Flavor Symmetry of Hydrogen Atoms Potentially Affecting the Proton Radius Deduced from the Electron-Hydrogen Scattering
Abstract
:1. Introduction
2. Model
g(r) ≈ 4β3/4 {1/rβ/2 − ε[Rp2/(10βr1−β/2)]}/(1 + ε2)1/2.
ε2 = {−[1.408 × 107Rp2 + 4a(2 − a)(1 − 2a − a2 − 3.52 × 106Rp2)]1/2 − 3.75 × 103Rp}/[2(1 − 2a − a2 − 3.52 × 106Rp2)].
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Brief Overview of the Atomic/Molecular Experiments and Astrophysical Observations Proving the Existence of the Flavor Symmetry of Hydrogen Atoms
References
- Pohl, R.; Antognini, A.; Nez, F.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.; Kottmann, F. The Size of the Proton. Nature 2010, 466, 213–216. [Google Scholar] [CrossRef]
- Bernauer, J.C.; Achenbach, P.; Gayoso, C.A.; Böhm, R.; Bosnar, D.; Debenjak, L.; Distler, M.O.; Doria, L.; Esser, A.; Fonvieille, H.; et al. High-Precision Determination of the Electric and Magnetic Form Factors of the Proton. Phys. Rev. Lett. 2010, 105, 242001. [Google Scholar] [CrossRef]
- Zhan, X.; Allada, K.; Armstrong, D.; Arrington, J.; Bertozzi, W.; Boeglin, W.; Chen, J.-P.; Chirapatpimol, K.; Choi, S.; Chudakov, E.; et al. High-Precision Measurement of the Proton Elastic Form Factor Ratio μpGE/GM at Low Q2. Phys. Lett. B 2011, 705, 59–64. [Google Scholar] [CrossRef]
- Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.R.; Covita, D.S.; Dax, A.; Dhawan, S.; Diepold, M.; et al. Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science 2013, 339, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Mihovilovič, M.; Weber, A.; Achenbach, P.; Beranek, T.; Beričič, J.; Bernauer, J.; Böhm, R.; Bosnar, D.; Cardinali, M.; Correa, L.; et al. First Measurement of Proton’s Charge Form Factor at Very Low Q2 with Initial State Radiation. Phys. Lett. B 2017, 771, 194–198. [Google Scholar] [CrossRef]
- Fleurbaey, H.; Galtier, S.; Thomas, S.; Bonnaud, M.; Julien, L.; Biraben, F.; Guéna, J. New Measurement of the 1S–3S Transition Frequency of Hydrogen: Contribution to the Proton Charge Radius Puzzle. Phys. Rev. Lett. 2018, 120, 183001. [Google Scholar] [CrossRef] [PubMed]
- Bezginov, N.; Valdez, T.; Horbatsch, M.; Marsman, A.; Vutha, A.C.; Hessels, E.A. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 2019, 365, 1007–1012. [Google Scholar] [CrossRef]
- Xiong, W.; Gasparian, A.; Gao, H.; Dutta, D.; Khandaker, M.; Liyanage, N.; Pasyuk, E.; Peng, C.; Bai, X.; Ye, L.; et al. A small proton charge radius from an electron–proton scattering experiment. Nature 2019, 575, 147–151. [Google Scholar] [CrossRef]
- Brandt, A.D.; Cooper, S.F.; Rasor, C.; Burkley, Z.; Matveev, A.; Yost, D.C. Measurement of the 2S1/2–8D5/2 Transition in Hydrogen. Phys. Rev. Lett. 2022, 128, 023001. [Google Scholar] [CrossRef]
- Sick, I. Problems with Proton Radii. Progr. Part. Nucl. Phys. 2012, 67, 473–478. [Google Scholar] [CrossRef]
- Lee, G.; Arrington, J.R.; Hill, R.J. Extraction of the Proton Radius from Electron-Proton Scattering Data. Phys. Rev. D 2015, 92, 013013. [Google Scholar] [CrossRef]
- Mihovilovič, M.; Achenbach, P.; Beranek, T.; Beričič, J.; Bernauer, J.C.; Böhm, R.; Bosnar, D.; Cardinali, M.; Correa, L.; Debenjak, L.; et al. The Proton Charge Radius Extracted from the Initial-State Radiation Experiment at MAMI. Eur. Phys. J. A 2021, 57, 107. [Google Scholar] [CrossRef]
- Karr, J.P.; Marchand, D. Progress on the proton radius puzzle. Nature 2019, 575, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, J.C. The Proton Radius Puzzle—9 Years Later. EPJ Web Conf. 2020, 234, 01001. [Google Scholar] [CrossRef]
- Pacetti, S.; Tomasi-Gustafsson, E. The Origin of the Proton Radius Puzzle. Eur. Phys. J. A 2021, 57, 72. [Google Scholar] [CrossRef]
- Gao, H.; Vanderhaenghen, M. The Proton Charge Radius. Rev. Mod. Phys. 2022, 94, 015002. [Google Scholar] [CrossRef]
- Antognini, A. Precision Benchmarks for Nuclear and Atomic Physics from Laser Spectroscopy of Muonic Atoms. In Proceedings of the 25th European Conference on Few-Body Problems in Physics, Mainz, Germany, 30 July–4 August 2023; Available online: https://indico.him.uni-mainz.de/event/150/contributions/1128/ (accessed on 18 August 2023).
