Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method
Abstract
:1. Introduction
2. Network Simulation Method
- It allows us to work with ideal electrical components.
- There is an almost intuitive relationship between the addends of the equation and the electrical components.
- It has extensive component libraries available.
- It provides very precise solutions thanks to the fact that the software includes trapezoidal integration and Gear’s fixed time methods, reducing the local truncation error and allowing model convergence.
- It requires a relatively short execution time.
- It only requires a limited number of software programming rules.
- The software parameters, such as RELTOL and VNTOL, allow us to improve the precision of the solutions and the convergence of the system.
- First, the equivalence between the study variable and the voltage at the network nodes is established.
- Secondly, the space is discretised in volume elements.
- Finally, the addends of the previous equations are implemented as electrical elements, such as resistors, voltage sources, etc.
2.1. The Concept of the Time Derivative
2.2. The Concept of the First Spatial Derivative
2.3. The Concept of the Second Spatial Derivative
2.4. Remaining Addends
2.5. Boundary Conditions
2.5.1. Dirichlet’s Boundary Condition
2.5.2. Neumann’s Boundary Condition
2.5.3. Symmetry Boundary Condition
2.5.4. Displacement-Type Boundary Conditions
2.5.5. General Boundary Conditions
2.6. Initial Conditions
2.7. Auxiliary Circuits
2.7.1. Time Generators
2.7.2. Other Equations
3. Mathematical Model
3.1. Burgers–Huxley Equation
3.2. System of Coupled Differential Equations
4. Network Model
4.1. Burgers–Huxley Equation with Constant Coefficients
4.2. Burgers–Huxley Equation with Variable Coefficients
4.3. System of Coupled Differential Equations with Constant Coefficients
4.4. System of Coupled Differential Equations with Variable Coefficients
5. Results and Case Studies
5.1. Burgers–Huxley Equation
5.2. System of Coupled Differential Equations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
a | Position where the discontinuity occurs |
a(t) | Acceleration |
C | Capacitor, capacitance (F) |
E | Linear voltage-controlled voltage sources |
G | Linear voltage-controlled current sources |
i | Electric current (A) |
L | Self-induction coefficient (H) |
q | Electric charge (C) |
R | Resistance (Ω) |
t | Time (s) |
u | Variable |
uL | Initial value |
uR | Initial value |
u(t) | Voltage (V) |
v | Variable |
v(t) | Velocity |
w | Variable |
x | Spatial coordinate |
α | Coefficient |
β | Coefficient |
γ | Coefficient |
δ | Coefficient |
ε | Coefficient |
ζ | Coefficient |
Subscripts: | |
0 | Initial value |
C | Related to capacitor |
L | Related to coil |
R | Related to resistance |
s | Points of the boundary |
References
- Wen, Y.; Chaolu, T. Study of Burgers–Huxley Equation Using Neural Network Method. Axioms 2023, 12, 429. [Google Scholar] [CrossRef]
- Hashim, I.; Noorani, M.; Al-Hadidi, M.S. Solving the generalized Burgers–Huxley equation using the Adomian decomposition method. Math. Comput. Model. 2006, 43, 1404–1411. [Google Scholar] [CrossRef]
- Rodriguez, J.N.; Omel’yanov, G. General Degasperis-Procesi equation and its solitary wave solutions. Chaos Solitons Fractals 2018, 118, 41–46. [Google Scholar] [CrossRef]
- Gao, B.; Tian, K.; Liu, Q.P. A super Degasperis–Procesi equation and related integrable systems. Proc. R. Soc. A. 2021, 477, 20200780. [Google Scholar] [CrossRef]
- Zhang, K.; Alshehry, A.S.; Aljahdaly, N.H.; Shah, R.; Shah, N.A.; Ali, M.R. Efficient computational approaches for fractional-order Degasperis-Procesi and Camassa–Holm equations. Results Phys. 2023, 50, 106549. [Google Scholar] [CrossRef]
