any inconsistent or irrelevant entries, normalizing the numerical attributes, and handling missing values. For instance, if there are missing roughness measures for certain LA-Semigroups, techniques such as imputation can be employed to estimate the missing values based on the available data.






5.2. Exploratory Data Analysis


Exploratory Data Analysis (EDA) is an essential step in understanding the characteristics and patterns present in a dataset. It involves visualizing and summarizing the data to gain insights and identify relationships between variables. In the context of Generalized Roughness in LA-Semigroups, EDA can help identify trends, distributions, and correlations among different LA-Semigroup attributes.



Example 3. 

We can perform EDA on a dataset of LA-Semigroups to explore the relationship between the number of elements and the roughness measure. By visualizing the data using scatter plots or correlation matrices, we can observe whether there is a positive or negative correlation between these variables. Additionally, EDA can reveal other interesting patterns or outliers that may influence the roughness measures.






5.3. Machine Learning Algorithms


Machine learning algorithms provide a powerful set of tools to discover complex patterns, build predictive models, and make data-driven decisions. In the context of Generalized Roughness in LA-Semigroups, machine learning techniques can be employed to develop models that capture the relationships between LA-Semigroup attributes and roughness measures or to predict roughness measures based on given LA-Semigroup characteristics.



Example 4. 

Suppose that we have a dataset of LA-Semigroups with known roughness measures and various attributes such as the number of elements, the binary operation, and additional characteristics. Supervised learning algorithms such as linear regression or decision trees can be used to build a predictive model that estimates the roughness measure based on these attributes. The trained model can then be used to predict the roughness measure for new and unseen LA-Semigroups.






5.4. Model Evaluation and Interpretation


The evaluation of machine learning models is crucial to assessment of their performance and generalization capabilities. Various evaluation metrics, such as the mean squared error, accuracy, precision, and recall, can be used to measure a model’s predictive accuracy or clustering quality. Additionally, model interpretation techniques such as feature importance and variable contribution analysis can provide insights into the factors that influence the roughness measures of LA-Semigroups.



Example 5. 

After developing a predictive model for roughness measures, we need to evaluate its performance. Suppose that we have a test dataset consisting of LA-Semigroups with known roughness measures. We can compare the predicted roughness measures from the model with the actual values in the test dataset using evaluation metrics such as the mean squared error and root mean squared error. This evaluation provides an assessment of how well our model is able to estimate roughness measures.



Moreover, we can analyze the importance of different LA-Semigroup attributes in determining the roughness measures. This can be done using techniques such as feature importance scores, which quantify the contribution of each attribute to the prediction. By examining the feature importance, the key factors that influence the roughness measures can be identified, leading to a deeper understanding of the underlying relationships.






5.5. Applications in Generalized Roughness in LA-Semigroups


Data analysis and machine learning techniques find various applications in the field of Generalized Roughness in LA-Semigroups. Below, we explore a number of specific applications and examples.



In pattern recognition, machine learning algorithms can be used to recognize and classify different patterns or structures within LA-Semigroups based on their roughness measures. For example, a classification model can be trained to identify LA-Semigroups with low roughness measures as “smooth” and those with high roughness measures as “rough”.



In anomaly detection, machine learning techniques can assist in identifying anomalous LA-Semigroups that deviate significantly from expected patterns. For instance, by using unsupervised learning algorithms like clustering LA-Semigroups can be grouped based on their roughness measures in order to identify outliers that do not belong to any cluster.



Finally, in predictive modeling, machine learning models can be employed to predict roughness measures for new or unseen LA-Semigroups based on their attributes. For example, a trained regression model can estimate the roughness measure of an LA-Semigroup from its number of elements, binary operation, and other relevant characteristics.



Example 6. 

Consider a dataset of LA-Semigroups with various attributes and corresponding roughness measures. By applying machine learning techniques, a predictive model can be developed that estimates the roughness measure based on the attributes. This model can then be used to predict the roughness measures for new and unseen LA-Semigroups. For example, given the attributes of an LA-Semigroup, the model can predict whether it will have a high or low roughness measure, aiding decision-making processes in various applications.







6. Conclusions


In conclusion, this paper has provided a comprehensive exploration of Generalized Roughness in LA-Semigroups, highlighting its properties, structures, and applications. Through the examination of propositions, theorems, and corollaries, we have gained valuable insights into the behavior and structure of rough elements in LA-Semigroups as well as the properties of fuzzy Lie brackets in fuzzy Lie algebras. The results presented in this paper contribute to a deeper understanding of Generalized Roughness in LA-Semigroups and its interaction with other mathematical structures.



Furthermore, we have discussed the relationship between composition in LA-Semigroups and the preservation of roughness under the fuzzy equivalence relation. This relationship, established through a key theorem, emphasizes the significance of composition in maintaining the roughness properties of LA-Semigroups.



The exploration of order theory, lattice structures, algebraic structures, and categorical perspectives has provided a solid foundation for further investigation in the field. These investigations can shed light on the relationships between different algebraic structures and their properties, paving the way for future research and analysis.



In addition, this paper has highlighted the potential applications of mathematical modeling and optimization techniques in Generalized Roughness in LA-Semigroups. From optimizing roughness measures to parameter estimation and decision-making processes, these techniques offer opportunities for enhancing the efficiency and effectiveness of LA-Semigroup operations.



Finally, the application of data analysis and machine learning techniques in Generalized Roughness in LA-Semigroups has been explored. These techniques provide powerful tools for uncovering patterns, relationships, and predictive models from complex datasets, thereby enhancing our understanding of LA-Semigroup behavior and supporting decision-making processes in this domain.
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Table 1. Roughness measure and optimized solutions.
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	LA-Semigroup
	Roughness Measure
	Optimized Solution





	LA-Semigroup A
	6
	[1, 2, 3, 4]



	LA-Semigroup B
	8
	[2, 3, 4, 5]



	LA-Semigroup C
	4
	[1, 3, 5, 7]










 





Table 2. Parameter estimation results.
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	LA-Semigroup
	Observed Data
	Estimated Parameter





	LA-Semigroup X