- Gao, H. Recent Results on Proton Charge Radius and Polarizabilities. In Proceedings of the 25th European Conference on Few-Body Problems in Physics, Mainz, Germany, 30 July–4 August 2023; Available online: https://indico.him.uni-mainz.de/event/150/contributions/1135/ (accessed on 18 August 2023).
- Meißner, U.-G. The Proton Radius and its Relatives A.D. In Proceedings of the 25th European Conference on Few-Body Problems in Physics, Mainz, Germany, 30 July–4 August 2023; Available online: https://indico.him.uni-mainz.de/event/150/contributions/1148/ (accessed on 18 August 2023).
- Oks, E. A Possible Explanation of the Proton Radius Puzzle based on the Second Flavor of Muonic Hydrogen Atoms. Foundations 2022, 2, 912–917. [Google Scholar] [CrossRef]
- Oks, E. High-Energy Tail of the Linear Momentum Distribution in the Ground State of Hydrogen Atoms or Hydrogen-like Ions. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 2235–2243. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon: Oxford, UK, 1965. [Google Scholar]
- Kohl, M. Lepton Universality Test with MUSE at PSI. J. Phys. Conf. Ser. 2022, 2391, 012015. [Google Scholar] [CrossRef]
- Gasparian, A.; Gao, H.; Dutta, D.; Liyanage, N.; Pasyuk, E.; Higinbotham, D.W.; Peng, C.; Gnanvo, K.; Xiong, W.; Bai, X.; et al. PRad-II: A New Upgraded High Precision Measurement of the Proton Charge Radius. 2020. Available online: https://arxiv.org/abs/2009.10510 (accessed on 18 August 2023).
- Lin, Y.-H.; Hammer, H.-W.; Meißner, U.-G. Differential Cross Section Predictions for PRad-II from Dispersion Theory. Phys. Lett. B 2022, 827, 136981. [Google Scholar] [CrossRef]
- Adams, B.; Aidala, C.A.; Akhunzyanov, R.; Alexeev, G.D.; Alexeev, M.G.; Amoroso, A.; Makarenko, V. Letter of Intent: A New QCD Facility at the M2 Beam Line of the CERN SPS COMPASS++/AMBER. 2019. Available online: https://arxiv.org/abs/1808.00848 (accessed on 18 August 2023).
- Suda, T. Low-Energy Electron Scattering Facilities in Japan. J. Phys. Conf. Ser. 2022, 2391, 012004. [Google Scholar] [CrossRef]
- Simon, G.; Schmitt, C.H.; Borkowski, F.; Walther, V.H. Absolute electron-proton cross sections at low momentum transfer measured with a high pressure gas target system. Nucl. Phys. 1980, A333, 381. [Google Scholar] [CrossRef]
- Perkins, D.H. Introduction to High Energy Physics; Addison-Wesley: Menlo Park, CA, USA, 1987; Section 6.5. [Google Scholar]
- Oks, E. Alternative Kind of Hydrogen Atoms as a Possible Explanation of the Latest Puzzling Observation of the 21 cm Radio Line from the Early Universe. Res. Astron. Astrophys. 2020, 20, 109. [Google Scholar] [CrossRef]
- Oks, E. Two Flavors of Hydrogen Atoms: A Possible Explanation of Dark Matter. Atoms 2020, 8, 33. [Google Scholar] [CrossRef]
- Gryzinski, M. Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Phys. Rev. 1965, 138, A336. [Google Scholar] [CrossRef]
- Fock, V. Zur Theorie des Wasserstoffatoms. Z. Phys. 1935, 98, 145. [Google Scholar] [CrossRef]
- Callaway, J.; McDowell, M.R.C. What We do and do not Know About Electron Impact Excitation of Atomic Hydrogen. Comments At. Mol. Phys. 1983, 13, 19. [Google Scholar]
- Whelan, C.T.; McDowell, M.R.C.; Edmunds, P.W. Electron Impact Excitation of Atomic Hydrogen. J. Phys. B At. Mol. Phys. 1987, 20, 1587–1598. [Google Scholar] [CrossRef]