- Ganji, D.D.; Sadeghi, E.M.M.; Rahmat, M.G. Modified Camassa–Holm and Degasperis–Procesi Equations Solved by Adomian’s Decomposition Method and Comparison with HPM and Exact Solutions. Acta Appl. Math. 2008, 104, 303–311. [Google Scholar] [CrossRef]
- López, F.A.; García, C.N.M. Análisis Dimensional Discriminado en Mecánica de Fluidos y Transferencia de Calor; Reverté: Dacula, GA, USA, 2012. [Google Scholar]
- Cengel, Y.A.; Cimbala, J.M. Fluid Mechanics, Fundamentals and Applications, 4th ed.; Education, McGraw Hill: New York, NY, USA, 2018; Volume 91. [Google Scholar]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Bejan, A. Convection Heat Transfer; Wiley-Interscience: New York, NY, USA, 1984. [Google Scholar]
- Kreith, F.; Bohn, M.; Kirkpatrick, A. Principles of Heat Transfer; Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Beck, J.V.; Blackwell, B.; Clair, C.R.S. Inverse Heat Conduction: Ill-Posed Problems; Wiley-Interscience: New York, NY, USA, 1985; p. 308. [Google Scholar]
- Fernández, C.F.G.; Alhama, F.; Sánchez, J.F.L.; Horno, J. Application of the Network Method to Heat Conduction Processes with Polynomial and Potential-Exponentially Varying Thermal Properties. Numer. Heat Transf. Part A Appl. 1998, 33, 549–559. [Google Scholar] [CrossRef]
- Nigri, M.R.; Pedrosa-Filho, J.J.; Gama, R.M. An exact solution for the heat transfer process in infinite cylindrical fins with any temperature-dependent thermal conductivity. Therm. Sci. Eng. Prog. 2022, 32, 101333. [Google Scholar] [CrossRef]
- Albani, R.A.; Duda, F.P.; Pimentel, L.C.G. On the modeling of atmospheric pollutant dispersion during a diurnal cycle: A finite element study. Atmos. Environ. 2015, 118, 19–27. [Google Scholar] [CrossRef]
- Ku, J.-Y.; Rao, S.; Rao, K. Numerical simulation of air pollution in urban areas: Model development. Atmos. Environ. (1967) 1987, 21, 201–212. [Google Scholar] [CrossRef]
- Moradpour, M.; Afshin, H.; Farhanieh, B. A numerical investigation of reactive air pollutant dispersion in urban street canyons with tree planting. Atmos. Pollut. Res. 2017, 8, 253–266. [Google Scholar] [CrossRef]
- Fenaux, M. Modelling of Chloride Transport in Non-Saturated Concrete: From Microscale to Macroscale. Doctoral Dissertation, Universidad Politécnica de Madrid, Madrid, Spain, 2022. [Google Scholar] [CrossRef]
- Fenaux, M.M.C.; Reyes, E.; Moragues, A.; Gálvez, J.C. Modelling of chloride transport in non-saturated concrete. From microscale tomacroscale. In Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013, Toledo, Spain, 10–14 March 2013. [Google Scholar]
- Pradelle, S.; Thiéry, M.; Baroghel-Bouny, V. Comparison of existing chloride ingress models within concretes exposed to seawater. Mater. Struct. 2016, 49, 4497–4516. [Google Scholar] [CrossRef]
- Guimarães, A.; Climent, M.; de Vera, G.; Vicente, F.; Rodrigues, F.; Andrade, C. Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure. Constr. Build. Mater. 2011, 25, 785–790. [Google Scholar] [CrossRef]
- Meijers, S.J.H. Computational results of a model for chloride ingress in concrete including convection, drying-wetting cycles and carbonation. Mater. Struct. 2005, 38, 145–154. [Google Scholar] [CrossRef]
- Nielsen, E.P.; Geiker, M.R. Chloride diffusion in partially saturated cementitious material. Cem. Concr. Res. 2003, 33, 133–138. [Google Scholar] [CrossRef]
- Martín-Pérez, B.; Pantazopoulou, S.; Thomas, M. Numerical solution of mass transport equations in concrete structures. Comput. Struct. 2001, 79, 1251–1264. [Google Scholar] [CrossRef]
- Fang, X.; Wen, J.; Bonello, B.; Yin, J.; Yu, D. Wave propagation in one-dimensional nonlinear acoustic metamaterials. New J. Phys. 2017, 19, 053007. [Google Scholar] [CrossRef]
- Sheng, P.; Fang, X.; Wen, J.; Yu, D. Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J. Sound Vib. 2020, 492, 115739. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Yang, H.; Dong, H.; Han, X. Optical solitons in birefringent fibers with the generalized coupled space–time fractional non-linear Schrödinger equations. Front. Phys. 2023, 11, 1108505. [Google Scholar] [CrossRef]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Investigating Families of Soliton Solutions for the Complex Structured Coupled Fractional Biswas–Arshed Model in Birefringent Fibers Using a Novel Analytical Technique. Fractal Fract. 2023, 7, 491. [Google Scholar] [CrossRef]
- Ghanbari, B.; Baleanu, D. Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Results Phys. 2023, 44, 106171. [Google Scholar] [CrossRef]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Probing Families of Optical Soliton Solutions in Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model with Improved Versions of Extended Direct Algebraic Method. Fractal Fract. 2023, 7, 512. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Cesarano, C.; Elsayed, E.M.; Al-Askar, F.M. The Analytical Fractional Solutions for Coupled Fokas System in Fiber Optics Using Different Methods. Fractal Fract. 2023, 7, 556. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Construction of nonlinear differential equations for description of propagation pulses in optical fiber. Optik 2019, 192, 162964. [Google Scholar] [CrossRef]
- Sánchez, J.; Alhama, F.; Moreno, J. An efficient and reliable model based on network method to simulate CO2 corrosion with protective iron carbonate films. Comput. Chem. Eng. 2012, 39, 57–64. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Z.; Yang, X.-G.; Miranville, A. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Commun. Pure Appl. Anal. 2022, 21, 1595. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Øiseth, O. Torsional vibration of a circular cylinder with an attached splitter plate in laminar flow. Ocean Eng. 2021, 236, 109514. [Google Scholar] [CrossRef]
- Huang, L.; Lian, R. Regularity for compressible isentropic Navier-Stokes equations with cylinder symmetry. J. Inequalities Appl. 2016, 2016, 1. [Google Scholar] [CrossRef]
- Zueco, J.; Alhama, F.; González-Fernández, C. Inverse determination of temperature dependent thermal conductivity using network simulation method. J. Mater. Process. Technol. 2006, 174, 137–144. [Google Scholar] [CrossRef]
- Zueco, J.; Alhama, F. Simultaneous inverse determination of temperature-dependent thermophysical properties in fluids using the network simulation method. Int. J. Heat Mass Transf. 2007, 50, 3234–3243. [Google Scholar] [CrossRef]
- Alarcón, M.; Alhama, F.; González-Fernández, C.F. Transient Conduction in a Fin-Wall Assembly with Harmonic Excitation--Network Thermal Admittance. Heat Transf. Eng. 2002, 23, 31–43. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Hidalgo, P.; Alhama, F. Concrelife: A Software to Solve the Chloride Penetration in Saturated and Unsaturated Reinforced Concrete. Mathematics 2022, 10, 4810. [Google Scholar] [CrossRef]
- Manteca, I.A.; García-Ros, G.; López, F.A. Universal solution for the characteristic time and the degree of settlement in nonlinear soil consolidation scenarios. A deduction based on nondimensionalization. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 186–201. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Marín, F.; Morales, J.L.; Cánovas, M.; Alhama, F. Modeling and simulation of different and representative engineering problems using Network Simulation Method. PLoS ONE 2018, 13, e0193828. [Google Scholar] [CrossRef] [PubMed]
- Solano, J.; Balibrea, F.; Moreno, J.A. Applications of the Network Simulation Method to Differential Equations with Singularities and Chaotic Behaviour. Mathematics 2021, 9, 1442. [Google Scholar] [CrossRef]
- Vogt, H.; Atkinson, G.; Nenzi, P.; Warning, D.; Ngspice Contributors Team. NgSpice. 2023. Available online: https://ngspice.sourceforge.io/docs/ngspice-html-manual/manual.xhtml (accessed on 26 May 2023).