- Oks, E. Experiments on the Electron Impact Excitation of the 2s and 2p States of Hydrogen Atoms Confirm the Presence of their Second Flavor as the Candidate for Dark Matter. Foundations 2022, 2, 541–546. [Google Scholar] [CrossRef]
- Zammit, M.C.; Savage, J.S.; Fursa, D.V.; Bray, I. Electron-Impact Excitation of Molecular Hydrogen. Phys. Rev. A 2017, 95, 022708. [Google Scholar] [CrossRef]
- Wrkich, J.; Mathews, D.; Kanik, I.; Trajmar, S.; Khakoo, M.A. Differential Cross-Sections for the Electron Impact Excitation of the B 1Σu+, c 3Πu, a 3Σ+, C 1Πu, E, F 1Σ+ and e 3Σu+ States of Molecular Hydrogen. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 4695–4709. [Google Scholar] [CrossRef]
- Mason, N.J.; Newell, W.R. The Total Excitation Cross Section of the c 3Πu State of H2. J. Phys. B At. Mol. Opt. Phys. 1986, 19, L587–L591. [Google Scholar] [CrossRef]
- Oks, E. Experiments on the Electron Impact Excitation of Hydrogen Molecules Indicate the Presence of the Second Flavor of Hydrogen Atoms. Foundations 2022, 2, 697–703. [Google Scholar] [CrossRef]
- Fite, W.L.; Smith, A.C.H.; Stebbings, R.F. Charge Transfer in Collisions Involving Symmetric and Asymmetric Resonance. Proc. R. Soc. 1962, A268, 527–536. [Google Scholar]
- Dalgarno, A.; Yadav, H.N. Electron Capture II: Resonance Capture from Hydrogen Atoms by Slow Protons. Proc. Phys. Soc. 1953, A66, 173. [Google Scholar] [CrossRef]
- Oks, E. Analysis of Experimental Cross-Sections of Charge Exchange between Hydrogen Atoms and Protons Yields another Evidence of the Existence of the Second Flavor of Hydrogen Atoms. Foundations 2021, 1, 265–270. [Google Scholar] [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An Absorption Profile Centred at 78 Megahertz in the Sky-Averaged Spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef]
- Barkana, R. Possible Interaction between Baryons and Dark-Matter Particles Revealed by the First Stars. Nature 2018, 555, 71–74. [Google Scholar] [CrossRef]
- Jeffrey, N.; Gatti, M.; Chang, C.; Whiteway, L.; Demirbozan, U.; Kovacs, A.; Pollina, G.; Bacon, D.; Hamaus, N.; Kacprzak, T.; et al. Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction. Mon. Not. R. Astron. Soc. 2021, 505, 4626–4645. [Google Scholar] [CrossRef]
- Oks, E. DES Map Shows a Smoother Distribution of Matter than Expected: A Possible Explanation. Res. Astron. Astrophys. 2021, 21, 241–245. [Google Scholar] [CrossRef]
- Oks, E. Review of Latest Advances on Dark Matter from the Viewpoint of the Occam Razor Principle. New Astron. Rev. 2023, 96, 101673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oks, E. Flavor Symmetry of Hydrogen Atoms Potentially Affecting the Proton Radius Deduced from the Electron-Hydrogen Scattering. Symmetry 2023, 15, 1760. https://doi.org/10.3390/sym15091760
Oks E. Flavor Symmetry of Hydrogen Atoms Potentially Affecting the Proton Radius Deduced from the Electron-Hydrogen Scattering. Symmetry. 2023; 15(9):1760. https://doi.org/10.3390/sym15091760
Chicago/Turabian StyleOks, Eugene. 2023. "Flavor Symmetry of Hydrogen Atoms Potentially Affecting the Proton Radius Deduced from the Electron-Hydrogen Scattering" Symmetry 15, no. 9: 1760. https://doi.org/10.3390/sym15091760
APA StyleOks, E. (2023). Flavor Symmetry of Hydrogen Atoms Potentially Affecting the Proton Radius Deduced from the Electron-Hydrogen Scattering. Symmetry, 15(9), 1760. https://doi.org/10.3390/sym15091760