- Morales, J.; Moreno, J.; Alhama, F. Numerical solution of 2D elastostatic problems formulated by potential functions. Appl. Math. Model. 2013, 37, 6339–6353. [Google Scholar] [CrossRef]
- Morales, J.L.; Moreno, J.A.; Alhama, F. Numerical solutions of 2-D linear elastostatic problems by network method. CMES—Comput. Model. Eng. Sci. 2011, 76, 1. [Google Scholar]
- Guerrero, J.L.M.; Vidal, M.C.; Nicolás, J.A.M.; López, F.A. A note on the uniqueness of 2D elastostatic problems formulated by different types of potential functions. Open Phys. 2018, 16, 201–210. [Google Scholar] [CrossRef]
- Morales, J.L.; Moreno, J.A.; Alhama, F. New additional conditions for the numerical uniqueness of the Boussinesq and Timpe solutions of elasticity problems. Int. J. Comput. Math. 2012, 89, 1794–1807. [Google Scholar] [CrossRef]
- Castro, E.; García-Hernández, M.; Gallego, A. Transversal waves in beams via the network simulation method. J. Sound Vib. 2005, 283, 997–1013. [Google Scholar] [CrossRef]
- Hemel, R.; Azam, M.T.; Alam, M.S. Numerical Method for Non-Linear Conservation Laws: Inviscid Burgers Equation. J. Appl. Math. Phys. 2021, 9, 1351–1363. [Google Scholar] [CrossRef]
- Sánchez-Pérez, J.F.; Mena-Requena, M.R.; Cánovas, M. Mathematical Modeling and Simulation of a Gas Emission Source Using the Network Simulation Method. Mathematics 2020, 8, 1996. [Google Scholar] [CrossRef]
- Appadu, A.R.; Tijani, Y.O. 1D Generalised Burgers-Huxley: Proposed Solutions Revisited and Numerical Solution Using FTCS and NSFD Methods. Front. Appl. Math. Stat. 2022, 7, 773733. [Google Scholar] [CrossRef]
Case | A | β | γ | δ | ε | ζ | uext | ||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 0.001 | 1 | 1 | 1 | 1 | ||
2 | 1 | 1 | 0.001 | 4 | 1 | 1 | 1 | ||
3 | 1 | 1 | 0.001 | 1 | 1 | 1 | 1 (t < 0.025) | 0 (t ≥ 0.025) | |
4 | 1 | 1 | 0.001 | 1 | 1 | 1 | 1 (ux=0.3 < 0.2) | 0 (ux=0.3 ≥ 0.2) | |
5 | 1 | 1 | 0.001 | 1 | 1 | 1 | 100sin(3.5t) | ||
6 | 1 (t < 0.025) | 100 (t ≥ 0.025) | 1 | 0.001 | 1 | 1 | 1 | 1 |
Case | α | β | γ | δ | Ε | Ζ | Initial Value |
---|---|---|---|---|---|---|---|
7 | 1 | 0 | 0 | 1 | 0 | 0 | 0.6 x < 0.5 0.1 x ≥ 0.5 |
8 | 1 | 1 | 0.001 | 1 | 1 | 1 | 0.6 x < 0.5 0.1 x ≥ 0.5 |
Case | A | β | γ | δ | uext | ||
---|---|---|---|---|---|---|---|
9 | 1 | 1 | 1 | 1 | 1 | ||
10 | 1 | 1 | 1 | 4 | 1 | ||
11 | 1 | 1 | 1 | 1 | 1 (t < 0.025) | 0 (t ≥ 0.025) | |
12 | 1 | 1 | 1 | 1 | 1 (ux=0.3 < 0.2) | 0 (ux=0.3 ≥ 0.2) | |
13 | 1 | 1 | 1 | 1 | 100sin(62t) | ||
14 | 1 (t < 0.025) | 100 (t ≥ 0.025) | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Pérez, J.F.; Marín-García, F.; Castro, E.; García-Ros, G.; Conesa, M.; Solano-Ramírez, J. Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method. Symmetry 2023, 15, 1740. https://doi.org/10.3390/sym15091740
Sánchez-Pérez JF, Marín-García F, Castro E, García-Ros G, Conesa M, Solano-Ramírez J. Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method. Symmetry. 2023; 15(9):1740. https://doi.org/10.3390/sym15091740
Chicago/Turabian StyleSánchez-Pérez, Juan Francisco, Fulgencio Marín-García, Enrique Castro, Gonzalo García-Ros, Manuel Conesa, and Joaquín Solano-Ramírez. 2023. "Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method" Symmetry 15, no. 9: 1740. https://doi.org/10.3390/sym15091740
APA StyleSánchez-Pérez, J. F., Marín-García, F., Castro, E., García-Ros, G., Conesa, M., & Solano-Ramírez, J. (2023). Methodology for Solving Engineering Problems of Burgers–Huxley Coupled with Symmetric Boundary Conditions by Means of the Network Simulation Method. Symmetry, 15(9), 1740. https://doi.org/10.3390/sym15091740